Abstract
The third most prevalent cancer nowadays is colorectal cancer. Colonoscopy is an important procedure in the stage of detection of polyps’ malignancy because it helps in early identification and establishes effective therapy. This paper explores specific deep-learning architectures for the binary classification of colorectal polyps and considers the evaluation of their premalignancy risk. The main scope is to create a custom-based deep learning architecture that classifies adenomatous, hyperplastic, and serrated polyps’ samples into benign and premalignant based on images from the colonoscopic dataset. Each image’s output is modified through masked autoencoders which enhance the classification performance of the proposed model, called Bionnica. From the four evaluated state-of-the-art deep learning models (ZF NET, VGG-16, AlexNet, and ResNet-50), our experiments showed that ResNet-50 and ZF NET are most accurate (above 84%), with ResNet-50 excelling at indicating patients with premalignant colorectal polyps (above 92%). ZF NET is the fastest at handling 700 images. Our proposed deep learning model, Bionnica, is more performant than ZF NET and provides an efficient classification of colorectal polyps given its simple structure. The advantage of our model comes from the custom enhancement interpretability with a rule-based layer that guides the learning process and supports medical personnel in their decisions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
https://www.depeca.uah.es/colonoscopy_dataset/
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Contributing authors: todor.ivascu{at}e-uvt.ro; ardelean.melania{at}umft.ro; darian.onchis{at}e-uvt.ro;
Data Availability
All data produced in the present work are contained in the paper