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Abstract 

East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as 

critical areas fuelling the global circulation of seasonal influenza. However, the internal migration network of 

seasonal influenza within Southeastern Asia remains unclear, including how pandemic-related disruptions 

altered the network structure and circulation dynamics in this region. Here, we leveraged genetic, 

epidemiological, and airline travel data between 2007-2023 to characterise the multiyear dispersal patterns of 

influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during seasons 

marked by perturbations such as the 2009 A/H1N1 and COVID-19 pandemics. We show consistent Autumn-

Winter movement waves of A/H3N2 and B/Victoria from Southeastern Asia to temperate regions during 

interpandemic seasons. During the COVID-19 pandemic this trend was interrupted for both subtypes, however 

the A/H1N1 pandemic only disrupted A/H3N2 spread. For influenza strains circulating in Southeastern Asia, 

we find a higher persistence of A/H3N2 than B/Victoria. We find pandemic-related disruptions in A/H3N2 

antigenic evolution, with a greater time-advanced antigenic evolution during the 2009 A/H1N1 pandemic, and a 

greater time-lagged pattern during the COVID-19 pandemic, compared to inter-pandemic levels. Internally, in 

comparison to the interpandemic seasons, the inferred dispersal rates within Southeastern Asia decreased by 

54.7% and 79.2% during the 2009 A/H1N1 and COVID-19 pandemic seasons, respectively; further, the internal 

movement structure within Southeastern Asia markedly diverged during the COVID-19 pandemic season, and 

to a lesser extent, during the 2009 A/H1N1 pandemic season. Analyses of the trunk location and phylogenetic 

similarity further reveal a temporally varying pattern within Southeastern Asia, suggesting a complex source-

sink network, with a notable decrease in the mixing of lineages around the COVID-19 pandemic season. Our 

findings provide insights into the heterogeneous interplay between influenza circulation in Southeastern Asia 

and two distinct pandemic-related disruptions (strong decline in human movements during the COVID-19 

pandemic, pronounced pathogen interference during the A/H1N1 pandemic), which can help anticipate the 
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effects of potential mitigation strategies and the emergence of future influenza pandemic strains on influenza 

dynamics. 
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Main text 

Seasonal influenza infections occur annually and cause a significant disease burden across the world1. Human 

mobility and interconnectedness is thought to be the main driver of worldwide human influenza virus spread2, 

while a combination of antigenic evolution to escape immunity and waning immunity results in an oscillating 

supply of susceptible hosts leading to frequent reinfections3. Seasonal influenza viruses cause predictable 

annual epidemics in temperate regions as well as relatively divergent waves in tropical regions4,5. Newly-

emerged influenza viruses can disrupt this pattern through cross-subtype population immunity6,7. In parallel, 

other co-circulating seasonal or novel respiratory pathogens can shape the spread of seasonal influenza viruses, 

especially when they are associated with human behavioural changes in response to non-pharmaceutical 

interventions (NPIs) and declarations of public health emergencies8,9. Two emerging pathogens, the swine-

origin influenza A/H1N1 virus and SARS-CoV-2, triggered global pandemics in 2009 and 2020 respectively. 

However, whether and how changes in human behaviour and cross-subtype population immunity during the 

course of these pandemics affected seasonal influenza circulation, especially in Southeastern Asia (here defined 

as East, South, and Southeast Asia), remains unclear. 

 

Our previous work evaluated the global dispersal patterns of seasonal influenza among 12 broad geographical 

regions prior, during, and after the COVID-19 pandemic, and found that the pandemic’s onset led to a shift in 

the intensity and structure of the international movement of influenza lineages10. Beyond the global perspective 

focusing only on the COVID-19 or A/H1N1 pandemics alone7,8,10, comparisons of the impacts of the 2009 

A/H1N1 and COVID-19 pandemics on influenza circulation at a finer spatial scale are still lacking. Apart from 

the heterogeneity in the intensity of NPIs during the two pandemics, different degrees of viral interference 

(namely, virus‒virus interactions via cross-immunity) can also be expected between seasonal influenza viruses 

and the two pandemic viruses6,11,12. Additionally, the structure of the influenza virus migration network within 

Asia, especially Southeastern Asia, has rarely been explored. Understanding the internal migration network 

within Southeastern Asia is critical as it has been suggested to play an essential role in generating antigenically 

distinct seasonal viruses and seeding global seasonal influenza epidemics4,13,14. Changes in human behaviour 

and cross-immunity during the 2009 A/H1N1 and COVID-19 pandemics provide natural experiments to 

evaluate temporal shifts on the circulation patterns of seasonal influenza in Southeastern Asia relative to the 

baseline interpandemic period, and elucidate the mechanisms at play. A comprehensive genomic and 

epidemiological assessment of the interplay between pandemic-related disruptions and seasonal influenza 

circulation in Southeastern Asia can further inform potential strategies for mitigating global disease burdens in 

the future. 

 

In this study, we leveraged genetic, epidemiological, and airline travel data to assess the circulation dynamic of 

seasonal influenza emanating from and within Southeastern Asia between 2007 and 2023, covering the apexes 

of two global pandemics and multiple interpandemic seasons. Specifically, we first inferred the seasonality of 

viral movement out of Southeastern Asia, and identified those viral lineages that potentially persisted within 

Southeastern Asia (defined as persistent lineages) to trace their internal circulation dynamics. We subsequently 
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performed long-term comparisons of the internal spread of seasonal influenza within Southeastern Asia and 

evaluated how influenza circulation was impacted by the two pandemics. 

 

Methods 

To develop our methods for epidemiological and genomic assessment, we combined epidemiological data, 

genetic data and airline data, together with a phylodynamic framework to infer viral movements and the 

emergence of antigenic novelty at various spatial levels. 

 

Epidemiological data 

Global virological surveillance data for seasonal influenza was retrieved from FluNet, based on  the WHO-led 

Global Influenza Surveillance and Response System (GISRS)15 and collated according to the methodology 

followed in10. We extracted the weekly number of specimens processed for influenza testing and positive 

detections by subtypes or lineages to calculate weekly positivity rates. We defined the influenza season in the 

southern hemisphere as running from ISO week 1 to week 52 of one year, whereas the influenza season in other 

regions was defined as running from ISO week 27 of one year to ISO week 26 of the next year. In each region, 

we defined an average seasonal pattern for inter-pandemic seasons based on the total positivity rates pij of each 

seasonal influenza virus subtype/lineage in week i during influenza season j. We averaged the positivity rates pij 

across interpandemic seasons after aligning curves based on the median week of peak occurrence with outlier 

seasons removed (for details see Supplemental Figs. 1-2)16,17. Since Southeastern Asia experienced two 

A/H3N2 waves during interpandemic seasons we performed two epidemic alignments per season by splitting 

each influenza season into a summer (ISO week 14 to 39) and winter season (ISO week 40 to ISO week 13 of 

the next year). 

 

Collation and sub-sampling of viral sequence data 

We focused on A/H3N2 and B/Victoria in this study, because A/H1N1pdm09 only emerged in 2009 and 

therefore cannot be regarded as a seasonal influenza virus during the 2009 pandemic season18, and B/Yamagata 

potentially disappeared after March 202019. A global genetic dataset of seasonal influenza sequences 

(hemagglutinin (HA) segment) sampled between 2007 and 2023 was retrieved from GISAID and GenBank on 

17 Jan 2024, with details of data processing in10. To retain more sequences than our previous study10, we also 

included sequences with incomplete collection dates and only discarded poor quality sequences, as defined by 

the quality control criteria in Nextclade20,21. 

 

Geographic locations of sequences were classified into Southeastern Asia and temperate regions, according to 

previous understanding of the global influenza circulation network4. Based on previous work on transmission 

characteristics of influenza and availability of genetic data in Asia22,23, here we defined the geographic scale of 

“Southeastern Asia” as comprising the entirety of Southeast Asia, parts of East Asia (China, Japan, South 

Korea), and parts of South Asia (Bangladesh, Bhutan, India, Sri Lanka, Nepal), which is in line with one of the 

seven influenza transmission zones defined in a previous clustering analysis22. 

 

To trace the internal transmission network of influenza within Southeastern Asia, we used finer-grained internal 

spatial demes (Extended Data Fig. 1), where the majority of demes are set at country levels. Further, we 

divided mainland China into three zones, based on previous work showing heterogeneous seasonality patterns 

driven by climatic conditions (winter peak in north China, semi-annual peaks in central China, and spring peak 

in south China)24,25. In addition, in China, we separated Hong Kong, Macao, and Taiwan due to their distinct 
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positions in the global air transport network26 and heterogeneous non-pharmaceutical interventions (NPIs) 

adopted during both pandemic interruptions compared to mainland China27. Finally, we combined Indonesia 

and East Timor, as well as Malaysia and Brunei, due to the low availability of publicly available genetic data in 

these neighbouring countries. This resulted in a total of 22 “country/sub-location level” (referred to as sub-

location level hereafter) demes within Southeastern Asia. 

 

Temperate regions comprised five sub-regions: North America (Canada and USA only) and Europe (Russia 

excluded) in the northern hemisphere (NH); Oceania (Australia and New Zealand only), South America, and the 

Southern part of Africa in the southern hemisphere (SH) (Extended Data Fig. 1). The entirety of South 

America was classified as a Southern Hemisphere temperate zone, given the recommended use of the Southern 

Hemisphere vaccine formulation throughout the region28 and a similar seasonality pattern across the whole 

region5. We recognize that tropical land masses exist in the northern part of South America. 

 

To reduce the impact of sampling biases while maintaining computational feasibility, we carefully sub-sampled 

the global sequence dataset. For each subtype, we designed three subsampling strategies to select ~6000 HA 

sequences collected from January 2007 to December 2023, of which half (~3000) were allocated to 

Southeastern Asia. In the first sub-sampling scheme (even sub-sampling, main analysis), we sub-sampled equal 

numbers of sequences per sub-location per year (where available) in Southeastern Asia. In temperate regions, 

we first allocated ~600 sequences for each sub-region where available, and then sub-sampled equal numbers of 

sequences per sub-location per year. The second sub-sampling scheme selected sequences proportional to 

human population. Specifically, we set the number of sequences for each sub-location proportional to the sub-

location-specific population size (with a minimum number of 100 sequences per sub-location) in Southeastern 

Asia; in temperate regions, we first set that number proportional to population size for each sub-region (with a 

minimum number of 300 sequences per sub-region), and then sub-sample equal numbers of sequences per sub-

location per year within each sub-region. We sub-sampled equal numbers per year, because more recent years 

are overrepresented in sequence numbers compared to previous years (Fig. 1f, 1j). Sequences selected in the 

third subsampling scheme were proportional to the product of population size and influenza positivity rate 

binned by ISO year. Throughout, among the smallest sub-sampling units (per sub-location per year), more sub-

sampling weights were given to sequences with more complete collection dates and higher quality sequences. 

 

Phylogenetic analyses 

We aligned sequences in the sub-sampled datasets in Nextclade and only kept the coding regions20. We then 

constructed maximum likelihood (ML) phylogenies using IQ-TREE229. The resulting phylogenetic trees were 

inspected in TempEst to identify and remove temporal outliers30. To better manage the number of sequences, 

we further reduced clades of sequences where all sequences originated from a single sub-location to a single 

representative sequence, since such clades contain no information about transitions across sub-locations. This 

subsampling process resulted in reducing the datasets to ~4000 genetic sequences. 

  

The ML tree was re-estimated for the reduced genetic datasets using the same specifications described above. 

We then inferred the time-calibrated tree using TreeTime31, which served as the starting tree for Bayesian 

phylogenetic inference. Phylogenetic trees were inferred in a Bayesian framework using BEAST v1.10.532 and 

the high-performance BEAGLE library33, in which we incorporated a starting ML tree, a HKY nucleotide 

substitution model with gamma-distributed rate variation among sites, a constant coalescent prior using a 
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Hamiltonian Monte Carlo (HMC) kernel on the population size and node heights, as well as a strict molecular 

clock model. Samples with incomplete dates had dates of sampling estimated assuming a uniform prior within 

the known temporal bounds. These analyses were run for 400-600 million MCMC steps for three chains and 

sampled every 100,000 steps, with the first 10%-15% considered as burn-in. 

 

Phylogeographic analyses 

1. Two-state phylogeographic analysis 

Using the posterior set of trees from the above phylogenetic analyses as a set of empirical trees, we performed a 

two-state time-inhomogeneous asymmetric discrete trait analysis (DTA) in BEAST 1.10.5, where sequences 

collected from Southeastern Asia and temperate regions were labelled based on their respective geographic 

deme. We used the epoch extension to specify five epochs where each epoch spans a single or multiple 

influenza seasons: i) before the A/H1N1 pandemic season (before 30 June 2009), ii) A/H1N1 pandemic season 

(from 1 July 2009 to 30 June 2010), iii) interpandemic period (from 1 July 2010 to 30 June 2020), iv) COVID-

19 pandemic season (from 1 July 2020 to 30 June 2021), and v) after the COVID-19 pandemic season (after 1 

July 2021), enabling us to account for variations in transition rate. Individual counts of transitions between 

demes were estimated by stochastic mapping in the form of Markov jumps and rewards34. 

 

2. Identifying persistent lineages 

We identified those Southeastern Asia virus strains that directly descended from the Southeastern-Asia trunk 

node of the trees, where the trunk was defined as all branches ancestral to viruses sampled within 1 year of the 

most recent sample23. We referred to those lineages as “persistent lineages”, which can be considered as roughly 

equivalent to opposite of the “transmission lineages” defined in35. To achieve this, in brief, we first initiated a 

depth-first search from each Southeastern-Asia tip for each tree in posterior samples. We defined the 

Southeastern-Asia tip as belonging to a persistent lineage in this tree if the trunk node from which it descends 

was associated with “Southeastern-Asia” and also all ancestor nodes in the path from tip to this trunk node were 

associated with “Southeastern-Asia” as well (Fig. 3a). We then summarised the distribution of “persistent 

lineage” for the posterior set of trees, for which those tips that are classified as belonging to persistent lineages 

in more than 50% of the posterior tree samples would be ultimately labelled as belonging to “persistent 

lineages”. 

 

3. Internal GLM-diffusion phylogeographic analysis 

The internal movement network within Southeastern Asia was inferred using only sequences classified as 

belonging to persistent lineages in the prior analysis. We inferred the phylogenetic trees of persistent lineages in 

BEAST v1.10.5 with a parameter-rich setting where we specified an SRD06 nucleotide substitution model36, a 

Bayesian SkyGrid coalescent prior (with grid points equidistantly spaced in six month intervals)37, and a strict 

molecular clock model. Using the posterior trees from this analysis as empirical trees, we performed a time-

inhomogeneous phylogeographic (DTA) model with a generalised linear model (GLM) between the 22 

Southeastern Asia sub-locations defined above, with Markov jumps and rewards logged to estimate the 

transition events34. Both overall and relative transition rates were set to be epoch-specific, using the same 

epochs as above. We collated, aggregated, and standardised time-inhomogeneous airline traffic volumes in the  

five epochs10. This was then used as the sole covariate in the phylogeographic GLM model, assuming time-

homogeneous effect sizes and inclusion probabilities38. Airline passenger booking data (referred to as airline 
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passenger volumes) from January 2011 to December 2023 were accessed from Official Airline Guide (OAG) 

Ltd. through a data sharing agreement. Considering that no airline passenger data were available before 2011, 

we adopted the airline capacity data (the number of seats) from OAG to assume a proportional relationship with 

the number of passengers travelling2 (Extended Data Figs. 2-3). Therefore, the airline data of the five epochs 

refers to i) airline capacity from January 2007 to June 2009; ii) airline capacity from July 2009 to June 2010; iii) 

airline passenger volumes from January 2011 to June 2020; iv) airline passenger volumes from July 2020 to 

June 2021, and v) airline passenger volumes from July 2021 to December 2023, respectively. 

 

4. Summary of posterior trees 

We used the TreeMarkovJumpHistoryAnalyzer tool to obtain posterior summaries of all Markov jump events 

from posterior trees38. In terms of viral movements from Southeastern Asia to temperate regions, we averaged 

the weekly movement intensity per season after aligning the movement time series based on the median peak 

weeks for the seasons during the interpandemic period, with the outlier seasons (e.g., no peak in that season) 

removed16,17. The procedure followed is similar to the methodology illustrated in Supplemental Fig. 1.  

 

For A/H3N2 persistent lineages circulating within Southeastern Asia, we estimated the PhyloSor similarity 

between each pair of three sub-regions (East Asia, South Asia, and Southeast Asia) in Southeastern Asia, which 

quantifies the similarity of viral populations between those locations as the proportion of branch lengths in 

phylogenetic trees that are shared relative to the total branch lengths of both populations39. Additionally, we 

computed Euclidean distances among seasons for those vectorized asymmetric jump matrices among three sub-

regions (East Asia, South Asia, and Southeast Asia), and then performed a classical multidimensional scaling in 

a 2-dimensional space40. Finally, we summarised the trunk location within Southeastern Asia over time based 

on the phylogeographic estimates using PACT v.0.9.5 (https://github.com/trvrb/PACT)23. 

 

Sequence-based antigenic distance 

As the antigenic map has been clearly resolved for A/H3N241, we calculated sequence-based antigenic distances 

for A/H3N2 subtypes following a genotype-phenotype mapping42. In brief, in each antigenic site (A, B, C, D, E) 

of A/H3N241, we quantify the number of differences in amino acids (Hamming distance) for aligned amino acid 

sequences compared to the sequence of the vaccine strain “A/Wisconsin/67/2005” (also the reference sequence 

in this study). Antigenic site-specific Hamming distances are divided by the total number of amino acids in the 

antigenic site, and then multiplied by 20, representing a 20-dimensional immunological shape space43. The final 

antigenic distance between each virus strain and “A/Wisconsin/67/2005” was calculated by averaging the above 

values at five antigenic sites. To identify the leading and trailing geographic regions undergoing antigenic 

evolution of A/H3N2, we fitted a linear best-fit line between antigenic distance against date of collection. Points 

to the right of the line are thought to be antigenically advanced, whereas strains to the left of the line are 

antigenically lagging4. We then summarised the leading and trailing pattern by regions and time periods. 

Bootstrap resampling of distance values yielded a p value for the difference between interpandemic seasons and 

each pandemic season. We could not perform the same analysis for influenza B/Victoria due to the less resolved 

mapping between genotype and antigenic phenotype. 

 

Results 

Disruptions of influenza activity during pandemic seasons 

To synchronise with the northern hemisphere influenza seasons (from July 1st of one year to June 30th of the 

next year22,44), the A/H1N1 and COVID-19 pandemic periods were respectively defined as spanning from July 
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2009 to June 2010 and from July 2020 to June 2021, with the periods between them labelled as the 

interpandemic periods/seasons. Similar to our previous work relating specifically to the COVID-19 pandemic 

period10, the sampling intensity of virological surveillance for seasonal influenza during the two pandemic 

seasons was no lower than during previous seasons (Fig. 1a). The amplitude of surveillance intensity fluctuated 

across region and time, with a large increase directly after the start of the A/H1N1 pandemic and a generally 

increasing trend thereafter (Fig. 1a). Yearly fluctuations in viral sampling were observed in temperate regions, 

peaking in their respective winter months (Fig. 1a-b). On the other hand, surveillance intensity within any given 

year remained relatively stable in Southeastern Asia (Fig. 1a-b), due to persistent influenza circulation 

throughout the year in large parts of the region45,46. 

 

 
Fig 1. Variation in testing intensity, positivity rate, and numbers of HA gene sequences of seasonal influenza 

viruses in Southeastern Asia and temperate regions of the northern hemisphere (NH) and southern 

hemisphere (SH). a) A five-week running average of the number of specimens tested for influenza in three 

geographic regions. Light and dark red shading denote the A/H1N1 and COVID-19 pandemic seasons, 

respectively, between which are interpandemic seasons. Global-scale data after 2017, presented in Fig. 1a of 

our previous study10, have been re-aggregated into three regions and are retained here for the comparisons 

between the two pandemic seasons. b) Geographic divisions used in this study. The entirety of South America 

was grouped with the southern hemisphere given recommended use of the Southern Hemisphere vaccine 

formulation throughout the region5,28. c-e) Average positivity rates for A/H3N2 for seasons in the interpandemic 

period (cyan-blue lines) versus that during the 2009 A/H1N1 pandemic season (orange lines) and the COVID-

19 pandemic season (red lines). Cyan-blue lines represent mean positivity rates for A/H3N2 after aligning the 

median week of peak (shown as the dashed line) for the seasons in the interpandemic periods, where grey lines 
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show the five-week rolling positivity rate for each season separately after epidemic alignment. The processing 

details have been presented in Supplemental Figs. 1-2. ISO week 53 was removed for some years to maintain 

temporal consistency. Two epidemic alignments of A/H3N2 were performed in Southeastern Asia by splitting 

each influenza season into a summer (corresponding to the summer peak) and winter season (corresponding to 

the winter peak). In panels d and h, the first half of the positivity lines (Jan-Jun 2010; Jan-Jun 2021) during the 

pandemic periods occurred after the second half of the line (Jul-Dec 2009; Jul-Dec 2020), for temporal 

comparison. In panel e, the first half of the positivity lines (Apr-Jun 2010; Apr-Jun 2021) during the pandemic 

periods occurred after the second half of the lines (Jul 2009-Mar 2010; Jul 2020-Mar 2021). f) HA gene 

sequences of A/H3N2 stratified by geographic regions over time. g-i) Same as c-e but for B/Victoria. j) Same as 

f but for B/Victoria. 

 

Given the emergence of A/H1N1pdm09 in 200918 and the subsequent replacement of the previously circulating 

seasonal A/H1N1 virus, as well as the potential disappearance of B/Yamagata in 202019, we focused on the 

remaining two human influenza subtypes, A/H3N2 and B/Victoria, for which we could study disruptions 

associated with two pandemic seasons. Initially, we established the average curve of positivity rate (as a proxy 

of influenza activity17) for seasons in the interpandemic period following epidemic alignment by peak week 

(details in Methods) as a baseline, against which the positivity rates during the two pandemic seasons were 

contextualised (Fig. 1c-e, 1g-i).  

 

In temperate regions we observe a single annual winter wave of H3N2 circulation during the interpandemic 

period, while biannual peaks are observed in Southeastern Asia. Compared to interpandemic averages, 

extremely low positivity rates were observed in all three regions throughout the two pandemics, except for a 

single peak occurring in Southeastern Asia in late August 2009 during the A/H1N1 pandemic, without a 

subsequent second peak (Fig. 1c-e). This single A/H3N2 wave was hypothesised to be associated with limited 

implementation of NPIs during the A/H1N1 pandemic47, while the absence of a second peak could be 

attributable to viral interference due to large scale transmission of the novel A/H1N1 pandemic virus48, 

presumably via heterosubtypic cross-immunity6. The low positivity rate of A/H3N2 during the COVID-19 

pandemic in all regions further highlights the impact of human behavioural changes on influenza circulation.   

 

Despite variations in B/Victoria activity from season to season, we observe a single peak in all three regions 

during the interpandemic period, with a lower and usually delayed peak compared to A/H3N2 (Fig. 1g-i). A 

larger than usual wave of B/Victoria occurred in Southeastern Asia in the first quarter of 2010 during the 

A/H1N1 pandemic, whereas little circulation was observed during the COVID-19 pandemic (Fig. 1i). We 

hypothesise that this difference can be partly explained by varying intensity and duration of NPIs implemented 

during the two pandemics, with a 70.9% decrease of global airline traffic in 2020 compared to 2019, compared 

to a 2.4% reduction from 2008 to 2009 (Extended Data Fig. 2a). 

 

Impact of pandemics on influenza movements from Southeastern Asia to temperate regions 

Given the heterogeneous spatiotemporal distribution of genetic sequences (Fig. 1f, 1j), we adopted three sub-

sampling schemes to select sequences and assess the potential impact of sampling biases. All three sub-

sampling schemes resulted in similar numbers of Markov jump counts between locations over time, for both 

subtypes (Extended Data Fig. 4), indicating that the signal is robust to the sub-sampling scheme. Thus, in our 

main analysis we arbitrarily employed an even sub-sampling scheme by time and location (details in Methods). 

We first extended a previous study10 by performing a two-state discrete trait analysis to estimate Markov jump 

events (referred to as viral movement events) between Southeastern Asia and temperate regions from 2007 to 
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2023 (Extended Data Fig. 4, Fig. 2). Despite selecting a similar number of genetic sequences from both 

regions, a higher frequency of A/H3N2 movements from Southeastern Asia to temperate regions was detected, 

compared to the reverse direction (Extended Data Fig. 4a, Fig. 2a). Regarding B/Victoria lineages, the pattern 

of bidirectional movements between the two regions varied widely from season to season (Extended Data Fig. 

4d), but with a more balanced flux than A/H3N2 (Fig. 2a-b). 

 

 
Fig 2. Inferred movement of A/H3N2 and B/Victoria between Southeastern Asia and temperate regions. a-b) 

The overall Markov Jump counts in two directions over the entire time period of interest (A/H1N1 pandemic 

season, interpandemic seasons, and COVID-19 pandemic season). The error bar indicates the 95% HPD 

interval. c-d) Average Markov Jumps of A/H3N2 and B/Victoria from Southeastern Asia to temperate regions 

for the seasons in the interpandemic period (after removing outlier seasons and aligning at the median peak). 

Grey lines show Markov Jumps for each season in the interpandemic period after epidemic alignment; cyan is 

the interpandemic average, orange the A/H1N1 pandemic season and red the COVID19 pandemic season. ISO 

week 53 was removed for some years to maintain temporal consistency. 
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Subsequently, we averaged the Markov jump counts from Southeastern Asia to temperate regions for the 

seasons during the interpandemic period, after epidemic alignment at median week for timing of each season. 

As a baseline, A/H3N2 movement from Southeastern Asia gradually peaked in early December in 

interpandemic seasons (Fig. 2c), while B/Victoria movements peaked in January, although with a heavy tail 

toward earlier weeks, indicating sustained movements starting much earlier (Fig. 2d). During the two 

pandemics, the typical A/H3N2 winter peak in exports from Southeastern Asia disappeared. During the 

A/H1N1 pandemic, B/Victoria movement peaked at the same time as during the inter-pandemic period, and at a 

level consistent with inter-pandemic activity. This coincides with the large B/Victoria wave in Southeastern 

Asia during the same time period, likely resulting in sustained exports from Southeastern Asia, but not 

establishment in temperate regions (Fig. 1g-i). However, no corresponding B/Victoria winter peak was detected 

during the COVID-19 pandemic. 

 

Persistent influenza lineages within Southeastern Asia 

To enable further reconstruction of the internal network within Southeastern Asia, we categorised the viruses 

circulating in Southeastern Asia based on whether they had been inferred to have either been newly introduced 

or persisted in the region from a previous season. Briefly, for lineages in Southeastern Asia, "persistent 

lineages" are defined as those lineages descended from the most recent Southeastern Asia trunk node. Although 

we do not interpret this in terms of epidemiological persistence of transmission chains between seasons, these 

lineages can be seen as more likely to have persisted from previous seasons rather than being recently 

introduced into Southeastern Asia (Fig. 3a, details in Methods).  

 

The maximum clade credibility (MCC) tree of A/H3N2 exhibited a trunk that was relatively consistently 

associated with Southeastern Asia, whereas the trunk location of B/Victoria displayed variations across 

influenza seasons (Fig. 3b-c), consistent with more balanced B/Victoria fluxes between Southeastern Asia and 

temperate regions (Fig. 2a-b). This aligns with past observations that global A/H3N2 circulation patterns 

exhibit a stronger and more predictable source-sink dynamic than B/Victoria4,23,49. We found that a higher 

percentage of A/H3N2 viruses sequenced in Southeastern Asia belonged to persistent lineages (86.5%, 

1913/2211) than B/Victoria viruses (29.1%, 636/2188) (P < 0.001, chi-square test), consistent for both the 

pandemic and interpandemic periods (Fig. 3d-e). Interestingly, the percentage of A/H3N2 viruses in 

Southeastern Asia belonging to persistent lineages appears to have increased during both pandemic seasons 

(Fig. 3d), possibly due to the reduction of human mobility and subsequent lineage movement. 
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Fig 3. Persistent lineages within Southeastern Asia and their topological and temporal distributions. a) 

Schematic diagram illustrating how viruses circulating in Southeastern Asia belonging to persistent lineages 

were identified. A Southeastern-Asia tip was defined as belonging to a persistent lineage if its nearest trunk 

node was associated with “Southeastern-Asia” and all ancestor nodes from this tip to the nearest trunk node 
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were associated with “Southeastern-Asia” backwards in time. Trunk was defined as all branches ancestral to 

viruses sampled within 1 year of the most recent sample. b-c) The maximum clade credibility (MCC) tree of 

A/H3N2 and B/Victoria lineages. Tips are coloured by geographic region of virus collection, in which strains in 

Southeastern Asia are separately annotated as belonging to persistent and non-persistent lineages; internal 

branches are coloured by geographic region as inferred by Bayesian phylogeographic methods. Trunk nodes 

over time are presented as dots coloured by trunk location on a horizontal line at the top of the panels. Trunk 

assignments are summarised up to the most recent common ancestor (tMRCA) of viruses sampled within 1 year 

of the most recent sample. d-e) The temporal distribution of the numbers of sub-sampled virus genomes from 

Southeastern Asia belonging to persistent and non-persistent lineages over influenza seasons, for A/H3N2 and 

B/Victoria lineages, respectively (left y-axis). The proportion of virus genomes belonging to persistent lineages 

over time is represented by the grey line (right y-axis). 

 

Shifts in antigenically leading and trailing patterns 

To provide more insights into the evolutionary heterochrony across regions and seasons, we calculated 

sequence-based antigenic distance for A/H3N2, a subtype whose antigenic map has been clearly resolved41. 

Based on the HA genetic sequence of A/H3N2, we calculated the Hamming distances of each virus strain to the 

vaccine strain (A/Wisconsin/67/2005) across the five major antigenic sites following the approach from42. We 

found that A/H3N2 viruses evolved linearly from 2007 to 2023 (Fig. 4a), with no clear outliers during the 

pandemic seasons. This suggests that A/H3N2 viruses circulating in both Southeastern Asia and temperate 

regions underwent antigenic evolution in a globally homogeneous way, consistent with the ladder-like tree 

topology of A/H3N2 (Fig. 3a) and previous findings4,50. 

 

 
Fig 4. Leading and trailing geographic regions of A/H3N2 antigenic evolution. a) Sequence-based antigenic 

distance from A/Wisconsin/67/2005 of all A/H3N2 virus strains plotted against time of collection. The thick grey 

line is the fitted line using a linear model. Points to the right of the line are antigenically advanced, whereas 

strains to the left of the line are antigenically lagging. Light and dark red shading denotes the A/H1N1 and 

COVID-19 pandemic seasons, respectively. b) Antigenic distance to the fitted line by region and period. Grey 

oblique squares indicate the average antigenic distance to the fitted line for strains isolated in each region. 
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Coloured circles split this overall average by various periods. Points to the right of the graph are antigenically 

advanced, whereas strains to the left are antigenically lagging. Antigenic distance can also be interpreted as 

time using the slope of the regression line in panel a; thus, time is shown as a second x axis (top). The absence 

of observations in certain periods is attributed to incomplete gene sequences, making it challenging to compute 

antigenic distance. PL, persistent lineages; NPL, non-persistent lineages. 

 

Next, we explored which regions typically lead or lag A/H3N2 antigenic evolution, and whether pandemic 

events may have disrupted these patterns. We computed the distance of each strain to the fitted line between 

antigenic distance and time of collection, for which points to the right of the line indicated antigenically 

advanced strains, while those to the left indicated antigenically lagging strains4 (Fig. 4a). During the 

interpandemic period, newly emerged A/H3N2 strains appeared in Southeastern Asia on average, 3.1 months 

earlier than in temperate regions, while the greatest lag in arrival of antigenic novelty was found in South 

America with a delay of 5.1 months (Fig. 4b). Within Southeastern Asia, persistent A/H3N2 strains appeared on 

average 3.3 months earlier than non-persistent lineages. Additionally, this leading and trailing pattern differed 

from period to period (Fig. 4b). During the A/H1N1 pandemic, newly emerged A/H3N2 strains appeared on 

average 10.0 months earlier in Southeastern Asia and 9.0 months earlier in temperate regions compared to the 

interpandemic period (both P < 0.001, Extended Data Table 1). However, during the COVID-19 pandemic, 

A/H3N2 antigenic evolution lagged in both Southeastern Asia (by 5.3 months, P < 0.001) and temperate regions 

(by 1.8 months, P = 0.632) compared to the interpandemic period (Extended Data Table 1). The time-

advanced pattern of A/H3N2 antigenic evolution seen globally during the A/H1N1 pandemic might be linked to 

modest NPIs and enhanced natural selection from competition with high circulation of A/H1N1pdm09 

worldwide. Conversely, the lagged pattern of A/H3N2 evolution seen in Southeastern Asia during the COVID-

19 pandemic could be attributed to limited influenza circulation and evolution due to human behaviour changes 

driven by stringent and long-lasting NPIs. The non-significant differences of antigenic evolution during the 

COVID-19 pandemic season in temperate regions (P = 0.632) might be associated with earlier re-opening of 

these regions (Extended Data Fig. 5), and the fact that these regions do not typically lead antigenic novelty. 

More population-based and modelling studies are required to deepen the understanding of the exact mechanisms 

underpinning our observations.  

 

Characterising the A/H3N2 movement network within Southeastern Asia 

Next, we used the persistent lineages of A/H3N2 within Southeastern Asia, identified earlier, to reconstruct the 

transmission network in this region. Although the inferred internal network fluctuates from season to season, we 

constructed an average network using the intensity of viral movement between pairs of sub-locations per season 

during the interpandemic period as a baseline, and contrasted baseline patterns with those of pandemic seasons 

(Fig. 5a). During the A/H1N1 pandemic, the overall number of inferred virus movement events declined by 

52.6% (1- 85.0/179.4) compared to the baseline, whereas movement intensity increased for routes from 

Indonesia-East Timor (8.5 vs 5.7 in the baseline) and Laos (3.7 vs 2.6) (Fig. 5b, Extended Data Fig. 6). During 

the COVID-19 pandemic, the overall number of viral movements declined by 86.1% (1-25.0/179.4) compared 

to the interpandemic period (Fig. 5c). The reductions were consistent for the epoch-specific dispersal rates 

accounting for the tree length (decreased by 54.7% and 79.2% during the 2009 A/H1N1 and COVID-19 

pandemic seasons, respectively) (Fig. 5d). We further subdivided Southeastern Asia into East Asia, South Asia, 

and Southeast Asia to perform a multidimensional scaling analysis for vectorized asymmetric movement 

matrices among these three sub-regions. There was a marked divergence in internal movement network 

structure during the COVID-19 pandemic, and to a lesser extent during the A/H1N1 pandemic season, in 

comparison to the well-mixed pattern that was observed during the interpandemic seasons (Fig. 5e). Further 
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analysis of the trunk location revealed a temporally varying pattern (Extended Data Fig. 7), indicating that the 

internal network within Southeastern Asia is a dynamic process that is maintained not only by one sub-location 

as the source population, consistent with prior work4. 

 

We further estimate the A/H3N2 phylogenetic similarity using the tree topology and branch length39 (PhyloSor, 

details in Methods), as a proxy for lineage mixing among the three sub-regions (East Asia, South Asia, and 

Southeast Asia). During the A/H1N1 pandemic season, there was a considerable amount of lineage mixing 

between pairs of sub-regions within Southeastern Asia, aligned with that of prior seasons, but a notable increase 

was seen in 2010-2011 between Southeast Asia and South Asia (similarity: 0.44, 95% highest posterior density 

(HPD): 0.39 to 0.49, Fig. 5f). The extent of lineage mixing only slightly declined during the COVID-19 

pandemic season in 2020-2021 for all pairs of sub-regions, but declined precipitously in 2021-2022 between 

East Asia and South Asia, and East Asia and Southeast Asia. We hypothesise that virus lineages are still able to 

circulate on the same branch of a tree phylogeny despite low activity, explaining the “delayed” effect of the 

pandemic on A/H3N2 similarity. The fact that during the 2021/2022 season persistent lineages in East Asia 

rarely mixed with those from the other two sub-regions, while mixing was at typical levels between Southeast 

Asia and South Asia (Fig. 5f) could be attributed to the uniquely stringent NPIs and international travel 

restrictions that were still in place in China over this period. Thereby lineages from East Asia had limited 

opportunities to mix with lineages from other regions (Extended Data Fig. 3). This observation is further 

supported by the significant contribution of airline traffic (coefficient: 0.94, 95% HPD: 0.76 to 1.09) to A/H3N2 

spread within the whole Southeastern Asia region (Fig. 5g). 

 

 

Fig 5. The migration network, phylogenetic similarity, and dispersal drivers of persistent A/H3N2 strains 

within Southeastern Asia. a-c) The average Markov Jump counts between pairs of sub-locations per season 
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during the three periods. Only lines representing a number of Markov Jumps greater than 0.5 per season are 

shown, for clarity. Three sub-regions within Southeastern Asia were coloured, where East Asia only 

encompasses China, Japan, and South Korea, while South Asia only includes Bangladesh, Bhutan, India, Sri 

Lanka, and Nepal. d) Period-specific dispersal rates inferred during the phylogeographic reconstruction. e) 

Multidimensional scaling analysis for vectorized asymmetric jump matrices among three sub-regions (East 

Asia, South Asia, and Southeast Asia) in different influenza seasons. f) Pairwise PhyloSor similarity of virus 

strains circulating between pairs of sub-regions within Southeastern Asia over influenza seasons as a proxy for 

lineage mixing. The smaller the Pairwise PhyloSor similarity is, the less mixed the lineages circulating between 

pairs of sub-regions are. The shaded area around the line indicates 95% HPD interval. g) Contributions of 

airline traffic to internal diffusion of A/H3N2 in Southeastern Asia. The error bar indicates the 95% HPD 

interval. 

 

Discussion 

We expanded and refined our previous work10 by focusing on Southeastern Asia and comparing two distinct 

pandemic events at a finer spatiotemporal resolution. We demonstrated that typical Autumn-Winter waves of 

influenza lineage movements from Southeastern Asia to temperate regions disappeared almost completely 

during both pandemic-related disruptions, with the exception of B/Victoria lineages during the A/H1N1 

pandemic. However, while we observed a wave of B/Victoria exports from Southeastern Asia to temperate 

regions during the A/H1N1 pandemic, coinciding with a large B/Victoria epidemic wave in Southeastern Asia, 

these exports did not spark B/Victoria epidemic waves in temperate regions, suggesting little to no 

establishment of exported lineages. We found opposite patterns of  pandemic-related disruptions in A/H3N2 

antigenic evolution, with a greater lead time during the 2009 A/H1N1 pandemic, and a greater lag time during 

the COVID-19 pandemic, compared to inter-pandemic patterns. Additionally, a higher proportion of A/H3N2 

lineages circulating within Southeastern Asia have been estimated to persist across seasons as compared to 

B/Victoria lineages. By analysing those persistent lineages, we highlight how the A/H3N2 internal migration 

network within Southeastern Asia is characterised by a dynamic change in trunk locations over time. During the 

COVID-19 pandemic season, it was shaped by reductions in the intensity of inferred viral movements, the 

diverse structure of the internal movement network, and decreased lineage mixing. Changes in the circulation 

network within Southeastern Asia were less pronounced during the A/H1N1 pandemic season likely due to 

fewer pandemic related disruptions at that time.  

 

We extended previous work4,23,49 to consider a broader geographic scope of Southeastern Asia and characterise 

the main trunk location for the global influenza circulation. Our data suggest that Southeastern Asia plays a 

more conspicuous role in the global circulation of A/H3N2 compared to B/Victoria. The importance of 

Southeastern Asia in the evolution of A/H3N2 has been further attributed to the seasonal nature of influenza in 

temperate regions, in which strong genetic and transmission bottlenecks lower the likelihood of local 

persistence and global fixation of circulating strains14,51. However, the internal network maintaining the leading 

role of Southeastern Asia has rarely been explored in a quantitative manner4. Our quantitative analyses reveal 

that the movement network within Southeastern Asia is characterised by highly-connected dispersal routes 

among the major airline transportation hubs (Extended Data Fig. 6a) and a temporally varying trunk location 

(Extended Data Fig. 7). In line with a previous hypothesis4, this network of asynchronous but temporally 

overlapping epidemics, connected by proximity and human mobility, promotes antigenic evolution and global 

dispersal of A/H3N2 strains. In contrast, global B/Victoria circulation exhibits less dependence on Southeastern 

Asia, with a pattern of geographically separate evolution and circulation rather than global dispersion, 

consistent with a previous study23. Although the underlying mechanisms driving the heterogeneity across 
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viruses remain unclear, we speculate that the more rapid antigenic drift for A/H3N2 compared to B/Victoria52 

could potentially result in a greater intrinsic fitness advantage. Additionally, it has been suggested that younger 

ages of infection for B/Victoria compared to A/H3N2 could lead to less spatial dissemination as children are 

less mobile than adults23,53. 

 

Influenza circulation patterns are also subject to alteration via changes in human behaviour, especially mobility, 

during pandemics. The occurrence of two global pandemics (2009 A/H1N1 and COVID-19) in the 21st century 

has provided a natural experiment for evaluating changes in human mobility and immunity and their impact on 

influenza transmission at the population level (we did not consider other large epidemics/outbreaks, such as 

Zika virus, as they were localised to specific parts of the world). Understanding of circulation patterns during 

these two pandemics allows for enhancing awareness and preparedness against influenza outbreaks in inter-

pandemic seasons and when facing the next public health emergencies. Differences in the circulation and 

evolutionary patterns of influenza viruses during the two pandemics can be interpreted by a complex interaction 

between local NPIs, regional and global mobility, and viral interference. It is evident that the intensity and 

duration of NPIs during the COVID-19 pandemic were far greater in comparison to the 2009 A/H1N1 

pandemic, as partly illustrated by the extent of reduction in airline flight data relative to the pre-pandemic year 

(Extended Data Figs. 2-3). In addition, human behavioural changes including contact reduction and mask 

wearing will have also contributed to the decline of respiratory infections during the COVID-19 pandemics54. 

Accordingly, perturbation of influenza virus circulation was more drastic during the COVID-19 pandemic, 

coinciding with our findings where most internal transmission within Southeastern Asia almost halted. 

Although we could not study the B/Yamagata lineage in this work, the global disappearance of this lineage from 

surveillance data since late 2020 attests of the marked perturbation of the COVID-19 pandemic period on 

influenza dynamics55. 

 

The novelty of our approach is to contrast the pronounced perturbation of the COVID-19 pandemic with a 

pandemic of a more moderate kind, the 2009 A/H1N1 pandemic, which we hypothesised would have also 

affected circulation patterns of resident influenza strains. The novel virus responsible for the 2009 A/H1N1 

pandemic is thought to display viral interference with seasonal influenza A virus, presumably via more specific 

heterosubtypic cross-immunity6,56. Since A/H3N2 viruses are more closely related to A/H1N1pdm09 viruses 

than B/Victoria viruses, massive circulation of A/H1N1pdm09 in the first pandemic wave may have limited the 

circulation and diffusion of A/H3N2 viruses via competition for susceptibles, in line with a consistent globally 

negative correlation between influenza A/H3N2 and A/H1N1pdm09 activity48. This competition was further 

illustrated in our analysis by the disappearance of the second A/H3N2 peak wave and A/H3N2 movement wave 

from Southeastern Asia to temperate regions during the A/H1N1 pandemic season. In contrast, we see little 

changes in influenza B circulation, consistent with less or no cross-immunity. NPIs could have also played a 

role in the A/H1N1 pandemic disruptions we evidenced in our study, although NPIs (e.g., school closures) were 

limited to a few countries and the early weeks of the pandemic57. Lastly, variations in pre-existing population 

immunity prior to the onset of a pandemic might also contribute to differences in influenza circulation observed 

during two pandemic periods 58. Disentangling the roles of NPIs, viral interference, immunity, and other 

potential factors in shaping the circulation patterns of seasonal influenza merits more investigation. 

 

Limitations 

Our results should be interpreted in the context of several limitations. First, inherent biases exist due to the 

nature of genetic data from heterogeneous genomic surveillance efforts and data sharing initiatives worldwide. 

To address this issue we carefully downsampled genetic data geographically and temporally; our main 
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conclusions are robust across various sets of genetic data from different sub-sampling schemes (Extended Data 

Figs. 4 and 8). Nevertheless, we acknowledge that our dataset completely omits data from large and populous 

parts of the world (e.g., West, Central and East Africa, Central America, Russia etc.) that could potentially play 

important roles in the global influenza network. However, our aim is not to reconstruct the global spread of 

seasonal influenza viruses, but rather to focus on the network within Southeastern Asia and the role of 

Southeastern Asia in seeding epidemics in temperate regions. Secondly, we recognize that the implementation 

and lifting of NPIs varied across locations and time, and thereby the impact of these changes on influenza 

circulation patterns may be heterogeneous – here we concentrate on regional averages. For simplicity, our study 

considered the same pandemic period definition for all countries although NPIs were put in place in a 

heterochronous way. In addition, the influenza season defined in this study did not uniformly align well with 

that in the Southern Hemisphere due to the asynchronous influenza circulation worldwide. Third, epidemic 

alignment of influenza activity and movement across seasons could be affected by some atypical seasons, but 

we believe that the average multi-year curves enable us to capture baseline seasonality patterns. Lastly, our 

study only retrospectively tracked the patterns of influenza circulation over a long-term period, without 

dissecting the contribution of behavioural and immunological factors. However, we believe that the present 

findings could guide more causal analyses in the future. 

 

Future perspectives 

Our findings may be instructive in improving the global influenza surveillance, intervention, and vaccination 

strategies through insights from i) different antigenically advanced and lagged patterns across regions and 

periods, ii) distinct source-sink dynamics emanating from and within Southeastern Asia by virus types and 

periods, and iii) differential extent of interactions between pandemic disruption and viral dynamics. Temporally 

varying networks within Southeastern Asia further support the need for geographically extensive virological 

and genomic surveillance in this region, allowing for earlier identification of antigenically novel strains and 

thereby providing a longer lead time for developing and rolling out well-matched vaccines. In addition to the 

need for forecasts of influenza evolution and epidemic size59,60, establishing a global influenza migration 

network at a finer geographic scale (e.g., country level; over 120 WHO Member States have contributed to 

influenza surveillance as of May 202415) also holds promise for optimising vaccine recommendations tailored to 

each country’s future influenza outbreaks.  

 

Conclusions 

In summary, our study provides a comprehensive reconstruction of the circulation patterns of seasonal influenza 

viruses both out of and within Southeastern Asia during the 2009 A/H1N1 and COVID-19 pandemic with 

comparison to the interpandemic period. We highlighted the heterogeneous impact of two distinct pandemic-

related disruptions on evolution and mixing of seasonal influenza, focusing on the transmission dynamics 

within Southeastern Asia. Our empirical findings can help anticipate the effects of adopting control measures as 

routine practices to mitigate the disease burden of seasonal influenza, as well as preparedness against outbreaks 

of influenza or other seasonal respiratory pathogens in future pandemic scenarios. 
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Data availability 

Influenza virological surveillance data were available from FluNet (https://www.who.int/tools/flunet). Genetic 

sequences used were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) and GISAID 

(https://www.gisaid.org/). The origin-destination air flight data were provided by Official Airline Guide (OAG) 

Ltd. (https://www.oag.com/) through a data sharing agreement.  
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Extended data 

 

Extended Data Fig 1. The hierarchical geographic structures used for the sub-sampling process. The 

smallest sub-sampling unit was in the sub-location level. The entirety of South America was grouped with the 

southern hemisphere (SH), since the SH vaccine formulation is recommended in this whole area. Spatial demes 

(22 sub-locations) in Southeastern Asia are presented at the bottom. 
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Extended Data Fig 2. Airline capacity or passengers over time. a) Total global monthly airline capacity or 

passengers. Data of airline passengers are not available before 2011, therefore airline capacity data (number 

of available seats) are alternatively used; b) Total monthly airline capacity or passengers among 22 sub-

locations within Southeastern Asia; c) Total monthly airline capacity or passengers among countries within 

temperate regions. 
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Extended Data Fig 3. Relative air mobility between pairs of sub-regions with Southeastern Asia. Data of 

airline passengers are not available before 2011, therefore airline capacity data (number of available seats) 

are alternatively used. For comparison, each line was divided by its maximum value during the period to obtain 

the relative value. 
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Extended Data Fig 4. A five-week running average of the weekly Markov Jump counts of A/H3N2 and 

B/Victoria between two regions using various sets of genetic data from three sub-sampling schemes. Light 

and dark red shading denote the A/H1N1 and COVID-19 pandemic seasons, respectively, between which are 

interpandemic seasons. Three sub-sampling schemes refer to even sampling strategy, strategy accounting for 

population size, and strategy accounting for the product of population size and influenza positivity rate, 

respectively.
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Extended Data Fig 5. The COVID-19 Stringency Index weighted by population size in Southeastern Asia 

and temperate regions in the context of COVID-19 pandemic. The data was retrieved from Our World in 

Data61.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309151doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309151
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Extended Data Fig 6. Between-location viral movements of A/H3N2 persistent lineages circulating within 

Southeastern Asia. a) Count of average Markov jumps per season in the interpandemic period; b-c) Changes in 

average Markov jumps during the A/H1N1 and COVID-19 pandemic seasons relative to the interpandemic 

period. 
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Extended Data Fig 7. The geographic trunk probability of A/H3N2 persistent lineages circulating in 

Southeastern Asia. a) Trunk location inferred at 22 sub-location levels. b) Trunk location aggregated at 3 sub-

region levels. Trunk was defined as all branches ancestral to viruses sampled within 1 year of the most recent 

sample. Vertical dashed black lines refer to the A/H1N1 pandemic and COVID-19 pandemic season, 

respectively 
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Extended Data Fig 8. Sequence-based antigenic distance from A/Wisconsin/67/2005 of all virus strains 

plotted against time of collection using various sets of genetic data from other two sub-sampling schemes. 

The thick grey line is the fitted line using a linear model. Points to the right of the line are antigenically 

advanced, whereas strains to the left of the line are antigenically lagging. Light and dark red shading denotes 

the A/H1N1 and COVID-19 pandemic seasons, respectively, between which were interpandemic seasons. 
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Extended Data Table 1. Statistical test of antigenic distance of A/H3N2 to the fitted line during each 

pandemic season against interpandemic seasons. 

Influenza 

seasons 

Southeastern Asia Temperate regions 

Distance 

(Months)* 
p value Distance 

(Months) 
p value 

Pandemic seasons 

    2009/2010 0.258 (10.8) Reference - 0.159 (6.7) Reference - 

    2020/2021 -0.105 (-4.4) - Reference -0.096 (-4.1) - Reference 

Interpandemic 

seasons 
0.020 (0.8) < 0.001‡ < 0.001 -0.054 (-2.3) < 0.001 0.632 

*Average antigenic distance of A/H3N2 virus lineages circulating in specific season and region to the fitted line 

(Fig. 4a), for which the line can also be interpreted as a function of time (months). Positive values refer to 

antigenically advanced distance (months), whereas negative values refer to antigenically lagging distance 

(months).  
‡ It is the comparison of antigenic distance of virus lineages circulating between pandemic season (2009/2010, 

as reference) and all interpandemic seasons, where a p value was yielded by Bootstrap resampling of 1,000 

samples.  
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Supplementary information 

 
Supplementary Fig 1. Illustration of the methodology used to determine the average curve of A/H3N2 

positivity rate in the Northern hemisphere for seasons in the interpandemic period. a) A/H3N2 positivity rates 

over time in the Northern hemisphere. Light and dark red shading denotes the A/H1N1 and COVID-19 

pandemic seasons, respectively. b) Step 1: Plotting the positivity curve for each season, where the season was 

defined as running from ISO week 27 of one year to ISO week 26 of the next year. No outlier seasons (defined 

as a season where the peak positivity rate occurred at the start or end of the season, i.e., ISO week 26 or 27 for 

the Northern hemisphere) were identified during the interpandemic period. c) Step 2: Identifying the median 

week of peak occurrence (ISO week 1, here) for the seasons in the interpandemic period after removing the 

outlier seasons, followed by the epidemic alignment of interpandemic seasons. d) Step 3: Calculating an 

average curve for seasons in the interpandemic period. 
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Supplementary Fig 2. Illustration of the methodology used to determine the average curve of A/H3N2 

positivity rate in the Southern hemisphere for seasons in the interpandemic period. a) A/H3N2 positivity rates 

over time in the Southern hemisphere (SH). Light and dark red lines denote the A/H1N1 and COVID-19 

pandemic seasons, respectively. b) Step 1: Plotting the positivity curve for each season, where the season was 

defined as running from ISO week 1 to week 52 of one year. One outlier season (dark blue line, corresponding 

to the 2011 season) was identified since the peak positivity rate occurred at the start of the season. The 

pandemic seasons defined here both spanned across two SH seasons, so dotted lines (Jan-Jun 2009, Jul-Dec 

2010, Jan-Jun 2020, Jul-Dec 2021) are used to refer to curves outside the pandemic influenza seasons. c) Step 

2: Identifying the median week of peak occurrence (ISO week 32, here) for the seasons in the interpandemic 

period, after removing the outlier season, followed by the epidemic alignment of interpandemic seasons. d) Step 

3: Calculating an average curve for seasons in the interpandemic period. The first half of the positivity lines 

(Jan-Jun 2010; Jan-Jun 2021) during the pandemic periods occurred after the second half of the line (Jul-Dec 

2009; Jul-Dec 2020). 
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