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ABSTRACT 

Acute leukemias (ALs) are complex hematological disorders, and accurate diagnosis is 

crucial for guiding treatment decisions and predicting patient outcomes. While changes in cell 

marker levels are well documented, the impact of these changes on marker relationships through 

an integrative systems approach remains uncharacterized. To address this gap, we conducted a 

12-year study investigating 41 markers, including ontogenic markers and those used to diagnose 

both common and rare leukemia types, using immunophenotyping flow cytometry (IFC) data 

from 1,069 leukocyte samples obtained from peripheral blood (PB) or bone marrow (BM) 

aspirates of patients with suspected ALs. Machine learning techniques, such as principal 

component analysis (PCA) and random forest (RF) classification, demonstrated the 

stratification power of the cellular markers. Hierarchical clustering analysis of leukocyte 

ontogenetic markers revealed disease-specific clusters, irrespective of sex or sample type (PB 

or BM). Additionally, we found that patients with acute myeloid leukemia (AML) showed mild 

disruption in cell marker correlations, whereas the most significant dysregulation was observed 

in patients with T-cell acute lymphoblastic leukemia (T-ALL). Importantly, we identified 

ontogenic correlation changes indicating clusters of immature versus mature leukocyte markers, 

as well as cell lineage-specific markers influencing cellular relationships. These findings 

underscore the value of integrating systems strategies into conventional IFC analyses to 

enhance synthetic diagnosis and deepen our understanding of ALs pathophysiology. 

 

Keywords: Acute Leukemias, Integrative systems analysis, Immunophenotyping. 
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1 INTRODUCTION 

Acute leukemias (ALs) are characterized by the clonal proliferation of abnormal 

hematopoietic progenitor cells, exhibiting notable heterogeneity (Weir & Borowitz, 2001). 

Among the diagnostic tools available, immunophenotyping flow cytometry (IFC) stands out as 

essential (Weir & Borowitz, 2001). One of the earliest international standards in this field was 

the French-American-British (FAB) classification, which was based on cytomorphology 

(Bennett et al., 1976). Building on cytomorphological foundations, IFC employs a panel of 

monoclonal antibodies (MoAbs) conjugated with various fluorochromes to examine the 

expression of cluster of differentiation (CD) antigens, allowing for the precise identification of 

distinct leukocyte populations (Ikoma et al., 2014). The European Group for the Immunological 

Characterization of Leukemias (EGIL) classification subsequently complemented the FAB 

system by integrating immunological data from IFC, distinguishing cellular lineages in ALs 

based on specific markers (Bene et al., 1995). 

Recent classifications, including those by the world health organization (WHO), are 

increasingly incorporating cytogenetic and molecular parameters to classify ALs, reflecting 

technological advances that enhance diagnostic accuracy (Alaggio et al., 2022a; Barreto et al., 

2022; Swerdlow et al., 2016). For instance, in acute promyelocytic leukemia, myeloid antigens 

may coexist despite the absence of human leukocyte antigens HLA-DR and CD34, along with 

blast cells exhibiting "cup-like" morphology. The predominant chromosomal translocation 

t(15;17)(q22;q12) defines the PML-RARA fusion gene mutation in most cases. Additionally, 

distinctive clinical manifestations, such as hemorrhagic episodes, are expected (Fang et al., 

2022; Liu et al., 2013). This exemplifies the complex nature of such AL cases, underscoring 

the necessity for multidisciplinary and complementary approaches to achieve increasingly 

precise diagnoses. 

To address this gap, systems biology approaches could serve as valuable analytical tools 

in immunophenotyping, which remains underexplored in this field but is extensively applied in 

interpreting high-throughput data such as transcriptomes and proteomes. By applying these 

approaches to IFC data, we can move beyond conventional observation of marker expression 

and view them as components of interactive immune cell networks across various diagnostic 

scenarios (Bergthaler & Menche, 2017; Rieckmann et al., 2017). In this context, bioinformatic 

tools and methods are crucial for facilitating integrative marker analysis, allowing for a holistic 

interpretation of interdependent components to form a cohesive whole (Beyrend et al., 2018; 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.24309033doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309033


 

   

 

Bonilha, 2022; Höllt et al., 2016). This approach not only aids in understanding correlations 

between different marker groups but also enables a more comprehensive data exploration. 

Moreover, the utilization of machine learning algorithms has further optimized clinical 

laboratory practice by providing valuable insights and contributing to more precise and efficient 

decision-making (Lin et al., 2023; Ng et al., 2024; Riva et al., 2023b; Seifert et al., 2023; Zhong 

et al., 2022).  

Drawing from these observations, we employed a stepwise, integrative systems 

immunology approach to thoroughly characterize the signatures of IFC data from patients with 

ALs collected over a span of 12 years. This study aimed not only to encompass conventional 

IFC analysis, which involves observing the expression of each marker within its designated 

panel, but also to systematically integrate these findings with marker correlations. Recognizing 

that the immune system operates in an interconnected and synergistic manner (Bergthaler & 

Menche, 2017; Rieckmann et al., 2017), we utilized a systems immunology approach (Figure 

1) to provide a more comprehensive understanding of ALs. 

 

2 MATERIALS AND METHODS 

2.1 Study cohort 

A total of 1069 samples (Supplementary table S0) of peripheral blood leukocytes 

(PBL, n = 342) and bone marrow aspirate (BM, n = 727) were collected from patients (442 

females and 627 males; mean age = 35) suspected of ALs between 2010 and 2022. Flow 

cytometric analysis was performed at the Hemocentro Dalton Cunha (HEMONORTE) in 

Natal/RN, Brazil. Initial diagnoses of ALs were established based on a blast count in the BM 

exceeding 20%. AL cases were distinguished from other conditions, such as chronic 

myeloproliferative neoplasms (MPNs) and chronic lymphoproliferative diseases (CLPDs) as 

previously described (Alaggio et al., 2022a; Khoury et al., 2022). The control group included 

inconclusive cases, where no pathological or neoplastic populations were detected, though 

results may vary due to inflammatory phenomena. 

This project was approved by the Research Ethics Committee of the Onofre Lopes 

University Hospital, Federal University of Rio Grande do Norte (CEP/HUOL.UFRN, No 

4.378.690). The Hemocenter Dalton Cunha, the institution responsible for the 

immunophenotypic analyses, granted permission for data use, ensuring informed consent and 

compliance with ethical and legal standards. 
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2.2 Flow cytometric acquisition 

IFC was performed using 4-color panels with leukemia-specific MoAbs as previously 

described (Ikoma et al., 2014). Our IFC data consisted of 41 flow cytometry markers to 

phenotypically characterize patients with acute leukemias (B Acute Lymphoid Leukemia [B-

ALL], T Acute Lymphoid Leukemia [T-ALL], and Acute Myeloid Leukemia [AML]) as well 

as our controls. MoAbs were conjugated to fluorochromes including fluorescein isothiocyanate 

(FITC), phycoerythrin (PE), chlorophyll protein pyridine (PerCP), and allophycocyanin (APC). 

Laboratory procedures followed the standard protocol provided by the MoAb manufacturers, 

consistent with established methodologies (Alaggio et al., 2022a; Flores-Montero et al., 2019; 

Khoury et al., 2022; Lacombe et al., 2016; Matutes, 1995). 

Each sample was evaluated using isotype antibodies as negative controls, and an average 

of 20,000 events per tube were acquired using the FACScan cytometer (Fluorescence Activated 

Cell Analyzer/FACScan, San Jose, CA, USA).  Sample data were analyzed with the Cell Quest 

software (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA), focusing on 

mononuclear cells and prioritizing the identification and characterization of blast cell 

populations. Forward Scatter (FSC-A) and Side Scatter (SSC-A) on a linear scale were 

considered, along with fluorescence in channels FL1, FL2, FL3, and FL4 on a logarithmic scale. 

Each parameter's expression was noted, and the final analysis was confirmed using histograms 

and dot plots to determine the percentage of positively marked blast cells.  

 

2.3 Flow cytometry analysis 

We combined two flow cytometry standard (FCS) files from each disease group in our 

cohort, providing a more representative sample that represent 12 years of immunophenotypic 

analyses. The collected data underwent rigorous pre-processing and compensation procedures 

to address marker spillover, utilizing quality control beads and specific cytometer acquisition 

settings. Subsequently, a standardized logicle transformation was applied to normalize the data 

(parameters: w = 0.5, t = 1,000,000, m = 4.5). 

Implementing a bioinformatics approach, we applied a data processing framework to 

perform differential analysis of IFC data from our cohort (Hahne et al., 2009; Riva et al., 2023a; 

Robinson et al., 2023; Seegmiller et al., 2019). The merged FCS files resulted in cellular 
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heterogeneity due to the combined presence of cells from different samples, providing an 

opportunity to investigate potential variations in cellular distribution across patient groups. 

After quality control, we employed FlowSOM to identify clusters (Baumgaertner et al., 2021; 

Piñero et al., 2022; Rasheed et al., 2021; Saeys et al., 2016; Van Gassen et al., 2015). This 

analysis offered a comprehensive visualization of cell populations distributions across 

diagnostic groups (AML, B-ALL, T-ALL) compared to controls. 

 

2.4 Gene ontology analysis 

Gene ontology enrichment analysis was performed on 35 genes associated with the 

expression of the 41 flow cytometry markers (Supplementary Table S1), employing the 

Enrichr online tool. (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021). The genes 

corresponding to our 41 markers were identified through research on platforms such as NCBI, 

using each marker as a keyword to find the relevant genes, as detailed in Supplementary Table 

S1. These genes were categorized based on the predominant characterization of the base 

markers they represent, including B lymphoid, T lymphoid, myeloid, and common patterns. We 

assessed these genes for their interactions with related biological processes (BPs) and their 

expected expression patterns according to the lineage characterized by associated markers 

(Supplementary Table S2). Network analysis was performed using the ggnet package to 

visualize these interactions. References for all R packages and bioinformatics tools used in this 

study are listed in Supplementary Table S3. 

 

2.5 Hierarchical clustering differences in marker expression levels 

We generated box plots to display the varying expression levels of 41 flow cytometry 

markers in acute leukemias (AML, B-ALL and T-ALL) and controls using the R version 4.0.5 

(The R Project for Statistical Computing. https://www.r-project.org/), R studio Version 

1.4.1106 (R-Studio. https://www.rstudio.com/), and the R packages ggpubr, lemon, and 

ggplot2. Statistical differences in the marker levels among the groups were evaluated using a 

two-sided Wilcoxon rank-sum test (Cabral-Marques et al., 2022). Additionally, hierarchical 

clustering based on euclidean distance complete linkage was performed to examine the 

expression patterns of the 41 immunophenotypic markers. The results were visualized in a 

heatmap created with the ComplexHeatmap package, considering variables such as gender, 

groups, and ages. 
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2.6 Correlation analysis 

Correlograms were generated using R packages corrplot and scales, applying 

Spearman tests to compute correlation coefficients. Boxplots illustrating correlation 

coefficients were produced using R packages ggpubr, Lemon, and ggplot2 within R Studio. 

Significance levels were determined via two-sided Wilcoxon rank sum tests and annotated with 

asterisks (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001). The correlation index for 

each gene was obtained as follows: correlation Index = {(positive correlation value) − (negative 

correlation value)}/number of genes. The results were visualized by a hierarchical clustering 

heatmap based on euclidean distance with complete linkage using the ComplexHeatmap R 

package as previously described (Cabral-Marques et al., 2022). Additionally, the correlation 

coefficients of each marker in relation to the others are depicted through box plots. 

 

2.7 Principal Component Analysis 

We employed principal component analysis (PCA) with spectral decomposition (Lever 

et al., 2017) to assess the discriminative power of the cell markers, excluding those with missing 

data, in stratifying our cohort into B-ALL, T-ALL, AML and Control groups. Eigenvalues and 

eigenvectors exceeding one intercept were considered essential for demonstrating group 

segregation. PCA was conducted using the scaled expression values of the 22 markers. The 

PCA analysis was performed with the R packages factoextra (Kassambara A & Mundt F, 2020), 

ggplot2 (Wickham, 2016) and ggExtra (Attali D & Baker C, 2022). 

 

2.8 Random Forest model 

We employed random forest model (Liaw & Wiener, 2002) to rank the most relevant 

markers differentiating among the study groups (AML, B-ALL, T-ALL and control groups). 

This approach not only aimed to identify the most significant markers for acute leukemia but 

also explored the potential of employing machine learning in this domain. The random forest 

model was trained using the features of the R package randomForest, employing 5,000 decision 

trees. Subsequent analysis assessed variable importance based on criteria such as Gini decrease, 

number of nodes, and minimum average depth. The model’s performance as a classifier was 

evaluated using the out-of-bag (OOB) error rate and the Receiver Operating Characteristic 
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(ROC) curve. To validate the model, we divided the dataset into training and testing sets, 

allocating 2/3 of the observations for training and 1/3 for testing. 

 

3 RESULTS 

3.1 Functional relationships between the flow cytometric markers  

Among the 1,069 AL individuals analyzed, 304 were diagnosed with acute ALL, 

including 253 cases of B-ALL and 51 cases of T-ALL. Additionally, 656 individuals were 

identified with AML, while the remaining 109 cases comprised our control group, featuring 

inconclusive diagnoses. Definitive diagnoses were based on clinical criteria, cytomorphological 

exams, and flow cytometric immunophenotyping as described in the Material and Methods 

section.  

To obtain an integrative overview of the 41 cell markers (Figure 2a) and the gene 

ontology (GO) BPs they are involved in, we performed a GO enrichment analysis. This 

approach reveals the interconnectedness of the cell markers (Figure 2b) and highlighted the 

diverse cellular lineage functions in which they participate (Figure 2c). These functions include 

T and B cell activation and proliferation, cell development (hematopoiesis and differentiation), 

and cytokine production (interleukin [IL]-8, IL-2, tumor necrosis factor [TNF]). Notably, 

during certain stages of the analytical workflow (see Figures 4b, 5, and 6), 19 of the 41 markers 

had to be excluded due to a high number of missing data, a characteristic variation observed 

over the 12 years of analysis. This left 22 focus markers, whose genes and key BPs are 

highlighted in the circos plot (Figure 2c; Supplementary Tables S4 and S5). 

 

3.2 Clustering Acute Leukemia Using Flow Cytometry 

To evaluate whether the flow cytometric markers are indeed capable of clustering the 

ALs groups, we implemented a bioinformatics approach, applying a data processing framework 

to analyze a set of FCS files. The distribution of cellular data is highlighted in Figure 3a, with 

density plots demonstrating the quality of the readings and the cellular heterogeneity resulting 

from the file merge according to our cohort. Since the origin of each cell is preserved, this 

heterogeneity can be further studied post-quality assessment, allowing for the tracking 

differences in cellular distribution. This process precedes clustering by FlowSOM, a recognized 

method in this area (Van Gassen et al., 2015). This approach identified 10 metaclusters, 
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enabling comprehensive visualization of the different distributions of cell populations 

according to the diagnostic groups (AML, B-ALL, T-ALL) in comparison to controls (Figure 

3b-d). 

Subsequently, we applied diffusion map analysis with pseudotime calculations to further 

demonstrate the application of bioinformatics in this domain, providing insights into lineage 

pattern variations in marker expression intensity (Figure 3c). This approach can represent 

hematopoiesis through IFC. For instance, cluster 9 was predominant in AML, cluster 5 in B-

ALL, cluster 6 in T-ALL, and cluster 8 in the control group. Additionally, we identified more 

generalized distributions between groups, such as cluster 1. These clusters represent 

characteristic cell populations, such as specific blasts observed in each type of acute leukemia, 

as well as more general patterns, possibly including neutrophils, which are expected to be 

present in all cases except those with severely suppressed bone marrow function. 

To enhance visualization and cellular identification of clusters, we conducted Uniform 

Manifold Approximation and Projection (UMAP) analysis, a dimensionality reduction 

approach (Figure 3e). Consistent with the aforementioned analyses, UMAPs enabled us to 

identify cellular distribution, cluster classification, marker expression density behavior, and 

cohort variations (ALs vs. control groups). 

 

3.3 Distinct immunophenotype and correlation signatures of acute leukemias 

To deepen our understanding of the relationships between flow cytometry markers in 

diagnosing ALs, we conducted hierarchical clustering analysis using lineage-specific markers 

for the diagnostic groups (AML, B-ALL, T-ALL) compared to controls (Figure 4a). This 

analysis, based on the expression patterns of 41 markers, revealed the significant impact of AL 

subtypes on the hierarchical clustering signatures (Figure 4b). Box plots illustrating the 

expression distribution of the 41 markers are provided in Supplementary Figure S1, whereas 

Figure 4c displays the expression profiles of the 22 markers with the least missing data. 

Notably, neither patient sex nor sample type (BM or PBL) influenced the clustering patterns of 

the 41 markers. Furthermore, we observed no rho value above 0.4 for all marker when analyzing 

the relationship between the age and the flow cytometric markers, thus excluding possible age 

confounding effects (Supplementary Figure S2 and Supplementary Tables S6-S8).   

Consistent with the hierarchical clustering analysis, we also observed changes in 

diagnostic-specific alterations in the correlation signatures of the 22 markers (Figure 5; 
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Supplementary Table S9-S10). In the AML, there is a significant preservation of relationships 

between markers of predominantly lymphoid origin (e.g., CD2, sCD3, CD4, CD7, CD8, CD19, 

and CD20), contrasting with a loss of correlation among myeloid markers (e.g., CD13, CD14, 

CD16, CD33, CD64, CD65, CD71, and CD117) markers (Figure 5b).   

In the B-ALL group, the relationships among the markers typical of T lymphocytes are 

maintained, while disruptions are evident for markers characteristic of B lymphocytes (e.g., 

CD19 and CD20) and myeloid cells (Figure 5c). On the other hand, the T-ALL group exhibits 

an almost complete breakdown of relationships among markers, signaling a notable and deeper 

systemic dissociation compared to the other groups (Figure 5d). Figures 5e and 5f display the 

correlation coefficients and indices of each marker according to the groups. 

 

3.4 Ranking flow cytometry markers as predictors of ALs 

We assessed the ability of the 22 markers with the least missing data across groups to 

differentiate between AL patients and controls, while also evaluating the correlations between 

the flow cytometry markers. To address this, we employed PCA analysis using the spectral 

decomposition approach (Lever et al., 2017). This analysis demonstrated the discriminatory 

power of the markers in distinguishing between AML, B-ALL, T-ALL, and control groups 

(Figure 6a). The eigenvalues and marker contributions to different PCA dimensions are 

detailed in Supplementary Tables S11 and S12, respectively. The variable contribution graph 

clearly illustrates that myeloid cell markers (CD14, CD16, CD33, CD64, and CD117), B cell 

markers (CD20, CD19, and cCD79a), and T cell markers (CD2, sCD3, CD4, CD5, CD7, and 

CD8) effectively stratify AML, B-ALL, and T-ALL into distinct dimensional trajectories from 

the controls. 

To identify the best predictive markers for the AL groups, we employed a random forest 

model. The 22 markers were ranked based on their importance in distinguishing ALs from the 

control group. Details of the model's confusion matrix, as well as the testing and training groups, 

are provided in Supplementary Tables S13 and S14, respectively. Consistent with the PCA 

results, the RF analysis showed an out-of-bag (OOB) error rate of 1.7% and an area under the 

curve (AUC) of 0.999 for the receiver operating characteristic (ROC) curves when comparing 

ALs to the control group. These results indicate the high accuracy of the random forest analysis. 

The distribution of the top 10 markers (Figure 6b) identified B cell markers (CD19 and 
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cCD79a), T cell markers (CD5), and myeloid markers (CD33) as having the highest scores for 

classifying the AL groups. 

 

4 DISCUSSION 

This study presents a novel approach to the diagnosis of ALs by integrating systems 

immunology (Cabral-Marques et al., 2022; Prado et al., 2023; Salgado et al., 2021; Schimke et 

al., 2022) with IFC data. This innovative method not only examines individual marker 

expressions but also explores the relationships between these markers, providing a more 

comprehensive understanding of the immune system's alterations in ALs. The hierarchical 

clustering analysis revealed distinct immunophenotypic signatures for different types of ALs, 

which were consistent across sex and sample origin. This finding agrees with previous 

researches that has shown the robustness of immunophenotypic markers in distinguishing 

between AL subtypes (Bene et al., 1995; Ikoma et al., 2014; Lacombe et al., 2016). The 

observation that AML patients exhibited a milder disruption in cell marker correlations 

compared to T-ALL patients is an interesting finding that may reflect the differential impact of 

the leukemic process on the immune system. Additionally, the study's identification of changes 

in ontogenic correlation patterns is consistent with the concept that ALs are diseases of cell 

differentiation and maturation (Alaggio et al., 2022b; Khoury et al., 2022). The application of 

machine learning algorithms, such as PCA and RF classification, to a large dataset of 1,069 

samples over a 12-year period underscores the potential of these advanced analytical tools in 

enhancing diagnostic accuracy. This integrative systems approach not only improves the 

diagnostic precision of IFC markers but also enriches our understanding of the immunological 

intricacies and systemic interactions in ALs, potentially offering a valuable addition to the AL 

diagnosis. 

Enrichment analysis of the IFC markers revealed interconnected BPs related to the 

expression of the 35 genes associated with the markers under study, underscoring their 

involvement in AL pathogenesis. These processes encompass key aspects of the immune 

system, including T and B cell activation and proliferation, which are crucial for mounting an 

effective immune response against pathogens and malignancies (Chapman & Chi, 2022; Chi et 

al., 2024; Horii & Matsushita, 2021). Additionally, the analysis highlighted relationships for 

these markers in cell development (hematopoiesis and differentiation), processes frequently 

disrupted in leukemia (Ahmad et al., 2023; Zhao et al., 2023). Furthermore, cytokine 
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production, including IL-8, IL-2, and TNF, also emerged as a prominent function associated 

with the analyzed markers. Cytokines play a complex role in the immune system, influencing 

cell growth, differentiation, and activation (Cao & Kagan, 2023; Cui et al., 2024; Dantzer, 2004; 

Kelley et al., 2003; Miller et al., 2009; Saxton et al., 2023; Szelényi, 2001). These findings 

provide a valuable foundation for future research aiming to understanding how disruptions in 

the interplay between these markers might contribute to the development and progression of 

ALs.  

To further explore cellular differentiation patterns and lineage relationships, the study 

incorporated diffusion map analysis with pseudotime calculations (Haghverdi et al., 2015). This 

approach modeled the progressive changes in marker expression intensity that occur during cell 

differentiation, providing valuable insights into hematopoietic trajectories within the context of 

ALs. For instance, we identified specific clusters associated with each leukemia type (cluster 9 

for AML, cluster 5 for B-ALL, and cluster 6 for T-ALL) alongside more generalized 

distributions present across all groups (cluster 1). These clusters likely represent characteristic 

cell populations, such as blasts specific to each leukemia subtype, as well as more common cell 

types like neutrophils, which are typically present unless bone marrow function is severely 

compromised (Ahmad et al., 2023).  

Dimensionality reduction analysis was employed to enhance visualization and cellular 

identification accordingly the clusters (Becht et al., n.d.; McInnes et al., 2018). Consistent with 

previous analyses, we were able to effectively capture cell distribution patterns, cluster 

classification, variations in marker expression intensity, and differences between patient groups 

in our cohort. These findings emphasize the power of bioinformatics tools in analyzing flow 

cytometry data to differentiate between distinct AL subtypes and controls (Beyrend et al., 2018; 

Cheung et al., 2022; Çubukçu et al., 2023; Melsen et al., 2020; Montante & Brinkman, 2019; 

Saeys et al., 2016). The ability to identify leukemia-specific cellular populations and visualize 

differentiation trajectories can significantly optimize the diagnostic process (Ng et al., 2024; 

Nguyen et al., 2023; Seifert et al., 2023; Simonson et al., 2022). 

Delving deeper into the immunophenotype and correlation signatures of cellular 

populations in IFC, we employed hierarchical clustering analysis (Botta et al., 2022; Prado et 

al., 2023). Understanding how marker expression patterns and correlations differ between 

healthy and leukemic cells can provide valuable insights into disease biology and potentially 

guide the development of novel diagnostic strategies. Our analysis revealed significant impacts 
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of AL clustering patterns, highlighting the distinct immunophenotypes associated with each 

leukemia type. Notably, neither patient sex nor sample type (BM or PBL) significantly 

influenced the clustering patterns. Furthermore, an analysis to assess the potential confounding 

effect of age revealed no significant correlation between age and marker expression (rho value 

< 0.4 for all markers). Thus, indicating that these parameters do not qualify as confounding 

variables affecting the observed immunophenotype differences of ALs (Zhou, 2021). 

Building upon the clustering analysis, the study investigated how correlations between 

these markers differ across diagnostic groups, focusing on the 22 markers with minimal missing 

data. Analyzing marker correlation patterns generates deeper insights into the mechanisms 

underlying AL development. The observed disruptions in correlations provide strong evidence 

for dysregulated cellular communication within leukemic blasts (Bewersdorf & Zeidan, 2020; 

Masoumipour et al., 2021). Our findings revealed intriguing patterns of disrupted correlations 

within specific lineages for each AL group. In the AML group, we observed notable 

preservation of correlations among markers predominantly expressed by lymphoid cells and 

disruption between myeloid markers. This suggests a potential compartmentalization within the 

leukemic process of AML, where the malignant blasts primarily affect the myeloid lineage 

while leaving the lymphoid lineage relatively intact (Jaddaoui et al., 2022; Khoury et al., 2022; 

Meena et al., 2022). The B-ALL group displayed a different pattern, with maintained 

correlations between T lymphocyte markers but disruptions observed for B lymphocyte and 

myeloid markers. This finding reflects a more lineage-specific disruption in B-ALL, indicating 

an impact on B-cell development during leukemogenesis in this AL (Seegmiller et al., 2019). 

The most significant observation is in the T-ALL group, where an almost complete breakdown 

of correlations across all markers is evident. This near-complete loss of correlation suggests a 

more profound and systemic disruption of the immune landscape in T-ALL compared to the 

other subtypes. These findings on disrupted marker correlations further support the concept of 

ALs as diseases of aberrant differentiation and maturation (Colom Díaz et al., 2023; Sell, 2005). 

The differential patterns of disruption observed across subtypes potentially reflect the unique 

underlying biology of each leukemia type (Harris et al., 2019; Juliusson & Hough, 2016; Weijie, 

2022). Future studies can leverage these findings to explore disrupted correlations and their 

functional consequences, potentially leading to new understandings within AL subtypes. 

To assess the discriminatory power of these markers, we employed PCA with spectral 

decomposition (Costa et al., 2010; Lever et al., 2017; Zhou, 2021). This analysis effectively 

separated the AL groups (AML, B-ALL, T-ALL) from controls in a multidimensional space. 
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This result further solidifies the concept of distinct immunophenotypes for each AL subtype 

(Fang et al., 2022; Matutes, 1995; Piñero et al., 2022; Sonneveld et al., 2003). An RF model 

was also employed to rank the 22 markers based on their effectiveness in differentiating ALs 

from controls. The model achieved an impressive OOB error rate of 1.7% and an area under 

the curve (AUC) of 0.999 for the ROC curve, indicating exceptional accuracy. The analysis 

also highlighted the top 10 most important markers, which included B cell markers (CD19 and 

cCD79a), a T cell marker (CD5), and a myeloid marker (CD33) (Ikoma et al., 2014; Lacombe 

et al., 2016). These findings reinforce the importance of a well-established panel for accurate 

AL diagnosis, paving the way for further investigation into the development of IFC-based 

marker strategies, as well as the construction and validation of analysis panels in IFC (Alaggio 

et al., 2022b; Flores-Montero et al., 2019; Khoury et al., 2022). 

 

5 STUDY LIMITATIONS 

However, it is important to acknowledge several limitations of our study. Firstly, 

missing data necessitated the exclusion of some markers, which underscores the critical need 

for standardized data acquisition and management protocols in future research. This would help 

ensure the completeness and reliability of datasets, thereby enhancing the robustness of the 

findings. Additionally, our focus on specific markers, while necessary for targeted analysis, 

may have inadvertently restricted the comprehensiveness of our study. A broader, more 

inclusive approach could potentially uncover additional insights and interactions that were not 

captured in our current analysis. This limitation highlights the importance of employing diverse 

and comprehensive panels of markers in future investigations to obtain a more holistic view. 

Moreover, while our findings are promising, they require further validation through 

prospective studies and experimental confirmation. This step is crucial to establish the 

robustness and clinical applicability of our results. Experimental validation can provide a 

deeper understanding of the biological relevance of the identified markers and their functional 

roles in the context of the studied condition. While acknowledging these limitations, we 

emphasize the importance of continued research efforts and the application of standardized 

methodologies to overcome these challenges. Such endeavors will be instrumental in validating 

and expanding upon our current findings, ensuring their relevance and applicability in clinical 

settings. 
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6 CONCLUSION 

This study presents an innovative diagnostic approach for acute leukemias (ALs) by 

integrating systems immunology with immunophenotypic data from IFC. Through the analysis 

of both individual marker expressions and their interrelationships, distinct immunophenotypic 

signatures for AL subtypes are identified, reinforcing the robustness of these markers. 

Advanced machine learning techniques reveal the potential for improved diagnostic accuracy. 

Despite limitations like missing data and marker specificity, the study provides a solid 

framework for future research. Overall, this integrative approach enhances diagnostic precision 

and deepens our understanding of the immune system's role in ALs, offering prospects for the 

development of novel diagnostic and therapeutic strategies. 
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