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Danahé LeBlanc1,2, Fatemeh Rasekh2, Hélène Hovington2, Bertrand Neveu2,
Martin Vallières3*, Frédéric Pouliot2*
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Abstract

We propose a fully automatic multi-task Bayesian model, named Bayesian Sequential Network (BSN),
for predicting high-grade (Gleason ≥ 8) prostate cancer (PCa) prognosis using pre-prostatectomy FDG-
PET/CT images and clinical data. BSN performs one classification task and five survival tasks: predicting
lymph node invasion (LNI), biochemical recurrence-free survival (BCR-FS), metastasis-free survival,
definitive androgen deprivation therapy-free survival, castration-resistant PCa-free survival, and PCa-
specific survival (PCSS). Experiments are conducted using a dataset of 295 patients. BSN outperforms
widely used nomograms on all tasks except PCSS, leveraging multi-task learning and imaging data. BSN
also provides automated prostate segmentation, uncertainty quantification, personalized feature-based
explanations, and introduces dynamic predictions, a novel approach that relies on short-term outcomes to
refine long-term prognosis. Overall, BSN shows great promise in its ability to exploit imaging and clinico-
pathological data to predict poor outcome patients that need treatment intensification with loco-regional
or systemic adjuvant therapy for high-risk PCa.
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1 Introduction

Prostate cancer (PCa) is the most frequent cancer and the second leading cause of cancer death among men in
the United States [1]. Treatments for loco-regional non metastatic primary and recurrent PCa include radical
prostatectomy, radiation therapy and/or hormonal therapy [2–4]. To improve patient’s oncological outcomes
while limiting the morbidity of treatment overintensification, PCa treatment must be personalized based on
an accurate quantitative prognostication. For this purpose, pretreatment data-based nomograms capable of
predicting patient outcomes have been developed and validated [5–8], and their use is recommended by the
latest National Comprehensive Cancer Network (NCCN) guidelines [9]. The most widely used and validated
preoperative risk assessment tools for PCa are the Memorial Sloan Kettering Cancer Center (MSKCC)
nomogram [10] and the Cancer of the Prostate Risk Assessment (CAPRA) score [11]. These nomograms rely
solely on clinical data (CD) and do not incorporate any imaging information.

Prostate-Specific-Membrane-Antigen (PSMA) imaging using positron emission tomography (PET) and
computed tomography (CT) is now recognized as the most accurate imaging staging modality for localized
and recurrent PCa. However, the novelty of its use limits its radiomics data correlation with long-
term outcomes such as metastatic recurrence or time to castration resistance. Moreover, despite showing
improved accuracy compared to conventional imaging for metastasis detection, PSMA-PET/CT misses over
50% of lymph node (LN) metastases compared to lymphadenectomy histopathology at radical prostatec-
tomy (RP) [12–14]. Recently, studies have shown that PSMA could improve nomograms’ performance to
predict LN invasion, but these were not correlated with biochemical recurrence after surgery [15, 16]. Our
group demonstrated that intraprostatic 18F-fluorodesoxyglucose (FDG) uptake on PET prior to RP is a sig-
nificant prognostic marker for high-grade PCa at biopsy (Gleason ≥ 8) [17–19], independently predicting
outcomes such as biochemical recurrence and time to castration-resistant prostate cancer [19].

The most common approach for incorporating PET/CT imaging data into PCa prognostic models is
to reduce the PET information to a single metric such as maximum standardized uptake value (SUV)
or metastatic LN status [20]. Alternatively, extraction of handcrafted radiomics (HCR), i.e., predefined
quantitative attributes of an image [21], from a manually delineated intraprostatic region of CT and PET
images is another standard method [22–24]. To obviate the need for manual prostate contouring and facilitate
clinical translation, methods based on extraction of HCRs from an automatic segmentation map generated
by a convolutional neural network (CNN) [25] have been proposed and validated [26–28]. These approaches
have inspired the use of deep learning-based radiomics (DLR), i.e., latent vectors in deep layers of a CNN [29],
for PCa prognosis [30]. Furthermore, a systematic review has recently suggested that combining clinical and
imaging data in a single model could significantly enhance its performance [31]. For instance, a study recently
showed that integrating CT-based HCR to CD leads to improved predictions of progression-free survival in
high-grade PCa [32]. Nevertheless, there is no consensus on which prognostic tasks benefit from integrating
FDG-PET/CT-based HCR or DLR with CD in comparison to using CD alone.

The current study aims to develop a fully automatic prognostic multi-task [33] model that takes as input
both clinical and FDG-PET/CT imaging data without the need for manual segmentation (see Fig. 1a).
The cohort consists of 295 patients diagnosed with high-grade PCa at biopsy who underwent RP (see
Methods, section Cohort description). The global median follow-up time is 70 months (see Supplementary
Table 8). We define six prognostic tasks associated with clinical outcomes: a binary classification task, which
is the prediction of the probability of lymph node invasion (LNI); and five survival tasks, which include
the prediction of biochemical recurrence-free survival (BCR-FS), metastasis-free survival (MFS), definitive
androgen deprivation therapy-free survival (dADT-FS), castration-resistant prostate cancer-free survival
(CRPC-FS), and prostate cancer-specific survival (PCSS). Occurrence of these events follows the natural
history of high-grade PCa (see Fig. 1b). The distributions of survival time (see Fig. 1c) in the learning set (see
Fig. 8a for a description of subsets) align with PCa progression (see Fig. 1b). This progression defines a
natural sequence of event occurrences, providing a clinically coherent way of constructing a multi-task model.
We propose the Sequential Network (SN) (see Fig. 2), a multi-task model comprised of several single-task
models, which allows for dynamic predictions, i.e., predictions that are refined over time as outcomes from
previous tasks unfold. For each single-task model within SN, we investigate the benefits of integrating HCR
or DLR with CD using a series of experiments. We validate our approach by comparing SN’s performance
with the MSKCC nomogram, CAPRA score, and single-task models.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24308396doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24308396
http://creativecommons.org/licenses/by-nc-nd/4.0/


To enhance the model’s reliability and trustworthiness in a clinical context, it is important to provide
clinicians with information about the systematic uncertainty of the model regarding an individual patient’s
prediction [34–36]. To quantify the uncertainty, we created a Bayesian version of the SN using variational
inference (VI) [37, 38]. We opted for VI over the commonly used Monte-Carlo Drop-Out (MCDO) in
uncertainty-aware neural networks, as MCDO suffers from limitations such as unreliable uncertainty quan-
tification, poor calibration, and weak out-of-distribution detection [39–41]. We validate our approach by
comparing the performance of the Bayesian Sequential Network (BSN) with the deterministic SN. We also
provide a feature-based explanation of model prediction using SHAP [42] and SurvSHAP(t) [43] frameworks.

In summary, the proposed model is a fully automatic BSN that combines FDG-PET/CT imaging data
with CD to predict LNI, BCR-FS, MFS, dADT-FS, CRPC-FS, and PCSS in high-grade PCa. In the context of
PCa prognosis and to the best of our knowledge, we are the first to systematically determine the contribution
of FDG-PET/CT-based HCR and DLR on task-specific model performance, to use multi-task learning in a
sequential approach, and to provide model’s uncertainty using VI.
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Fig. 1 Study overview. (a) Schematic outline of a patient’s journey from diagnosis to prognosis. Following an FDG-
PET/CT scan, a physician manually delineates the prostate on the CT image to create a segmentation map. This
map is used to train the model and is not needed to infer the prognosis of a new patient, as the trained model
automatically performs segmentation. Indeed, the study aims to develop a fully automatic prognostic model that
takes as input both clinical and imaging data without requiring any manual steps. (b) Schematic representation of
the natural history of high-grade PCa [44, 45]. All patients in the cohort underwent radical prostatectomy (RP),
and therefore, event time is measured from the date of RP. Note that tmed is the median survival time, calculated
based on data from the 250 patients in the learning set. See Supplementary Table 7 & 8 for in-depth analyses of
survival and follow-up time distributions, respectively. (c) Distributions of survival time in the learning set. Each
marker corresponds to a patient who suffered the corresponding event. Distributions are consistent with the natural
progression of PCa. See Supplementary Fig. 2a, 5a, 8a, 11a & 14a for the Kaplan-Meier curves of each survival task
on the learning set and Supplementary Fig. 18 for distributions of event indicators.
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Fig. 2 Framework of the Sequential Network (SN). SN is a multi-task model comprised of several single-task models.
Single-task models can be any feed-forward neural network, such as a multi-layer perceptron (MLP). The output of
each single-task model represents either positive class probability for classification tasks or event risk for survival
tasks. Each model has 3 different input types: clinical data (mandatory), imaging data (task-specific), and predictions
from previous models (task-specific), hence the terminology “sequential”. The sequence of tasks was determined based
on the natural history of prostate cancer (see Fig. 1b). See Supplementary Fig. 1 for the correlation between each
pair of tasks.

2 Results

The BSN is developed using a constructive approach; each hypothesis is tested through a comparison exper-
iment, with results of previous experiments guiding subsequent ones. Experiments are conducted using a
learning set of 250 patients, with evaluation carried out (by 5-fold cross-validation) on 5 test sets of 50 patients
each (see Methods, section Experimental setup). The holdout set is used exclusively for assessing the perfor-
mance of the best model, selected among all models based on its average performance on the test sets. The
workflow of the conducted experiments is outlined below, with hypotheses in italics.
1. Single-task model (MLP vs. LR). To assess whether a multi-layer perceptron (MLP) outperforms

a linear regression (LR) and thereby justify transitioning to deep learning approaches, the performance
of MLPs and LRs, trained exclusively with CD, is compared.

2. HCRs extraction (Automatic vs. manual segmentation). To verify that models using HCRs
extracted from an automatically segmented prostate region perform equally well compared to those using
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contours from a physician, the performance of MLPs trained with HCRs obtained through either manual
or automatic prostate segmentation is compared.

3. DLRs extraction (U-NEXtractor vs. CNN). To verify that simultaneously performing prostate
segmentation and prognosis leads to the extraction of higher-quality image features, the performance of
models trained solely with images, specifically those that extract DLRs like U-NEXtractor and CNN,
are compared.

4. Imaging data integration (CD vs. CD+HCR vs. CD+DLR). To assess whether imaging data
improve the prognosis of some outcomes, the performance of MLPs trained with both CD and either
HCR or DLR is compared with MLPs trained solely with CD.

5. Multi-task model (SN vs. MLP). To assess whether multi-task learning enhances the performance
for some tasks, SN is evaluated and compared to MLPs.

6. Uncertainty quantification (BSN vs. SN) . To validate that probabilistic models perform just as
well as their deterministic counterparts, while also providing an uncertainty quantification of individual
predictions, the performance of SN is compared to its Bayesian counterpart, BSN.

7. Dynamic predictions (BSNt=0 vs. BSNt>0). To assess whether dynamic predictions improve the
prognosis of long-term outcomes, accuracy of dynamic and static predictions are compared.

8. Baseline models (MSKCC & CAPRA vs. BSN). To determine whether the developed model out-
performs baseline models, the MSKCC nomogram and CAPRA score are evaluated and compared to
BSN. Note that the MSKCC nomogram is trained with over 10,000 patients, so its impressive perfor-
mance may stem from the sheer number of training cases rather than from its underlying model, i.e. a
LR that exclusively uses CD.

In the following sections, the results of the aforementioned experiments are presented, culminating in the
selection of the best-performing model. This model is then evaluated on the holdout set, with visuals depicting
its performance on both test sets and holdout set. Furthermore, a global interpretation of predictions is
provided, along with a patient prognosis example to illustrate how the model can support clinical decisions.

2.1 Model comparison and selection

Performance metrics. The performance metrics used for the classification task are the area under the
receiver operating characteristic (ROC) curve (AUC) and binary balanced accuracy (BA); survival tasks
rely on concordance index (CI), CI based on inverse probability of censoring weights (CIWC), and cumu-
lative/dynamic AUC (CDA); whereas segmentation tasks are evaluated solely based on Dice similarity
coefficient (DSC) (see Methods, section Tasks implementation).

Single-task model. For all experiments, the selected single-task model used to predict each clinical
outcome is an MLP (see Methods, section Models), as MLPs show a substantial and consistent increase in
performance compared to LRs for all tasks (see Supplementary Table 24, section A).

HCRs extraction. The U-Net (see Fig. 9a), trained with manual contours, generates a prostate seg-
mentation map on the CT. The segmentation map is then used to extract HCRs on both CT and PET
images in the intraprostatic region (see Fig. 3a for HCR extraction pipeline). Opting for automatic segmen-
tation maps instead of manual ones does lead to a minor performance decrease (see Supplementary Table 24,
sections B & C), but we argue that the advantages of automation in a clinical setting outweigh this draw-
back. Of 200 HCRs initially extracted (see Methods, section Handcrafted radiomic features), the 6 selected
HCRs with the highest Gini importance [46], obtained from a random forest classifier trained to predict LNI,
are all first-order intensity-based features extracted from PET images (see Supplementary Fig. 19). Note
that the number of selected HCRs (6 features) is arbitrarily chosen to be equal to the number of CD. The
automatically selected HCRs are the same with U-Net and Bayesian U-Net, even though U-Net exhibited
slightly higher average DSCs, i.e., 0.845 compared to 0.834 on test sets (see Supplementary Table 25).
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Fig. 3 Sequential Network (SN). (a) Handcrafted radiomic features extraction pipeline. The U-Net, trained with
manual contours, automatically generates a prostate segmentation map from the CT image (see Fig. 9a for the
visualization of feature maps in different layers of the U-Net). A total of 200 radiomic features are computed with
the pyradiomics [47] Python library (see Supplementary Table 21 & 22 for extraction parameters on CT and PET
images, respectively), using voxels from both CT and PET images within the segmented region. The Gini impor-
tance [46] of each feature is then determined using a random forest classifier with 10,000 trees implemented with
the scikit-learn [48] Python library and trained to predict a single task using 200 extracted radiomics. The 6 fea-
tures with highest Gini importance are selected (see Supplementary Fig. 19 for selected features). (b) Deep radiomic
features extraction pipeline. The model, named U-NEXtractor, segments the prostate and extracts deep radiomic
features simultaneously. The idea is that the auxiliary segmentation task is expected to spatially guide the network
to extract prognostically relevant features in the prostate region [49]. See Fig. 9b for the U-NEXtractor’s detailed
architecture. (c) Architecture of the final SN (see Fig. 2 for the conceptual framework). The input data for each
single-task model is based on the data that yields the highest scores for MLP on the test sets. This refers to the best
data (see Table 1, section B), i.e., clinical data and handcrafted radiomics for LNI, clinical data and deep radiomics
for BCR-FS, and clinical data for MFS, dADT-FS, CRPC-FS, and PCSS.

DLRs extraction. The U-NEXtractor (see Fig. 9b) simultaneously performs the segmentation of the
prostate and the extraction of DLRs (see Fig. 3b for DLR extraction pipeline). This approach aims to
use segmentation as an auxiliary task to guide the network in capturing clinically significant features in
the prostate region, without however being limited to the ground truth region [49]. This method demon-
strates comparable prognosis performances to a conventional CNN, i.e., U-NEXtractor without the decoding
branch (sand-colored branch in Fig. 9b), but it achieves highest overall performance scores on survival
tasks (see Supplementary Table 24, section D). U-NEXtractor and Bayesian U-NEXtractor produce poor
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prostate segmentation maps, with average DSCs of 0.26 and 0.05. The DSC itself is not of particular interest,
as the auxiliary segmentation task is only used to enhance predictive performance. Nonetheless, the fact that
the segmentation map is not random suggests that the network is prioritizing a specific region to enhance
performance. For instance, the segmentation map overlaid on the PET image reveals that Bayesian U-
NEXtractor avoids bones and regions of high FDG uptake by the bladder, and segments everything else (see
Supplementary Fig. 22).

Imaging data integration. The best data, i.e., data that yields the highest score on the test sets,
corresponds to CD+HCR for LNI, CD+DLR for BCR-FS, and CD for MFS, dADT-FS, CRPC-FS and
PCSS (see Table 1, section B, for scores, and Supplementary Table 27 for p-values). These results show that
only LNI and BCR-FS benefit from the integration of imaging data.

Multi-task model. The selected input data of each MLP comprised in SN (see Fig. 3c for SN architec-
ture) is based on the best data of each task. SN outperforms (for BCR-FS, MFS, dADT-FS, CRPC-FS, and
PCSS) or matches (for LNI) MLPs, though not significantly (see Table 1, sections B & C, and Supplementary
Table 27).

Uncertainty quantification. Performance comparison between BSN and SN shows no significant dif-
ference, except in the case of CDA for BCR-FS, where SN significantly outperforms BSN (see Table 1,
section C, and Supplementary Table 26).

Dynamic predictions. Dynamic predictions are predictions that are refined over time according to the
clinical results of previous tasks (see Methods, section Models, for a description of dynamic predictions).
In a clinical setting, dynamic predictions are expected to be employed following the occurrence of an event
to acquire fresh and improved predictions for subsequent events. These predictions show interesting poten-
tial (see Table 1, section D & G). Indeed, BSN’s performance at t = {12, 24, 60}months is considerably higher
than at diagnosis time. Note that these time points were chosen to align with standard follow-up intervals.

Baseline models. Statistical analysis (see Table 1, sections A & C, and Supplementary Table 26) of
scores obtained on test sets shows that the performance of BSN is significantly higher than that of CAPRA
for LNI and dADT-FS. For PCSS, the performance of MSKCC and CAPRA is significantly higher than that
of BSN.

Model selection. The selected models (one choice of model per task, hence the plural) are BSN for
all tasks except PCSS, which uses CAPRA score (see Table 1, sections A, B & C, boxed model’s scores).
Selection is based on the model’s performance on test sets and on the fact that Bayesian models offer the
advantage of uncertainty quantification.
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Models2 Data
LNI BCR-FS MFS dADT-FS CRPC-FS PCSS

AUC BA CI CICW CDA CI CICW CDA CI CICW CDA CI CICW CDA CI CICW CDA

T
e
st

se
ts

(n
=

5
×
5
0
)

MSKCC CD 70±7 65±5 64±3 63±4 74±8 — — — — — — — — — 82±7 76±20 86±11

CAPRA CD 62±4 52±5 63±4 61±5 68±9 72±8 69±10 75±8 70±6 65±7 70±6 73±7 67±9 80±11 82±2 69±20 90±7

MLP CD 69±7 64±6 63±7 63±5 66±6 67±6 64±12 74±8 68±6 67±5 68±8 71±10 69±7 72±9 70±16 73±23 58±34

MLP CD+HCR 72±5 67±3 58±7 58±4 58±9 58±4 53±9 62±6 64±12 62±10 66±11 67±10 65±10 69±17 69±10 64±20 74±15

MLP CD+DLR 54±7 52±5 65±6 65±3 73±14 62±13 61±12 61±18 55±12 58±10 51±15 48±9 44±8 52±7 50±32 43±30 55±37

SN B ’s best3 72±5 67±3 66±7 67±6 71±14 74±7 69±12 78±10 69±8 69±6 67±10 71±12 73±8 72±16 73±8 68±26 81±17

BSN B ’s best3 71±4 67±4 66±5 64±5 68±10 70±5 69±3 75±8 71±8 68±9 71±7 73±13 75±12 74±12 72±10 72±10 79±11

BSNt=12 B ’s best3 71±4 67±4 71±4 69±4 74±7 69±4 68±5 75±9 86±5 82±8 89±4 79±12 77±11 80±15 81±9 84±10 84±14

BSNt=24 B ’s best3 71±4 67±4 71±4 69±4 74±7 69±4 68±5 75±9 86±3 82±5 88±3 83±11 81±10 87±12 68±26 79±14 67±39

BSNt=60 B ’s best3 71±4 67±4 71±4 69±4 74±7 69±4 68±5 75±9 83±2 83±2 83±4 84±12 85±11 86±10 68±25 78±13 67±39

H
o
ld
o
u
t
se
t
(n

=
4
5
) MSKCC CD 60.6 52.2 63.5 60.5 77.1 — — — — — — — — — 87.8 85.0 100.0

CAPRA CD 57.7 50.0 52.5 51.1 62.5 62.4 54.5 60.4 63.9 53.4 71.4 67.6 69.2 62.6 86.6 86.5 86.4

SN B ’s best3 65.4 65.1 59.4 62.7 64.2 81.4 75.8 96.2 66.3 58.5 70.8 73.6 72.7 78.3 78.0 78.0 81.8

BSN B ’s best3 66.3 66.7 59.2 65.6 80.2 75.3 65.3 92.4 69.6 61.8 77.5 65.6 58.5 71.1 78.0 78.0 81.8

BSNt=12 B ’s best3 66.3 66.7 67.1 71.7 78.6 71.1 67.1 78.5 85.3 85.9 80.6 91.2 81.2 100.0 82.9 78.9 100.0

BSNt=24 B ’s best3 66.3 66.7 67.1 71.7 78.6 71.1 67.1 78.5 87.0 86.8 90.4 97.6 94.9 100.0 82.9 78.9 100.0

BSNt=60 B ’s best3 66.3 66.7 67.1 71.7 78.6 71.1 67.1 78.5 77.8 67.9 74.4 99.2 99.3 98.2 92.7 91.0 100.0

Tasks1

A

B

C

D

E

F

G

1 Tasks are lymph node invasion (LNI), biochemical recurrence-free survival (BCR-FS), metastasis-free survival (MFS), definitive androgen deprivation therapy-
free survival (dADT-FS), castration-resistant prostate cancer-free survival (CRPC-FS), and prostate cancer-specific survival (PCSS). Metrics used to evaluate
those tasks are the area under the ROC curve (AUC), binary balanced accuracy (BA), concordance index (CI), CI based on inverse probability of censoring
weights (CIWC), and cumulative/dynamic AUC (CDA).

2 Models are the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram, Cancer of the Prostate Risk Assessment (CAPRA) score, multi-layer per-
ceptron (MLP), Sequential Network (SN), Bayesian SN (BSN), and BSNt=tp is the BSN used in the context of dynamic prediction for a prognosis made at
time tp (see Methods, section Models, for the procedure to generate this type of prediction).

3 Section B ’s best data is CD+HCR for LNI, CD+DLR for BCR-FS and CD for MFS, dADT-FS, CRPC-FS and PCSS.

Table 1 Performance comparison of the models. Performance on the test sets and the holdout set of (A, E) baseline
nomograms, (B) single-task models, (C, F) multi-task sequential models, and (D, G) dynamic multi-task sequential
models. Possible input data to models are clinical data (CD), clinical data and handcrafted radiomics (CD+HCR),
and clinical data and deep radiomics (CD+DLR). Scores on test sets correspond to the mean ± standard deviation
of the scores on the 5 test sets of 50 patients each. The highest score achieved by the models in sections A, B, and
C (test sets), and in sections E and F (holdout set) are highlighted in bold (see Supplementary Table 23 for additional
metric scores on the LNI task and Supplementary Table 26 & 27 for calculated p-values). Note that dynamic models
in sections D and G are excluded from the process of determining the highest score to ensure fairness, as they have
the advantage of having access to target data as model inputs. The selected models, chosen for each task through
experiments conducted on test sets (see Fig. 8), have their metric scores enclosed in a box. The prostate segmentation
maps generated by U-Net and Bayesian U-Net, which are used to compute handcrafted radiomic features, respectively
achieved average DSC of 0.842±0.004 and 0.821±0.004 on the test sets compared to manual contours delineated
by a physician. Likewise, these models respectively achieved average DSC of 0.845 and 0.834 on the holdout set of
45 patients. See Supplementary Table 25 for additional information on DSC.

2.2 Performance of the selected model

Performance on holdout set. On the holdout set, selected models show higher performance than others for
LNI, BCR-FS, and dADT-FS, but lower performance for MFS, CRPC-FS, and PCSS (see Table 1, sections
E & F; selected models are boxed). Statistical analysis (see Supplementary Table 26) shows no significant
difference, except in the case of CDA for MFS, where BSN significantly outperforms CAPRA, and for
PCSS, where, as in the test sets, the performance of baseline models significantly outperforms ours. Dynamic
predictions (see Table 1, section G) show considerable improvement for most long-term tasks compared to
prognosis made at diagnosis time.

Risk stratification performance. Stratification performance of selected models is evaluated on the test
sets and holdout set (see Fig. 4). Log-rank tests [50, 51] performed on Kaplan-Meier curves show that high-
and low-risk groups, established based on inferred risks (see Methods, section Risk groups, for a description
of risk thresholds), separate well (p < 0.05) on the test sets for all survival tasks, except CRPC-FS where
groups tend towards (but did not attain) significantly different separation with p = 0.09 (see Fig. 4). On the
holdout set, only CRPC-FS and PCSS show a significant group difference, but BCR-FS and MFS also tend
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towards a significant group separation with p = 0.13 and p = 0.09, respectively. For dADT-FS, the two risk
groups are confounded (p = 0.6).

Single-feature-based risk stratification. The clinical features that yield the best single-feature-based
risk stratification on the test sets, i.e., obtained the lowest p-value, are the global Gleason score for BCR-FS
and MFS, and secondary Gleason score for other tasks (see Supplementary Fig. 3c, 6e, 9c, 12e & 15e). All of
these p-values are lower than those obtained with risk groups inferred by models shown in 4, showing that
selected models improve risk stratification of high-grade PCa compared to a single-feature-based approach.
However, on the holdout set, the global Gleason score stratifies better than selected models for BCR-FS,
MFS, and dADT-FS (see Fig. 4 & Supplementary Fig. 4c, 7c, 10c).

Time-dependence of dynamic predictions. Dynamic predictions’ performance for LNI remains con-
stant over time (see Fig. 4, bottom figures), which is expected since this is the first task in the sequence
defined by SN (see Fig. 3a), and therefore no additional information is provided as input to LNI’s single-task
model following diagnosis. Similarly, performance remains constant for BCR-FS and MFS tasks once LNI is
assessed at RP, i.e. at t = 0; however, BCR-FS shows a slight increase in performance, while MFS experi-
ences a minor decrease. For subsequent tasks, namely dADT-FS, CRPC-FS, and PCSS, dynamic predictions
substantially improve performance compared to predictions made at diagnosis time on both test sets and
holdout set, except for PCSS on test sets, which exhibits a decrease after 12 months. However, performance
variations for PCSS are quite large, given the low number of events (n = 9) in the test sets. Finally, both
dADT-FS and CRPC-FS tend to reach a plateau or even decline in performance after a certain duration.
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LNI
Holdout setTest sets Test sets Holdout set

BCR-FS

Holdout setTest sets
MFS

Holdout set
dADT-FS

Test sets Holdout set
CRPC-FS

Test sets

Holdout set
PCSS

Test sets

Fig. 4 Visualization of the performance of selected models. Selected models are Bayesian Sequential Network (BSN)
for all tasks except PCSS, which uses CAPRA score. For the classification task (i.e. LNI), receiver operating charac-
teristic (ROC) curves [52] on the test sets (top left) and holdout set (top right) are shown. The ROC curve on test
sets corresponds to the mean (line) and standard deviation (shade) of the ROC curves on the 5 test sets. For each
survival task, the model’s ability to stratify patients into clinically significant risk groups is illustrated by Kaplan-
Meier curves [53] of test sets (top left) and holdout set (top right) using stratification based on predicted risk (see
Methods, section Risk groups, for a description of the risk threshold computation method). The 95% confidence inter-
val (95% CI, shade) of the Kaplan-Meier curve (line) is estimated using log hazard [54]. The p-value is computed
using a log-rank test [50, 51], which also provides statistics to calculate the hazard ratio (HR) and its 95% confidence
interval [55]. For each task, the performance of BSN’s dynamic predictions is shown both on test sets (bottom left)
and holdout set (bottom right). Results show that dynamic predictions are refined over time as events unfold. Scores
on the test sets correspond to the mean (marker) and standard deviation (error bar) of scores on the 5 test sets.

2.3 Global interpretability analysis

Importance of HCRs. Explanations for predictions of selected models are provided for the 45 patients
in the holdout set (see Fig. 5). SHapley Additive exPlanations (SHAP) [56] values (see Fig. 5a) show that
the importance of the mean PET image intensity in the intraprostatic region is the feature with the most
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influence when discriminating patients with high and low probability of LNI, thus supporting the selection
of HCRs as additional input data for this task. Furthermore, four of six HCRs are among the nine most
influential features for this task.

Importance of DLRs. A similar observation holds for BCR-FS with DLRs, as the feature deep radiomics
3 emerges as the most discriminating feature. Once again, four of six DLRs are in the top nine most important
features. For other tasks, the model’s predictions are mainly explained by secondary Gleason score, except
for CRPC-FS, where prostate-specific antigen (PSA) dominates.

Feature importance propagation. Due to the SN’s architecture, some imaging features appear as the
most important features for tasks that rely solely on CD as inputs. For example, mean (PET) ranks fifth in
importance for predicting MFS, despite MFS’s single-task model (within SN) not directly using any HCRs
as an input. This finding aligns with SN’s sequential architecture; as MFS’s model uses both CD and LNI
prediction as inputs, and LNI’s model takes HCRs as input, then HCRs’ influence propagates through the
network. In the explanatory figure of MFS (see Fig. 5a), the prediction of LNI therefore emerges as a linear
combination of the features that contributed to its prediction.

Time-dependence of feature importance. Time-dependent SHAP (SurvSHAP(t)) [57] curves (see
Fig. 5b) show that clinical stage is of considerable importance in predicting low-risk patients for all tasks.
For BCR-FS, we notice a decrease in the importance of all features for times t > 60 months due to the low
number of events occurring with such durations (see Fig. 1c for distribution of survival time).
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LNI BCR-FS MFS

dADT-FS CRPC-FS PCSS

BCR-FS MFS

dADT-FS CRPC-FS PCSS

a

b

Fig. 5 Explanation of the predictions of selected models. Selected models correspond to the boxed models in Table 1,
sections A, B & C, and predictions are made on the 45 patients in the holdout set. (a) SHapley Additive exPlana-
tion (SHAP) [56] values of every patient in the holdout set for each task. Features are ranked in order of mean absolute
importance, with the most important at the top. For each feature, a marker is associated to each patient. (b) Time-
dependent SHAP (SurvSHAP(t)) [57] curves of the top 9 most important features shown in panel A for each survival
task. For each figure, 2 curves are shown per feature: one is the mean of strictly positive SurvSHAP(t) curves, and
the other is the mean of strictly negative SurvSHAP(t) curves, both obtained from each patient in the holdout set.
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2.4 Illustration of clinical application

The prognosis of an arbitrarily selected patient from the holdout set is provided (see Fig. 6 to illustrate the
typical journey of a patient (see Fig. 1a), from diagnosis to prognosis, using the selected model as a clinical
decision support tool. Initially, the patient’s 6 CD (see Fig. 6a) are collected through tests in regular clinical
practice, followed by a FDG-PET/CT scan. The Bayesian U-Net generates a prostate segmentation map
from the CT and computes uncertainty (standard deviation) (see Fig. 6b). Using this map, 6 HCRs are
extracted from both CT and PET images (see Fig. 3a). In parallel, the U-NEXtractor directly uses FDG-
PET/CT images to extract 6 DLRs (see Fig. 3b). All 18 features serve as input data for SN (see Fig. 3c)
to predict PCa progression (see Fig. 6c), providing prognosis. For LNI, the prediction corresponds to the
probability of a positive outcome and its uncertainty is a standard deviation, while for survival tasks, the
prediction is provided as a survival curve and its uncertainty as a confidence interval (see Fig. 6d). For each
task, the patient is classified into either high- or low-risk group (see Methods, section Risk groups). SHAP
and SurvSHAP(t) values offer feature-based explanation of the prognosis (see Fig. 6e & 6f).
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Clinical data
PSA = 5.46 ng/ml

Clinical stage = T3a

Age = 71-75 years

Primary Gleason = 4

Secondary Gleason = 4

Global Gleason = 8

Automatic segmentation

Ground truth

Model prediction

Model interpretation

CT PET
a

CT PET

b

dc

e f

g h

Fig. 6 Illustration of a clinical application of selected models. The application involves establishing the prognosis
of an arbitrarily selected patient from the holdout set. See Supplementary Fig. 20 & 21 for other examples of patient
prognosis. (a) Patient’s clinical data. (b) Segmentation map of the prostate obtained from Bayesian U-Net trained
on the learning set. The segmentation map is overlaid on CT and PET images to illustrate that the region of high
FDG uptake by the bladder lies outside the segmentation map’s boundaries. The segmentation map is used to extract
handcrafted radiomic features. Note that the DSC between automatic and manual segmentation (ground truth) is
0.910. Color code: average prostate segmentation map (blue) and standard deviation (red) over 100 inferences. See
Supplementary Fig. 22a for the segmentation map obtained by Bayesian U-NEXtractor. (c) Average prediction and
standard deviation of the model over 100 inferences. (d) Average survival curves predicted by the model (line) and
95% confidence interval (shade) over 100 inferences (e) Shapley additive explanation (SHAP) [56] of the predicted
risk of BCR-FS. (f) Time-dependent SHAP (SurvSHAP(t)) [57] of the predicted risk of BCR-FS. (g) Ground truth
progression of the patient’s cancer. Time represents the survival time when the target value is 1 and acts as a censoring
time otherwise. (h) Ground truth prostate segmentation map obtained from manual contouring by a physician.
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3 Discussion

High-grade PCa treatment must be personalized based on an accurate quantitative prognosis. Current mod-
els lack integration of imaging data, and cannot predict multiple outcomes simultaneously. Hence, a fully
automatic multi-task model that uses both clinical and FDG-PET/CT imaging data is developed. The model
is selected and optimized based on experiments conducted on the learning set, and the best-performing
model (BSN for all tasks except PCSS, where CAPRA is used) is evaluated on the holdout set.

Model comparison and selection. The integration of FDG-PET/CT as input data improves perfor-
mance for LNI and BCR-FS (see Table 1, section B). Of the six studied outcomes, these two are the closest
in time to diagnosis (see Fig. 1b & 1c). This observation highlights the temporal limitation of prognostic
information derived from FDG-PET/CT images; the prognostic relevance of images decreases with the time
elapsed between the event and the image acquisition, due to PCa progression. Also, the limited number
of late events in the dataset (see Fig. 1c) likely contributes to suboptimal predictions for late outcomes.
Furthermore, multi-task models exhibit superior performance compared to single-task models (see Table 1,
sections B & C), though not significantly (see Supplementary Table 27). This improvement demonstrates the
utility of sequential networks in propagating inter-task information, supporting the relevance of multi-task
learning [33] in PCa prognosis. Moreover, SN and BSN exhibit comparable performance (see Supplemen-
tary Table 26), suggesting that VI exerts negligible influence on performance while enabling uncertainty
quantification.

Performance of selected model. The selected model effectively stratified patients in the test sets but
faced challenges with the holdout set (see Fig.4), potentially due to over-fitting of the model’s parameters
or of the risk stratification threshold. However, the limited size of the holdout set (n = 45) may not provide
enough statistical power for decisive assessment of the measured statistical difference via log-rank test, as
evidenced by overlapping confidence intervals of Kaplan-Meier curves of different risk groups. Nevertheless,
maintaining a holdout set set for final model evaluation is crucial, especially considering all design choices were
made on the learning set. Moreover, a substantial improvement of the model’s performance through dynamic
predictions is observed (see Fig. 4), which confirms the relevance of the model’s sequential architecture, as
dynamic predictions are only feasible due to this sequential framework. The observed performance plateau in
both dADT-FS and CRPC-FS may result from the increasing unpredictability of the relationships between
tasks over time. Since the model maintains the same assumption about these relationships across all time
frames, it eventually leads to incorrect predictions when the assumption becomes unreliable.

Global interpretability analysis. The FDG-PET signal is the most important variable in predicting
LNI (see Fig. 5), with higher average intensity indicating a greater likelihood of LNI. In line with previous
research, high intraprostatic uptake of FDG on PET-CT images correlates with higher Gleason grades [58].
The accuracy of the model with an AUC of 0.71 for LNI prediction is slightly lower than nomograms combin-
ing PSMA-PET/CT LN nodes status with clinical data [15, 16]. However, our cohort includes only high-grade
patients at biopsy which decreases greatly the discriminative potential of our models because higher grade at
biopsy has been shown to be a major factor discriminating pN0 from pN1 in clinical nomograms [16, 59, 60].
For BCR-FS, DLRs are highly valuable predictors, as deep radiomics 3 is the most significant feature and
persists over time (see Fig. 5b). Although not the most important, radiomic features play a significant role
in predicting other outcomes, made possible by SN’s architecture propagating feature importance across
tasks. As for clinical features, Gleason grades, clinical stage, and PSA are crucial variables for very high-risk
PCa [61], aligning with the importance obtained for these features across all outcomes (see Fig. 5). It has
been found that intrinsic tumor biology, as determined by Gleason grade, is the most significant predictor
of very high-risk disease for metastases [61]. Our results confirm these findings and show that Gleason 9 and
10 predict poorer outcomes, just as advanced clinical stage (T3a) does (see Fig. 5). The predicted risk is also
found to be proportional to PSA level (see Fig. 5a). Furthermore, a younger age at diagnosis may reflect a
more aggressive disease, and therefore higher risk prediction (see Fig. 5a). Indeed, there is a high likelihood
that PCa in younger individuals will have a genetic component, and disruption of key genes can also lead to
more aggressive behavior [62, 63]. In the same way, younger age at diagnosis may be associated with can-
cers that exhibit hereditary genetic characteristics that make them more likely to progress and metastasize.
Finally, the observed higher risk for developing CRPC at a younger age may be due to lead time bias, with
individuals surviving long enough on dADT to develop CRPC.
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Illustration of clinical application. The illustration of a patient’s prognosis (see Fig. 6) allows to
compare the practical benefits of the proposed approach to existing solutions. The proposed AI system,
i.e., the model and accompanying tools, provides clinicians with additional benefits: automatic prostate
segmentation, uncertainty estimation for individual predictions, personalized feature-based explanations, and
dynamic predictions. The generated segmentation map has no prognostic value on its own; nonetheless, it
validates the model’s focus on relevant anatomical regions. Conversely, the capability to express uncertainty
by providing the standard deviation of a prediction is crucial for the safe clinical deployment of a prognosis-
oriented AI system [36]. Indeed, quantifying uncertainty in individual predictions fosters trust with healthcare
workers by enabling principled decision-making and serves as a protective measure against unsafe prediction
failures [34]. Also, feature-based explanations could aid clinicians in understanding and validating predictions,
informing decision-making. Lastly, during follow-up, clinicians could employ dynamic predictions to refine
prognosis of long-term outcomes following occurrences of short-term outcomes. For instance, the model
could be employed at diagnosis and, upon observation of BCR, reran to generate more accurate predictions
for ensuing outcomes, namely dADT-FS, CRPC-FS, and PCSS, outperforming those made without prior
knowledge at diagnosis.

Limitations and future work. A limitation of the proposed approach lies in the imputation method
for missing CD; since the imputation is not bayesian (see Methods, section Preprocessing), the estimated
uncertainty fails to account for potential uncertainty stemming from the imputation process. However, a
recent study has introduced ways to incorporate imputation uncertainty into a Bayesian model using a deep
latent generative model [64], an avenue we aim to explore. Additionally, we intend to investigate activation
maps as a tool to uncover the regions and patterns used by U-NEXtractor, which could elucidate the nature
of extracted DLRs [25]. Furthermore, we aim to integrate example-based interpretability methods. Rather
than explaining the model through input feature contributions, these methods interpret the model’s behavior
through influential training data points, i.e., patients from the learning set that were important for the model
prediction [65]. Finally, while FDG imaging has proven valuable in metastatic PCa, its role in high-risk
prostate cancer requires refinement. Hence, validating our approach with PSMA-PET/CT patients could
facilitate its translation into clinical practice.

Conclusion. Current high-grade PCa prognostic models rely solely on CD, lacking integration of imaging
data. The proposed model, BSN, outperforms the MSKCC nomogram and CAPRA score in 5 out of 6 tasks,
owing to multi-task learning and integration of FDG-PET/CT imaging data. Additionnaly, the proposed
AI system, centered around BSN, provides automated prostate segmentation, uncertainty quantification,
personalized feature-based explanations, and dynamic predictions.

4 Methods

4.1 Cohort description

The study cohort consists of 295 patients diagnosed with high-grade PCa at biopsy, with high-grade defined
by a pre-treatment global Gleason score ≥ 8. These individuals underwent RP along with pelvic lymph
node dissection (PLND) between 2011 and 2020 at our tertiary care center in Quebec City, Canada, and
received follow-up care at the Urology department of this hospital (see Supplementary Table 8 for median
follow-up times). Patients’ descriptive measurements include pre-operative FDG-PET/CT images, a ground
truth annotation of the prostate on the CT, clinical variables, and outcomes information. FDG-PET/CT
was performed approximately 75 minutes after the administration of 300–500 MBq FDG, with oral contrast,
from base of skull to upper thighs, on a Biograph 6 PET/CT system (Siemens Healthcare, Erlangen, Ger-
many) [58]. The PET/CT scan served the dual purpose of offering a detailed anatomical frame of reference
and visualizing the distribution of FDG [66]. The clinical variables include age, pre-operative PSA level, pri-
mary and secondary Gleason scores, global Gleason score, and clinical stage (see Supplementary Table 1–6
for a detailed descriptive analysis of clinical features for each task). The available outcomes are LNI, BCR-
FS, MFS, dADT-FS, CRPC-FS, and PCSS following RP (see Supplementary Table 7, 8 for survival time
analysis, Supplementary Fig. 1 for correlation between tasks & Supplementary Fig. 2, 5, 8, 11, 14 for descrip-
tive analysis of the outcomes). Note that BCR is defined as a rising PSA of > 0.2 ng/ml or the initiation of
a secondary treatment in response to elevated PSA levels following RP.
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4.2 Preprocessing

The preprocessing of clinical features and images is conducted with the DELIA1 (an in-house developed
package) and MONAI [67] Python libraries (see Fig. 7a). The clinical stage is missing in 34 cases and the PSA
level in 1 case. Both are imputed using an iterative imputer with a random forest estimator implemented
with the scikit-learn [48] Python library. Approximately 20% of all cases exhibit some missing PET
attributes, necessitating the following imputations for converting PET volume into SUV [20]: body weight
is assumed to be 75 kg, scan injection delay is set to 105 minutes (a conservative value), and the total
injected dose is assumed to be 420 MBq. The clipping thresholds on the CT image in Hounsfield unit (HU)
are determined by analyzing the HU range for prostate voxels across the images in the learning set and
removing the 0.2% outliers [68]. The resulting HU values range is [−178, 244], so the [−200, 250] range is
arbitrarily selected as a slightly larger range. The PET image clipping threshold (25) is determined based on
the maximum observed SUV value (24.9) in the images of the learning set, as assessed by a nuclear medicine
physician. This capping of SUV values at 25 helps to reduce the impact of any variability in tracer uptake
and ensures a more reliable and reproducible assessment of metabolic activity. To enhance the model’s ability
to generalize, data augmentation [69] is applied during the training process, meaning that each batch of
data is augmented before being fed into the model. The augmentation process includes Gaussian noise, axial
flipping, and axial rotation, each with a 50% probability of application (see Fig. 7b).

1https://github.com/MedPhysUL/delia
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5. Convert raw PET intensity to SUV
6. Clip CT intensity range to [-200, 250]
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8. Scale CT & PET intensity range to [0, 1]
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centroid of the label map

Fig. 7 Data preprocessing pipeline. (a) Data transformation pipeline. Following a 1 mm³ resampling of the CT
image, the PET image and the manual prostate segmentation map (label map) are resampled to align with the voxels
of the CT image. The position of the centroid of the label map, which corresponds to the centroid of the prostate,
is computed and images are cropped to a 128 mm3 cube centered on this position. The PET volume is converted
into standardized uptake value (SUV) [20] image. The intensity of the CT and PET images are clipped to [-200, 250]
and [0, 25] respectively (see Methods, section Preprocessing for the clipping range selection methodology), and then
mapped to [0, 1]. Continuous clinical features are standardized using z-normalization, while categorical features are
mapped to numerical values using ordinal encoding. (b) Imaging data augmentation pipeline. After applying a small
amount of random noise with 50% probability, the images are clipped to [0, 1] to ensure that the intensity of the
transformed images remains in the same range as the untransformed images. Flipping and rotation are then applied
with 50% probability.
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4.3 Experimental setup

The learning set, generated by extracting 85% of the patients in the full dataset, is used to run experiments
to search for the best model (see Fig. 8a for experimental framework). The holdout set, generated from
the remaining 15% of the patients, is kept hidden until the final (best) model is selected and ready to be
evaluated. The learning set and holdout set are compared thoroughly by performing: a comparison between
the Kaplan-Meier curves for each task (see Supplementary Fig. 2b, 5b, 8b, 11b & 14b), a comparison between
the distribution of clinical features and event indicators (see Supplementary Fig. 17 & 18), and statistical
analyses of features and outcomes (see Supplementary Table 9 & 10).

The models are compared using stratified 5-fold cross-validation on the learning set, divided into training
set (64%), validation set (16%), and test set (20%). These three sets are respectively used to optimize
the models’ parameters, select the set of parameters that minimizes overfitting, and evaluate the trained
models’ performance. Furthermore, the application of 5-fold cross-validation enhances the robustness of
model evaluation by mitigating dependence on the training-validation-test split. For an unbiased comparison
of models [70], the models’ hyperparameters are automatically optimized on the training set (see Fig. 8b
for the hyperparameter optimization process, Supplementary Table 11–17 for hyperparameter search spaces,
and Supplementary Table 18–20 for selected hyperparameter values). The model selection is based on the
models’ interpretability and performance, measured using the empirical mean and standard deviation of the
scores on the 5 test sets. The selected model is finally trained with the learning set and evaluated on the
holdout set. Note that the models are trained on multiple NVIDIA A100 Tensor Core GPUs (80 GB).
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Fig. 8 Experimental setup [71]. (a) Overview of the model selection process. 1) Stratified division of the dataset
into a learning set and a holdout set. See Supplementary Fig. 17 & 18 and Supplementary Table 9 & 10 for visual
and statistical comparison between the two generated sets. Stratification is based on LNI class labels and BCR-FS
event indicators. 2) Evaluation of the models on 5 test sets using stratified 5-fold cross-validation. 3) Comparison
and selection of the models based on performance and interpretability. The performance is measured using the mean
and standard deviation of the scores on the 5 test sets. 4) Final evaluation of the selected model on the holdout set.
(b) Detailed diagram of the Hyperparameter optimization box shown in section 2 of panel a. Hyperparameter opti-
mization is performed automatically using the quasi-Monte Carlo (MC) sampler from the BoTorch [72] Python library,
which is used under the framework of the Optuna [73] Python library. A total of 25 sets of hyperparameter values are
sequentially sampled using the quasi-MC sampler and evaluated on the same 5 internal test sets. The performance
is measured using the mean of the scores on the 5 internal test sets. The first 5 sets of hyperparameter values are
randomly generated, while the subsequent ones are determined based on the performance score of the preceding sets.
The set of hyperparameter values associated to the highest AUC (for classification tasks) or CI (for survival tasks)
is selected. See Supplementary Table 11–17 for hyperparameter search spaces and Supplementary Table 18–20 for
selected hyperparameter values.

4.4 Tasks implementation

The mathematical notation in this section adheres to that presented in the Deep Learning book [74], with the
exception that we employ 2D matrix notation for 3D tensors as well. Following the book’s notation, the corre-
spondence between italicized symbols (e.g. x,x,X, . . .) and their non-italicized counterparts (e.g. x,x,X, . . .)
is that a given italicized variable x represents an observation of the non-italicized random variable x, i.e.,
x ∈ supp(x) where supp(x) denotes the set of values that the random variable x can take. Note that itali-
cized subscripts (e.g. xi, xj , xk, . . .) serve as indices, while non-italicized subscripts (e.g. xa, xb, xc, . . .) are
used to supplement the definition of the given mathematical object, particularly to specify the context or
concept to which that object refers.

4.4.1 Binary classification

The binary classification data of a patient i corresponds to the pair (x(i), y
(i)
c ) where x(i) is a vector con-

taining the values of the patient’s risk factors (features), and y
(i)
c ∈ {0, 1} is the observed class. The binary

classification task consists in modeling the probability distribution p(yc = 1 | x) as a neural network fc,
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i.e., fc(x) ≈ p(yc = 1 | x = x). The loss function used to train this neural network is the weighted binary
cross-entropy (BCE) [75]

LBCE = − 1

nb

nb∑
i

(
n0

n1

)y(i)
c {

y(i)c ln
[
fc

(
x(i)

)]
+
(
1− y(i)c

)
ln
[
1− fc

(
x(i)

)]}
,

where nb denotes the number of patients contained in the batch on which the loss is calculated, and n0 and
n1 are respectively the number of patients with yc = 0 and yc = 1 in the set used to train the model. This
scaling factor helps to provide more balanced predictions. The performance metrics used for the classification
task are the area under the ROC curve (AUC) [52] and the binary balanced accuracy (BA) [76].

4.4.2 Survival analysis

The time-to-event data (or survival data) of a patient i corresponds to the triplet (x(i), ϵ(i), y
(i)
s ) where x(i) is

a vector containing the values of the patient’s risk factors (features), ϵ(i) is the event indicator (or censoring
indicator) so that

ϵ(i) =

{
1 if patient i experiences the event;

0 otherwise,

and y
(i)
s is the observed time, which represents either the survival time t

(i)
s or the censoring time t

(i)
c , i.e.,

y(i)s =

{
t
(i)
s if ϵ(i) = 1;

t
(i)
c otherwise

(
ϵ(i) = 0

)
.

The survival analysis task consists in modeling the survival function s(t,x) = p(ts ≥ t | x = x), where t is a
duration of time (in months). The most common approach is to use the Cox proportional hazards model [77],
which provides a semi-parametric specification of the hazard rate

h(t,x) = hb(t) exp[g(x)],

where hb(t) is a non-parametric baseline hazard and g(x) is the risk function. The survival function can then
be retrieved by

s(t,x) = exp[−H(t,x)],

where H(t,x) is the cumulative hazard defined as

H(t,x) =

∫ t

0

h(u,x)du =

∫
0

t

hb(u) exp[g(x)]du = Hb(t) exp[g(x)],

where Hb(t) is the cumulative baseline hazard. To incorporate deep learning methods into survival analysis,
the risk function g is modeled with a neural network fs as fs(x) ≈ g(x). Indeed, the properties of the survival
function, namely s(t = 0,x) = 1, s(t → ∞,x) = 0, and s(t,x) monotonically decreasing, make it difficult to
model directly as a neural network, so the risk function g is modeled instead [78]. The loss function used to
train the neural network fs is the negative partial log-likelihood (NPLL)

LNPLL =
1

ne

nb∑
i

ϵ(i) ln

 ∑
j∈R(i)

exp
[
fs

(
x(j)

)
− fs

(
x(i)

)],

where nb denotes the number of patients contained in the batch on which the loss is calculated, ne is the
number of events (i.e. patients with ϵ = 1) in the batch, and R(i) denotes the set of all individuals in the
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batch who are at risk at time t
(i)
s (i.e. not censored and have not experienced the event before time t

(i)
s ) [79].

The cumulative baseline hazard can be estimated by the Breslow estimator [80]

Ĥb(t) =
∑

i:t
(i)
s ≤t

ϵ(i)∑
j∈R(i) exp

[
fs
(
x(j)

)] ,
using the implementation from the scikit-survival [81] Python library. Note that Breslow’s method is
used for handling tied event times. Three performance metrics are used to evaluate survival tasks: the
concordance index (CI) [82], the CI based on inverse probability of censoring weights (CICW) [83], and the
cumulative/dynamic AUC (CDA) [84]. CI is defined as the proportion of all pairs of individuals for which
predictions and outcomes agree; CICW is an alternative to the CI estimator that is unbiased with respect
to the distribution of censoring times in the test data; and CDA quantifies a model’s ability to distinguish
subjects who fail before a given time from subjects who fail after that time [81].

4.4.3 Segmentation

The segmentation data of a patient i corresponds to the pair (X(i),Y (i)) where X(i) is a 3D image (a

tensor) and Y (i) is a 3D ground truth segmentation map where the voxel (j, k, ℓ) is denoted by Y
(i)
j,k,ℓ ∈ {0, 1}

with extraprostatic and intraprostatic voxels taking values of 0 and 1, respectively. The segmentation task

consists in modeling the probability distribution p(Yj,k,ℓ = 1 | X) of all voxels. The prediction Ŷ
(i)
j,k,ℓ for the

voxel (j, k, ℓ) of a patient i is given by

Ŷ
(i)
j,k,ℓ =

{
0 if p(Yj,k,ℓ | X = X(i)) ≤ 0.5,

1 otherwise
(
i.e. p(Yj,k,ℓ | X = X(i)) > 0.5

)
.

The probability distribution p is modeled as a neural network fseg with fseg(X) ≈ p(Yj,k,ℓ = 1 | X = X),
and the loss function used to train the neural network fseg is the Dice loss

LDICE = − 1

nb

nb∑
i

2

∑
j,k,ℓ Ŷ

(i)
j,k,ℓY

(i)
j,k,ℓ∑

j,k,ℓ

(
Ŷ

(i)
j,k,ℓ + Y

(i)
j,k,ℓ

) ,
where nb denotes the number of patients contained in the batch on which the loss is calculated. The per-
formance metric used for the segmentation task is the Dice similarity coefficient (DSC) [85] implemented by
the MONAI [67] Python library.

4.5 Risk groups

For the classification task, the risk group gc ∈ {0, 1} of a patient i is determined based on the predicted
positive class probability fc

(
x(i)

)
as follows

gc =

{
0 if fc

(
x(i)

)
≤ 0.5,

1 otherwise
(
i.e. fc

(
x(i)

)
> 0.5

)
,

where low- and high-risk correspond to gc = 0 and gc = 1, respectively. For survival tasks, the risk group gs is
determined based on the predicted risk fs

(
x(i)

)
, with the risk threshold computed on the learning set using

percentile thresholds [86]. This process is performed individually for each survival task. The lower percentile
threshold is

plower = max

(
1

100
round

(
100

n0

n0 + n1

)
− 0.2, 0.05

)
,

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24308396doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24308396
http://creativecommons.org/licenses/by-nc-nd/4.0/


where n0 an n1 are the number of patients in the learning set with ϵ(i) = 0 and ϵ(i) = 1, respectively; the
upper threshold is

pupper = min

(
1

100
round

(
100

n0

n0 + n1

)
+ 0.2, 0.95

)
;

and the following percentile thresholds are therefore tested

{plower, plower + 0.01, . . . , pupper − 0.01, pupper}.

The selected risk threshold r is the one associated with the percentile threshold p that maximized the
significance of the separation in the learning set by the log-rank test [50, 51], i.e., the threshold that minimizes
the p-value between the two risk groups. The risk group is therefore defined as

gs =

{
0 if fs

(
x(i)

)
≤ r,

1 otherwise
(
i.e. fs

(
x(i)

)
> r

)
.

4.6 Handcrafted radiomic features

The U-Net, trained with a physician’s manual contours, automatically generates a segmentation map of the
prostate from a CT image (see Fig. 9a for the visualization of the feature maps in the different layers of
the U-Net). Using voxels from both CT and PET images within the segmented region, 200 radiomic fea-
tures are extracted (see Fig. 3a for HCR extraction pipeline) with the pyradiomics [47] Python library (see
Supplementary Table 21 & 22 for the extraction parameters on the CT and PET images, respectively). The
extracted features are compliant with the Image Biomarker Standardization Initiative (IBSI) [87] except
for the computed kurtosis of the distribution of voxels [47]. The Gini importance [46] of each feature is
then determined using a random forest classifier with 10,000 trees implemented with the scikit-learn [48]
Python library and trained to predict a single task using the 200 extracted radiomic features. The 6 fea-
tures with the highest Gini importance are selected (see Supplementary Fig. 19 for selected features), six
corresponding to the number of clinical features.

4.7 Models

4.7.1 Baseline models

The two baseline models are the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram [10] and the
Cancer of the Prostate Risk Assessment (CAPRA) score [11]. Both of these nomograms rely solely on CD
and do not incorporate any imaging information. The mathematical model used by the MSKCC nomogram
is a survival logistic regression while the CAPRA score is a straightforward 0 to 10 value, i.e., a linear map
between the clinical features and a single number. Both models are implemented as web-based applications,
and so the prostate-nomograms2 Python library was developed and used to speed up the prediction process
for a very large number of patients. Indeed, the statistical models of the nomograms are reproduced in Python
which allows one to calculate in a few seconds the probabilities and the scores of thousands of patients. The
coefficients of the models are read from the websites and then used for the calculations.

4.7.2 Deep neural networks

The neural networks are implemented and trained with the PyTorch [88], MONAI [67], and
Bayesian-Torch [89] Python libraries. The architecture of the feed-forward neural networks, used to map
a vector of features to a clinical outcome, is a multi-layer perceptron (MLP) [90]. To map a 3D image to
a 3D segmentation map of the prostate, a 3D U-Net [91] with residual units [92] is employed (see Fig. 9a).
The encoder and decoder architectures both use strided convolution (see Fig. 9c & 9d). Lastly, to simul-
taneously map a 3D image to a clinical outcome and a 3D segmentation map, the 3D U-NEXtractor [49]
with residual units [92] is used (see Fig. 9b). This method builds on multi-task learning [33], which refers to
sharing representations between related tasks to enable a model to generalize better. Indeed, this approach

2https://github.com/MedPhysUL/prostate-nomograms
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aims to use segmentation to guide the network in capturing clinically significant features in the prostatic
region. The multi-task architecture consists of a 3D U-Net with an additional radiomic branch (see green-
colored branch in Fig. 9b). This radiomic branch is connected to several layers of the encoding path to gather
information at several levels of complexity. The connection consists of a global averaging layer to aggregate
spatial information into a vector of 1984 DLRs, which is then reduced to 6 DLRs by a trainable MLP. For
the hyperparameters of the selected models, see Supplementary Table 11 & 18–20.
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Fig. 9 Architecture of the convolutional neural networks. (a) 3D U-Net [91] with residual units [92]. Size refers
to channels × spatial dimensions. A grid pattern in the feature maps of the decoder appears due to padding in
transposed convolution operations. See Supplementary Table 11 & 20 for hyperparameters. (b) Architecture of the 3D
U-NEXtractor [49] with residual units [92]. The model is trained to segment the prostate and extract deep radiomic
features simultaneously. The segmentation task guides the extraction of prognostically significant features within the
prostate region. See Supplementary Table 11 & 19 for hyperparameters. (c) Encoder block. This block represents a
function that reduces the size of each dimension of the input tensor by a factor of 2 using a strided convolution.
(d) Decoder block. This block increases the size of each dimension of the input tensor by a factor of 2 using a strided
transposed convolution.
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4.7.3 Bayesian neural networks

Bayesian neural networks (BNN) expand upon traditional neural networks by incorporating principles from
Bayesian probability theory into the neural network framework. Let θ be the vector of model parameters,
Θ the space of said parameters and X the learning set. In the context of traditional neural networks, model
parameters θ are typically treated as fixed yet unknown values, and training aims to recover their true under-
lying values. However, in the context of BNNs, these parameters are most often viewed as random variables
characterized by unknown probability distributions. This approach better accounts for model uncertainty.
Therefore, by recovering the posterior distribution over the model parameters p(θ | X), one could subse-
quently derive the posterior predictive distribution over the model’s prediction ŷ given the input features x(i)

of a new patient i, i.e., (x(i),y(i)) /∈ X:

p(ŷ | x = x(i),X) =
∫
Θ

p(ŷ | x = x(i),θ)p(θ | X)dθ,

thus allowing for probabilistic prediction and knowledge of the uncertainty of a given prediction of the
model [38]. But for the complex models used in deep learning, the sheer size of the parameter space Θ would
render this integral intractable. Besides, the posterior distribution over the weights p(θ | X) typically cannot
be analytically recovered [93]. In practice, a single parameter value is used upon inference.

The Bayes-by-backpropagation method [94] proposes a practical implementation of variational inference
to sidestep this problem and approximate the underlying probabilistic process of model prediction. The
idea of this method is to assign to each weight an arbitrary variational approximation q(θ) of its posterior
distribution p(θ | X). Upon training, the distributions q(θ) are learned and an exact parameter value is
sampled from these learned distribution upon inference. A simple known form for q(θ), i.e., a Gaussian
distribution N [37], is chosen to serve as a tractable approximation of the true posterior distribution p(θ | X).
That is, q(θ) = N (θ;µ, σ), where µ is the mean of the distribution and σ is the standard deviation. As
a result, learning the distribution q(θ) of each weight θ is equivalent to learning its corresponding pair of
parameters (µ, σ), which effectively doubles the number of parameters to learn. In order not to have gradient
descent go through internal random nodes, the reparametrization trick [95] is applied so that randomness
is introduced as an external input of the latent space of θ instead. Because the parameters θ are drawn
from q(θ), every forward pass of the model is different, even if the input x is constant. Taking statistics
such as the mean or the variance of the predictions collected from the multiple forward passes gives a better
insight into the underlying probabilistic process. This ensemble of predictions can be used to quantify the
uncertainty of the model for a given prediction in situations where uncertainty is critical, such as in most
medical settings.

4.7.4 Sequential Network

The model that groups all single-task models together in a multi-task framework is the SN (or its Bayesian
counterpart BSN) (see Fig. 3). Each single-task model has 3 different inputs: clinical data (mandatory),
imaging data (task-specific), and predictions from previous single-task models (task-specific), giving rise to
the term sequential. The sequence of tasks was determined based on the natural progression of PCa (see
Fig. 1b). This approach aims to use the prediction of short-term outcomes to improve the prediction of long-
term outcomes, as they are correlated (see Supplementary Fig. 1). The architecture of the SN naturally gives
rise to dynamic predictions, i.e., predictions that are refined over time according to the clinical results of
previous tasks. The formal definition of dynamic predictions follows. Let {k1, . . . , kn} be the set of tasks in
the SN. For each of these tasks ki, the single-task neural network (contained in the SN) that performs the
task ki is denoted by fi, the output value of fi by oi, the input data features by xi, and the set of previous
connected single-task models by Si = {f1, . . . , fm} ⊆ {f1, . . . , fi−1}. For a prognosis made at time tp, the
vector function ai(tp) that defines the additional input to fi that comes from the output of the models in
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Si is ai(tp) = (a1(tp), . . . , am(tp))
⊤
, where aj(tp) is defined as

aj(tp) =


−∞ if yj = 0 ∧ tp > 0;

∞ if yj = 1 ∧ tp > 0;

qj(xj ,aj(tp)) if tp = 0,

for binary classification tasks, where yj ∈ {0, 1} is the observed class for the task kj , and qj corresponds to
the neural network fj without the activation function in the output layer, i.e., fj = σ ◦ qj where σ is the
sigmoid function. For survival tasks, aj(tp) is defined as

aj(tp) =

{
∞ if yj < tp ∧ ϵj = 1;

fj(xj ,aj(tp)) otherwise,

where ϵj is the event indicator and yj is the observed time in this case. For reasons of computational stability,
infinities are replaced by 5 and 10 in the code for classification and survival tasks, respectively. The dynamic
prediction of the outcome oi made at time tp is then

oi = fi(xi,ai(tp)).

In a clinical context, dynamic predictions are likely to be used following the occurrence of an event to obtain
new and, ideally, better predictions of subsequent events.

4.8 Interpretability

As confusion is easily created when discussing interpretability and explainability, it is important to define both
prior to their discussion. In this case, interpretability refers to the analysis and understanding of a model’s
decision-making process and explainability refers to the presentation of such a process in a manner that allows
for a clear understanding of the link between input and output data [96]. As such, SHAP and SurvSHAP(t)
values are meant to improve explainability. However, the portrayal of these values correlated with the input
data and compared with clinical observations can improve interpretability. In the following, SHAP [56] values
are discussed as the main source of interpretability and explainability. However, SurvSHAP(t) [57] values
serve a similar purpose and are not discussed as thoroughly to reduce redundancy.

Originating from the Shapley [97] values used in game theory, SHAP values allow for intuitive analysis of
the importance attributed to each input features xi by a neural network f to predict the output f(x1, . . . , xd).
Whereas Shapley values are determined by removing an input feature to determine its contribution to the
output, SHAP values replace the said input feature by sampling its value from the probability distribution
of that feature on the learning set X, thus achieving a similar analysis to the Shapley method over many
samples. For a given patient, the sum of all its SHAP values added to the expected value of the prediction on
the whole dataset gives the predicted value for that patient, i.e. given that the SHAP value of the feature xi

is ϕi, the prediction is given by

f(x1, . . . , xd) = E[f (X)] +
d∑

i=1

ϕi.

In order to compute the desired SHAP values, the CAPTUM [98] Python library is employed. Once SHAP
values are computed, the SHAP [56] Python library is utilized to create appropriate and readable graphs. It is
through this step that the model becomes more interpretable, by comparing and analyzing importance values
in relation to input data. SurvSHAP(t) values are computed using the SurvSHAP(t) [57] Python library and
the related graphs are created using in-house code. The graphs created from either SHAP or the in-house
code serve one of three purposes:

• Patient-wise explanation. Graphing a patient’s SHAP values (e.g. through waterfall plots such as
Fig. 6e) allows for a straightforward explanation of the model’s prediction in a specific case. This is the
most efficient method to comprehend how a specific output is obtained and can serve as a foothold to
begin the analysis of a prediction.
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• Dataset-wise interpretation. Graphing the SHAP values associated with the dataset (e.g. through
beeswarm plots such as Fig. 5a) can show tendencies within the importance values. These tendencies
can be compared with clinical observations to verify the model’s quality or analyze its decision-making
process.

• Sequence-specific analysis. Since multiple neural networks were used in succession to compute multi-
ple tasks, it is possible to compute SHAP values at different points within the sequential neural network.
The succession of SHAP values makes it possible to interpret the sequential architecture and see if
each network is affected by the preceding ones. For example, the presence of HCR in a task that does
not receive it as an input indicates that the permeation of input data has an effect on the network’s
decisions, albeit one whose quality is difficult to determine.

5 Data availability

Due to participant confidentiality and privacy concerns, data are available upon reasonable written request
to louis.archambault@phy.ulaval.ca.

6 Code availability

All the codes and guidance can be found on our organization’s GitHub at https://github.com/MedPhysUL.
More specifically, the main code is available at https://github.com/MedPhysUL/ProstateCancerPrognosisAI,
DELIA at https://github.com/MedPhysUL/delia, and the implementation of the baseline nomograms at
https://github.com/MedPhysUL/prostate-nomograms.
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