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ABSTRACT 16 

Background: The immune response against tumors relies on distinguishing between self and non-17 

self, the basis of cancer immunotherapy. Neoantigens from somatic mutations are central to many 18 

immunotherapeutic strategies and understanding their landscape in breast cancer is crucial for 19 

targeted interventions. We aimed to profile neoantigens in Kenyan breast cancer patients using 20 

genomic DNA and total RNA from paired tumor and adjacent non-cancerous tissue samples of 23 21 

patients. 22 

Methods: We sequenced the genome-wide exome (WES) and RNA, from which somatic mutations 23 

were identified and their expression quantified, respectively. Neoantigen prediction focused on 24 

human leukocyte antigens (HLA) crucial to cancer, HLA type I. HLA alleles were predicted from 25 

WES data covering the adjacent non-cancerous tissue samples, identifying four alleles that were 26 

present in at least 50% of the patients. Neoantigens were deemed potentially immunogenic if their 27 

predicted median IC50 binding scores were ≤500nM and were expressed [transcripts per million 28 

(TPM) >1] in tumor samples. 29 

Results: An average of 1465 neoantigens covering 10260 genes had ≤500nM median IC50 binding 30 

score and >1 TPM in the 23 patients and their presence significantly correlated with the somatic 31 

mutations (R2 =0.570, P=0.001). Assessing 58 genes reported in the catalog of somatic mutations in 32 

cancer (COSMIC, v99) to be commonly mutated in breast cancer, 44 (76%) produced >2 neoantigens 33 

among the 23 patients, with a mean of 10.5 ranging from 2 to 93. For the 44 genes, a total of 477 34 

putative neoantigens were identified, predominantly derived from missense mutations (88%), indels 35 

(6%), and frameshift mutations (6%). Notably, 78% of the putative breast cancer neoantigens were 36 

patient-specific. HLA-C*06:01 allele was associated with the majority of neoantigens (194), 37 

followed by HLA-A*30:01 (131), HLA-A*02:01 (103), and HLA-B*58:01 (49). Among the genes of 38 
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interest that produced putative neoantigens were MUC17, TTN, MUC16, AKAP9, NEB, RP1L1, 39 

CDH23, PCDHB10, BRCA2, TP53, TG, and RB1. 40 

Conclusions: The unique neoantigen profiles in our patient group highlight the potential of 41 

immunotherapy in personalized breast cancer treatment as well as potential biomarkers for prognosis. 42 

The unique mutations producing these neoantigens, compared to other populations, provide an 43 

opportunity for validation in a much larger sample cohort.  44 
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INTRODUCTION 45 

Breast cancer is among the most frequent causes of cancer-related mortality in women. Disease 46 

heterogeneity and limited immunogenicity contribute to the lethality of breast cancer (Benvenuto et al., 47 

2019). Immune evasion, an important hallmark of cancer, adds to the complexity of cancer burden 48 

through induction of immunosuppression (Bates et al., 2018). Immune checkpoint blockade (CKB) 49 

therapy has been developed to target and block immune regulatory molecules (PD-1/PD-L1 and 50 

CTLA-4) and in the process reactivate T cell immunity (Touchaei &Vahidi, 2024). This approach has 51 

been reported to improve clinical responses and survival, especially in tumors with high mutational 52 

burdens, such as lung cancer and melanoma (Shiravand et al., 2022). However, CKB therapy is not 53 

universally successful among all patients and shows increased efficacy with higher mutational burden 54 

tumors (Brahmer et al., 2015). Another immunotherapy approach that has been tested in clinical studies 55 

is the targeting of tumor-associated antigens (TAAs) that are expressed in tumors at abnormally high 56 

levels and rarely detectable in normal tissues (Valilou & Rezaei, 2019). One of the limitations of this 57 

therapy approach is that many TAAs represent normal self-antigens and thus can be tolerated by T-58 

cells, resulting in poor immune response (Benvenuto et al., 2019). This poses challenges for 59 

applicability in breast cancer because it generally has a lower mutational burden. Thus, CKB and TAAs 60 

immunotherapy have had limited success in breast cancer patients (Narang et al., 2019).  61 

Tumor neoantigens are tumor-specific antigens derived from somatic mutations in expressed 62 

genes and are presentable to the major histocompatibility complex (MHC) by both class I human 63 

leukocyte antigen (HLA-I) molecules present on surface of cancer cell, as well as class II HLA 64 

molecules present on professional antigen-presenting cells (Blass & Ott, 2021). This elicits anti-tumor 65 

immune responses that have the potential of eliminating the tumor cells with minimal off-target effects 66 

(Pan et al., 2018). Neoantigens are encoded in various mutational types, including single nucleotide 67 

substitution, insertion and deletions (INDELs), splice sites, stop codons gains and silent change, which 68 
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can result in translational frameshifts or novel open reading frames (Benvenuto et al., 2019). As such, 69 

these neoantigens offer an advantage over TAAs in that they are only expressed by cancer cells and 70 

not by normal cells, which enables specific recognition by the immune system (Benvenuto et al., 2019). 71 

Although some neoantigens are shared among patients, most of them are patient-specific and are not 72 

subject to immune tolerance mechanisms (Yarchoan et al., 2017). The specificity of neoantigens could 73 

provide an opportunity for future personalized therapy in a cancer with a low tumor mutational burden 74 

and a high disease heterogeneity, such as breast cancer. Moreover, neoantigens can potentially be used 75 

as biomarkers in cancer immunotherapy to assess or predict the response of a patient to treatment 76 

(Benvenuto et al., 2019).  77 

Despite advancements in next generation sequencing and high-performance computing that has 78 

resulted in improved cancer immunotherapy research and neoantigen-based treatments, there remains 79 

a scarcity of information regarding neoantigens in specific populations from sub-Saharan African 80 

countries such as Kenya. This lack of data poses a significant challenge in tailoring immunotherapeutic 81 

strategies for breast cancer patients in such regions that have a high cancer burden, especially when 82 

compounded by germline ancestral factors and a distinct mutational spectrum that may influence tumor 83 

biology and immune response. Thus, it is critical to profile the neoantigen burden in this population to 84 

contribute to the global collection of breast cancer immunogenic antigens for future drug development. 85 

To this end, we sought to profile neoantigens in Kenyan women diagnosed with breast cancer in silico 86 

through analysis of the whole exome and RNA sequencing data from 23 patients. We characterized the 87 

mutation burden for each patient using WES, identified gene expression patterns in tumor tissue, and 88 

predicted the putative neoantigens incorporating these datasets.  89 

  90 
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MATERIALS AND METHODS 91 

Patients and samples  92 

Tumor and adjacent normal tissue pairs were obtained from 23 breast cancer patients at the Aga 93 

Khan Hospital, Nairobi, Kenya and AIC Kijabe Hospital, Kijabe, Kenya between 2019 and 2021. 94 

Samples were collected through surgical excision, after which tissues were snap frozen in liquid 95 

nitrogen and temporarily stored at Aga Khan Hospital. Frozen tissue samples were shipped to the 96 

National Cancer Institute, Bethesda, MD, USA, for sequencing. Prior to tissue collection, all patients 97 

provided written informed consent and the study was approved by Research and Ethics Committees at 98 

Aga Khan University Hospital, Nairobi (Ref: 2018/REC-80) and AIC Kijabe Hospital (KH IERC-99 

02718/2019). 100 

Whole-exome sequencing (WES) and RNA-sequencing 101 

Genomic DNA was extracted from the samples using the DNeasy Blood and Tissue Kit (Qiagen, 102 

Hilden, Germany), following manufacturer’s instructions. Total RNA was extracted from the frozen 103 

tissues using TRIzol reagent (Invitrogen). WES was performed by the company, Psomagen 104 

(https://www.psomagen.com/). This service provider is Clinical Laboratory Improvement 105 

Amendments-certified and College of American Pathologists (CAP)-accredited, achieving a sequence 106 

depth of 250x for tumor tissues and 150x for adjacent non-cancerous tissues, as previously described 107 

by us (Tang et al., 2023). Total RNA from the 23 sample pairs was processed by a NCI Leidos core 108 

facility, where library preparation was performed using the TruSeq Poly A kit (Illumina, San Diego, 109 

USA ). Samples were sequenced on a Novaseq system with 150 bp paired-end reads and a depth of 30 110 

million reads.  111 

Reads mapping and variant calling 112 

For WES, raw reads were quality checked using FASTQC (Andrews, 2010) and results 113 

summarized using MultiQC (Ewels et al., 2016). The reads were trimmed for low quality reads and 114 
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adapter sequences using Trimmomatic (Bolger et al., 2014) and quality-checked again using FASTQC 115 

and MultiQC. All samples passed the QC test after trimming and the reads were aligned using BWA-116 

MEM (Li, 2013) to the hg38 human reference genome, where >95% of the reads aligned properly to 117 

the genome. The aligned reads were deduplicated and read groups added to the deduplicated bam files 118 

using Picard. This was followed by base quality recalibration in GATK (McKenna et al., 2010). 119 

Somatic variant calling was performed using MuTect2 (McKenna et al., 2010) in paired tumor-normal 120 

mode utilizing the panel of normal option that was derived from normal reads. Variants were 121 

normalized using a variant tool set (vt; Tan et al., 2015), filtered using GATK and 122 

functional/consequence-annotated using a variant effect predictor (VEP; McLaren et al., 2016). 123 

Annotated variants were converted to MAF files using vcf2maf (Kandoth et al., 2020) and concatenated 124 

into a single file. The MAF files were imported into R package maftools (Mayakonda et al., 2018) for 125 

further processing. 126 

For RNA-seq, a quality check was performed using FASTQC and MultiQC after which the 127 

reads were trimmed and quality checked again. All samples passed the quality check and the reads 128 

were pseudo-aligned to the hg38 reference genome using Kallisto aligner (Bray et al., 2016) with 129 

default settings to obtain count matrix. Alignment statistics showed that over >50% reads mapped 130 

uniquely to the genome. The raw counts were normalized into estimated Transcripts Per Million (TPM), 131 

and scaled using the average transcript length over samples and the library size by tximport (Soneson 132 

et al., 2016).  133 

Variant expression annotation 134 

VCF files containing the variants were annotated for expression using the vcf-expression-135 

annotator (https://github.com/griffithlab/VAtools) with default setting except for choosing the use of 136 

gene names instead of transcripts and thereby ignoring the Ensembl id version. The tool takes the 137 

output of Kallisto and adds the data contained in the file to the VEP annotated VCF’s INFO column. 138 
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Each of the variant annotated gets its expression value (TPM) added to the annotation information and 139 

this is used to determine the level of variant expression during neoantigen filtering. 140 

Neoantigen prediction 141 

Human leukocyte antigen (HLA) class I alleles (HLA a, b and c) were predicted from each 142 

patient’s normal sample exome-seq data using HLA-HD v.1.2.1 (Kawaguchi et al., 2017). Here, the 143 

putative HLA reads are aligned to an imputed library of full-length HLA alleles. Neoantigens were 144 

then predicted using pVACseq (Hundal et al, 2016) with MHCflurry, MHCnuggetsI, SMM, and 145 

SMMPMBEC algorithms and keeping the default parameters, except for turning off the VAF and 146 

coverage filters. Here, the neoepitopes that could bind to the patient-specific HLA alleles were 147 

predicted from the Immune Epitope Database (IEDB; Vita et al., 2019). This involved matching patient 148 

HLA type to the existing IEDB list keeping all amino acids with lengths for 9, 10 and 11-mers. 149 

Predicted epitopes were filtered to retain only those with high affinity (IC50 ≤ 500nM) and were 150 

expressed (transcripts per million, TPM>1) in tumor samples. The bioinformatic analysis workflow is 151 

outlined in Figure 1.  152 

 Sample summary statistics and the pairwise tests for differences among mutations and neoan-153 

tigens abundance among the BC subtypes using Wilcoxon test and visualization of the results were 154 

performed in R software (R Core Team, 2023).  155 

RESULTS 156 

Patients and sample characteristics 157 

The demographic and clinical characteristics of the 23 breast cancer patients are summarized 158 

in supplementary Table S1. We grouped the tumors into 3 subtypes based on expression of either the 159 

hormone receptors (HR) or human epidermal growth factor receptor 2 (HER2) (Narang et al., 2019): 160 

those that were HER2+ regardless of the HR status, those that were negative for all hormone receptors 161 
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(triple negative breast cancer; TNBC) and those that were HR+ and HER2-. Majority of the samples 162 

were HR+/HER2- constituting 52.2%, followed by HER2+ at 34.8% and TNBC at 13.0%. Most of the 163 

patients had invasive carcinoma (invasive ductal carcinoma, 78.26% and invasive carcinoma; 4.35%). 164 

For tumor grade, 65.22% of the patients had grade 3 tumors (65.22%), while the rest had grade 2 tumors 165 

(34.78%). Clinically, 39.13% of the patients were in stage II, 30.44% in stage III, and 8.7% in stage I 166 

(Table S1).  167 

Mutation profiles for the 23 patients 168 

Across all genes, the average number of detected mutations in the 23 patients was 2809 169 

mutations. Considering the different subtypes, TNBC had the highest average number of mutations at 170 

3202, followed by HR+/HER2- at 2757, and HER2+ at 2740 mutations (Figure S1). From the catalog 171 

of somatic mutations in cancer (COSMIC, v99), we identified 73 genes reported to be mutated in breast 172 

cancer and among those, 62 (84.9%) had at least one mutation in our samples. The mutation frequency 173 

among the 62 genes ranged from 1 to 55 mutations per individual. The majority of the mutations were 174 

of the missense type, most of which were substitutions of C>T (Figure 2). The top 10 mutated genes 175 

among the 62 are shown in Figure 3. Four genes (MUC16, MUC17, TTN, RP1L1) were altered in more 176 

than 95% of the patients (Figure 3). Moreover, mutations in genes TP53-ERBB3, PTEN-CFAP46 were 177 

found to significantly co-occur, while BRCA1-MUC17 mutations were significantly mutually exclusive 178 

(P<0.05) (Figure 4). Furthermore, the majority of the single nucleotide mutations were substitution of 179 

C to T, whereas T to A substitutions were most uncommon. Transitions occurred more frequently than 180 

transversion in these substitutions (Figure 5).  181 

Neoantigen burden 182 

In an analysis that included all the genes (10260), an average of 1465 neoantigens had a 183 

≤500nM median IC50 binding score and >1 TPM expression level in any of the 23 patients and their 184 

presence significantly correlated with the somatic mutations (R2=0.570, P=0.001) (Figure 6). Out of 185 
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the 62 COSMIC genes that were mutated in the tumor tissue, 58 genes produced at least one neoantigen. 186 

After filtering for genes that produced at least two neoantigens, 44 genes had a mean of 10.5 187 

neoantigens ranging from 2 to 93. A total of 477 putative neoantigens were identified in these 44 genes 188 

across the 23 patients (Figure 7) predominantly derived from missense mutations (88%), indels (6%) 189 

and frameshift mutations (6%) (Figure 8). Most of the neoantigens were produced in the TNBC subtype 190 

with an average of 25 neoantigens, followed by HR+/HER2- at 20 neoantigens and HER2+ with an 191 

average of 19 neoantigens (Figure S1). Notably, 78% of the putative breast cancer neoantigens were 192 

patient-specific (Table S2). HLA-C*06:01 allele was associated with majority of neoantigens (194), 193 

followed by HLA-A*30:01 (131), HLA-A*02:01 (103), and HLA-B*58:01 (49). Among the genes of 194 

interest that produced putative neoantigens include MUC17, TTN, MUC16, AKAP9, NEB, RP1L1, 195 

CDH23, PCDHB10, BRCA2, TP53, TG, RB1 among others (Figure 7, Table S3). 196 

  197 
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DISCUSSION 198 

We analyzed the mutational burden and predicted the neoantigen repertoire in 23 Kenyan breast 199 

cancer patients using WES and RNA sequencing data. Among the different breast cancer subtypes, we 200 

found that the TNBC molecular subtype had the highest mutational and neoantigen burden although 201 

there was no significant difference among the subtypes (Figure S1, Table S4). This is consistent with 202 

other studies (Narang et a., 2019). TNBC origin is not well understood although it is reported to be 203 

heterogeneous in nature relying on different signaling pathways such as JAK/STAT, 204 

PI3K/AKT/mTOR or NOTCH, cell cycle regulators (TP53) and genome integrity genes (BRCA1/2) 205 

(Benvenuto et al., 2019). This makes it a disease that is difficult to manage because we do not have a 206 

clear understanding of the molecular mechanisms driving it. Yet, the high mutational and neoantigens 207 

burden combined with the patient specificity may provide an untapped opportunity to design and 208 

optimize personalized immunotherapy for this subtype.  209 

In contrast to most populations where TP53, PIK3CA and GATA3 are the most mutated genes 210 

(Pan et al., 2020; Pipek et al., 2023; Tang et al., 2023), in our study population, three genes MUC16, 211 

MUC17 and TTN were highly mutated in over 50% of the samples and produced the highest number 212 

of neoantigens. MUC16 has been reported to take part in breast cancer progression and metastasis when 213 

overexpressed due to its influence on cell cycle and survival through the JAK2/STAT3 pathway 214 

(Lakshmanan et al., 2012). It has been reported as one of the highly mutated genes in breast cancer 215 

(Wang & Guda, 2016). MUC16 has also been described as a marker for disease progression, recurrence, 216 

and chemotherapy response (Felder et al., 2014). A high mutation frequency for MUC17 and TTN have 217 

recently been reported as an unexpected finding in a study of early onset breast cancer (EOBC) in 218 

Taiwanese women (Midha et al., 2020). MUC17 may influence chemoresistance and has recently been 219 

reported as a driver gene in adult gliomas (Al Amri et al., 2020; Machado & Ferrer, 2023). For TTN, 220 

Oh et al. (2020) found that mutations in TTN correlate with tumor mutational burden and high 221 
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microsatellite instability, which is associated with poor breast cancer prognosis. Thus, the role of 222 

MUC17 and TTN should further be investigated on how mutations in them may relate to early onset of 223 

breast cancer in Kenyan patients (Tang et al., 2023). 224 

We found that TP53 gene mutations significantly co-occurred with ERBB3 mutations and so 225 

did mutations in PTEN and CFAP46, whereas BRCA1 and MUC17 mutations never co-occurred. TP53 226 

mutations are associated with tumor aggression and are found in about half of HER2-amplified tumors 227 

(Marvalim et al., 2023). The TP53 mutations have been implicated in poor prognosis of HER2+ 228 

subtypes compared to other subtypes (Dumay et al., 2013). PTEN is a tumor suppressor gene, whose 229 

mutation has been associated with initiation, progression, and metastasis of breast cancer (Chen et al., 230 

2022). On the other hand, although CFAP46 role in breast cancer is not yet clear, gene fusion involving 231 

various other genes such as VTI1A (reported to cause the initiation of glioma and other cancers) has 232 

been reported to play a role in breast cancer (Tsuge et al., 2019).  233 

Breast tumors with either germline or somatic BRCA1 mutations show no difference in their 234 

cancer biology, but inherited mutations in this gene confers a very high lifetime risk of developing 235 

breast cancer (Milne & Antoniou, 2011;  den Brok et al., 2017; Bodily et al., 2020). This could be the 236 

reason such mutations do not necessarily need to co-occur with other gene mutations to initiate or 237 

promote breast cancer progression. In our study, BRCA1 was not among the highly mutated genes 238 

considering all mutations but was among the genes with high number of missense mutations (Figure 239 

4). In contrast, MUC17 mutations were among the most prevalent. Given the role of MUC17 mutations 240 

in chemoresistance and in early onset breast cancer (Al Amri et al., 2020; Machado & Ferrer, 2023), 241 

its high prevalence and exclusive occurrence in the Kenyan samples that are prone to early onset of 242 

breast cancer should be investigated further. 243 
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Similar to most studies on neoantigen prediction in breast cancer, we have found that 244 

neoantigens burden is positively correlated with tumor mutational burden and that neoantigens were 245 

patient-specific (Narang et al., 2019; Animesh et al., 2022). Although most of the top 10 mutated genes 246 

(80%) were also the top 10 in the number of neoantigens generated, genes like TP53 and PIK3CA that 247 

are reported to be highly mutated in most patient cohorts were not among the top 10 mutated genes in 248 

this study, but generated among the highest number of neoantigens (Figure 6; Figure 7). ARID1A gene, 249 

which showed unique mutational profile in Kenyan population using exome data compared to African 250 

American and Asian population (Tang et al., 2023), was not among the highly mutated, but produced 251 

neoantigens. We found that most neoantigens were derived predominantly from missense mutations 252 

(88%), compared to indels and frameshift mutations (12%). This is consistent with other studies 253 

although the majority do not predict neoantigens from indels and frameshift mutations (Morisaki et al., 254 

2021). Similar to other studies, the TNBC subtype had more neoantigens, compared to HR+/HER2- 255 

and HER2+ subtypes (Narang et al., 2019; Morisaki et al., 2021).  256 

In our small sample cohort, we have been able to identify putative neoantigens that show 257 

patient-specificity and thus are important in tailored treatment. Interestingly, the mutations and 258 

neoantigens in this population are predominantly derived from a unique set of genes (MUC16, MUC17, 259 

TNT) compared to other populations, which provide an opportunity for validation in a much larger 260 

sample cohort. We predicted neoantigens based on binding affinity to HLA class I only as it is the most 261 

important class of antigen binding proteins in cancer immunity. However, HLA class II-based 262 

neoantigens may also have a role in tumor immune response (Alspach et al., 2019). Moreover, we did 263 

not investigate the expression of the predicted neoantigens on tumor cells alongside the MHC class I 264 

molecules and their ability to activate T cells. This being a discovery study, validation of the findings 265 

need to be done in a larger cohort while addressing the highlighted limitations of this study.  266 
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Taken together, our findings corroborate the neoantigen profile in breast cancer, highlighting 267 

the patient specificity in Kenyan population breast cancer mutational and neoantigens signatures. We 268 

also describe putative neoantigens that could be used as markers for breast cancer diagnosis, treatment 269 

monitoring, and development of novel immunotherapy.  270 
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Figures 437 
 438 

 439 
Figure 1: Workflow for neoantigen prediction from WES and RNA sequencing data. Fastq files 440 
were quality checked, trimmed and aligned to the hg38 genome. Variant calling was performed 441 
following GATK best practice, while gene expression was quantified using Kallisto. Variants were 442 
annotated and expression data added, after which neoantigen prediction was performed in PVACseq 443 
pipeline 444 
  445 
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 446 
Figure 2: Mutational profiles in 23 patients for 73 genes reported to be mutated in breast cancer. A) 447 
variant classes abundance in the total mutations, B) variant types that include single nucleotide 448 
polymorphism (SNP), insertions (INS) and deletions (DEL), C) proportion of different single 449 
nucleotide variant (SNV), D) distribution of variants per sample with colors representing the different 450 
variant classes denoted in A, E) summary of the variant classes distribution and numbers in all 451 
samples, F) Top 10 mutated genes, with colors representing different variant classes and the 452 
percentages indicating the proportion of samples in which the genes mutations are present.  453 
 454 
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 455 
Figure 3: Top 10 genes mutated in >50% of the samples. Each color corresponds to a variant class 456 
listed at the bottom of the figure apart from gray, which indicates absence of mutation. 457 
 458 
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 459 
Figure 4: Probability of mutations in any two genes co-occurrence or being mutually exclusive in the 460 
breast cancer genes for the 23 Kenyan patients. The numbers in parenthesis alongside each gene 461 
represents the number of missense mutations for that gene in the samples.  462 
 463 
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 464 
Figure 5: A) Percentage of various substitution types in all samples, B) percentage of  transversions 465 
(interchange of purines for pyrimidine) and transition (interchange of either purines or pyrimidines) 466 
for all samples, C) percentage of the substitutions in each of the samples with colors denoting the 467 
various types in A.  468 
 469 
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 470 
Figure 6: Correlation between tumor mutational burden and neoantigen burden for all the genes in 471 
the 23 patients. The neoantigens are filtered for high affinity (IC50 ≤ 500nM) and expression 472 
(transcripts per million, TPM>1) in tumor samples. 473 
 474 
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 475 
Figure 7: Frequency of neoantigens derived from the COSMIC genes that were mutated in the tumor 476 
tissue and produced >1 neoantigens for the 23 patients. 477 
 478 
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 479 
Figure 8: Summary of mutation types that produced putative neoantigens for the COSMIC genes 480 
that were mutated in the tumor tissue in the 23 Kenyan patients.  481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
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Supplementary Materials 499 
 500 

 501 
Figure S1: Statistical pairwise test (Wilcoxon’s test) for differences in mutational burden (A) and 502 
neoantigens counts (B) for the 23 samples. 503 
 504 
Table S1: Sample characteristics of the 23 Kenyan patients used in this study.  505 
 506 
Table S2: Putative neoantigens for each of the 23 Kenyan patients. Cells in red indicate that the 507 
neoantigen is shared by at least 2 patients.  508 
 509 
Table S3: Summary of the roles of the top ten genes that generated a high number of neoantigens. 510 
 511 
Table S4: Summary of total mutations and proportion of mutation types, total neoantigens, filtered 512 
total neoantigens (filtered for high affinity (IC50 ≤ 500nM) and expression [transcripts per million, 513 
TPM>1] in tumor samples) and filtered putative neoantigens from COSMIC 44 genes mutated in 514 
tumor tissue, and proportion of mutation types that generated them per breast cancer subtype for the 515 
23 samples 516 
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