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Abstract 

Digital cognitive testing using online platforms has emerged as a potentially transformative tool 

in clinical neuroscience. In theory, it could provide a powerful means of screening for and 

tracking cognitive performance in people at risk of developing conditions such as Alzheimer’s 

Disease (AD). Here we investigate whether digital metrics derived from a tablet-based short-

term memory task – “What was where?” Oxford Memory Task – were able to clinically stratify 

patients at different points within the AD continuum and to track disease progression over time. 

Performance of these metrics to traditional neuropsychological pen-and-paper screening tests 

of cognition was also analyzed. A total of 325 people participated in this study: 49 patients with 

subjective cognitive impairment (SCI), 57 with mild cognitive impairment (MCI), 63 with AD 

dementia and 156 elderly healthy controls (EHC). Most digital metrics were able to 

discriminate between healthy controls and patients with MCI and between MCI and AD 

patients. Some, including Absolute Localization Error, also differed significantly between 

patients with SCI and MCI. Identification accuracy was the best predictor of hippocampal 

atrophy, performing as well as standard screening neuropsychological tests. A linear support 

vector model combining digital metrics achieved high accuracy and performed at par with 

standard testing in discriminating between EHC and SCI (AUC 0.82) and between SCI and 

MCI (AUC 0.92). Memory imprecision was able to predict cognitive decline on standard 

cognitive tests over one year. Overall, these findings show how it might be possible to use a 

digital memory test in clinics and clinical trial contexts to stratify and track performance across 

the Alzheimer’s disease continuum. 

 

Keywords 
Alzheimer’s Disease, online testing, cognition, dementia, digital biomarkers 

 

Introduction 

Digital cognitive testing is being increasingly deployed as screening tool for patients at risk of 

developing Alzheimer’s Disease (AD), for recruitment in clinical trials and longitudinal follow-

up performed remotely.1,2 Some tests can detect subtle signs of cognitive impairment that 

cannot be captured by standard clinical assessments.3 This makes their deployment potentially 
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extremely valuable for large scale screening purposes in early phases of the disease when 

cognitive impairment is at subthreshold levels on current scales.4 Visual short-term memory 

(STM) tests have been extensively deployed in patients at risk of developing AD using digital 

platforms.4,5 Two types of paradigms have been used. The first involves change-detection tasks, 

in which participants indicate whether a change occurred or not in visual displays of differing 

numbers of items, in a binary correct/incorrect fashion.6 The second uses delayed-reproduction 

tasks, where participants are asked to reproduce features of the remembered item (e.g., its 

location, color or orientation) in a continuous response space. This allows modelling of the 

responses according to a resource model,7 where quantity (number of items held in memory) 

can be traded for quality (precision of recall of each item). The more items stored, the lower 

their precision in memory.  

 

Mixture Modelling approach is a very influential computational model of how visual STM 

resources are allocated.8 In this model each response can be classified according to four 

different factors: probability of correctly identifying a target (target detection); erroneously 

placing an object at the location of another item in memory (misbinding); random guessing 

about the features of an item; precision of memory (probability distribution of the responses 

around the target).8 Previous analysis of performance on a delayed reproduction task, the “What 

was where?” Oxford Memory Task, demonstrated that people with a genetic risk factor for 

familial Alzheimer’s disease (FAD), such as carriers of the Presenilin-1 (PSEN1) mutation, 

exhibit higher misbinding rates, and that their recall correlated with the degree of hippocampal 

atrophy.4 Recent evidence using the same paradigm showed increased misbinding also in 

patients with sporadic, late-onset AD (LOAD).9,10 Whether this relates to hippocampal integrity 

is still unknown. Increased misbinding seems to be consistent across many different pathologies 

that target the hippocampus, including autoimmune limbic encephalitis,11 surgical resection due 

to epilepsy surgery,12 infectious encephalitis13 and anoxia.14 However, these are all relatively 

rare conditions, and extensive data on more common neurodegenerative conditions such as 

LOAD is missing.  

 

Another important gap in the literature is the limited choice of digital outcomes used. Most 

previous studies have focused solely on misbinding rates, which is only one of a wide array of 

metrics that can be computed using digital delayed-reproduction tasks. This is important as 

there is evidence for selective disease-specific impairment in some cognitive metrics, whilst 

others are spared (e.g., increased misbinding but not guessing in patients with hippocampal 
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pathology, and higher rates of guessing but not misbinding in patients with Parkinson’s 

Disease).15 Further, while we know that the degree of hippocampal atrophy relates to standard 

screening tests of cognitive function,16 and that delayed-reproduction visual STM metrics also 

show a good concordance with measures of hippocampal integrity,4 there are surprisingly little 

published data on head-to-head comparisons between digital STM metrics and commonly used 

clinical cognitive scales in predicting hippocampal integrity.  

 

Longitudinal data on the temporal evolution of digital metrics, including misbinding, in patients 

at risk of developing AD, are also surprisingly scarce. At present, to our knowledge, only one 

study has reported on performance over time in a cohort of people with FAD, both symptomatic 

(n = 6) and presymptomatic (n = 23) gene mutation carriers.5 The authors used the “What was 

where?” Oxford Memory Task and found that identification accuracy declined over time only 

in symptomatic carriers. Moreover, localization error was greater the closer the presymptomatic 

individuals were to their estimated year of onset of dementia. Crucially, a standard delayed 

memory task, was only able to detect a significant difference between this group and controls 

one year later compared to localization error performance on the digital test. Despite these 

encouraging findings in FAD, performance of LOAD patients on this digital task has not been 

extensively characterized. 

 

Here we report findings in a large group of individuals across the AD continuum, including 

people with subjective cognitive impairment (SCI), mild cognitive impairment (MCI) and 

established clinical AD dementia (AD). In this study, we sought to establish whether deficits 

on digital metrics can be detected before clinical diagnosis of AD dementia, and if these might 

also help to discriminate between clinical groups and elderly healthy controls (EHC). We tested 

individuals cross-sectionally and performed longitudinal assessment in a subset. Further, we 

investigated which among the digital metrics was the best predictor of cognitive decline 

longitudinally. The relationship of digital metrics to hippocampal integrity was also examined. 

Finally, a linear support vector machine17 was used to test the utility of digital metrics in 

classifying participants, and the resulting model was subsequently compared to one using a 

standard cognitive screening test.  

 

Material and methods 
Participants  
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325 participants were enrolled in the study: 49 people with SCI, 57 with MCI, 63 patients with 

AD dementia and 156 EHC. Patients were recruited from cognitive disorders clinics at the John 

Radcliffe Hospital in Oxford, United Kingdom and Friedrich-Schiller-Universität Klinik, Jena, 

Germany. SCI was defined according to the 2020 criteria from Jessen et al for subjective 

cognitive decline.18 MCI patients were classified according to Petersen’s criteria of 2014.19 

Alzheimer’s disease dementia patients were defined as Alzheimer’s disease clinical syndrome 

according to the 2018 criteria by Jack et al20 and will be subsequently referred to as AD. From 

the Oxford cohort, 26/63 patients had plasma biomarkers analysis for AD biomarkers, with the 

results corroborating their diagnosis, based on clinical assessment, neuropsychological testing, 

magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography 

(FDG-PET). All subjects underwent either brain computed tomography (CT) or MRI imaging 

and were excluded from the study if there was evidence of structural abnormalities not 

compatible with their clinical diagnosis. Elderly healthy subjects who reported any psychiatric 

or neurological illness or were on psychoactive drugs were excluded from the study. All 

participants had normal or corrected-to-normal vision acuity and no color blindness. A 

summary of participants’ demographics is presented in Table 1.  

 

A subset of 60 people from the Oxford cohort took part in the longitudinal part of the study and 

completed the repeated assessment at 1 year. Of these 60 participants, there were 21 EHC, 15 

SCI, 12 MCI, and 12 were patients with AD dementia. A summary of participants’ 

demographics is presented in Supplementary Table S1. The smaller numbers for the 

longitudinal dataset are due to the study being prematurely interrupted due to COVID-19 

restrictions. While we have subsequently developed a fully remote, online version of this task,21 

the data reported here are from a tablet version which required face-to-face administration.  

 

138 participants from the Oxford cohort (EHC: n = 61, SCI, n = 31, MCI, n = 9, AD n = 37) 

agreed to a 3T structural MRI scan. Demographics and standard tests of cognition for this 

subsample are presented in Supplementary Table S2. 

 

The study was performed in accordance with the ethical standards as laid down in the 1964 

Declaration of Helsinki and its later amendments. Ethical approval was granted by the 

University of Oxford ethics committee (IRAS ID: 248379, Ethics Approval Reference: 

18/SC/0448) and the local ethics committee in Jena. All participants gave written informed 

consent prior to the start of the study. 
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Neuropsychological and behavioral test assessment  

 
Cross-sectional assessment 

The study protocol included a brief neuropsychological assessment and the “What was where?” 

Oxford Memory Task.4,9,11 The neuropsychological assessment included measures of global 

cognition, verbal short-term memory, depression, and sleep quality to rule out a potential 

neurodegenerative disorder or major depression in the elderly controls and for being able to 

compare performances at standard cognitive tests to our experimental paradigm. These included 

Addenbrooke's cognitive examination (ACE-III, subsequently termed ACE),22 Digit Span 

(DS),23 Hospital Anxiety and Depression Scale (HADS),24 15-item Geriatric Depression Scale 

(GDS)25 and Pittsburgh Sleep Quality Index (PSQI).26 Participants’ test scores are presented in 

Table 1.  

 

A schematic of the “What was where?” Oxford Memory Task is shown in Figure 1 (Panel A). 

Stimuli were presented on a black background and were chosen from a library of 196 fractals 

(http://sprott.physics.wisc.edu/fractals.htm), containing 49 different shapes of 4 colour 

variations each. Participants sat ~30 cm in front of a tablet (either iPad or Android), yielding 

2.3° of visual angle. Stimuli were calibrated using the dimension on the screen to ensure 

matching of stimuli properties across different tablet models. A fully remote online version of 

this task, available for computers, laptops, tablets and phones, has been subsequently developed 

(https://oxfordcognition.org/) and was used in subsequent studies.21  

 

In different trials, participants were presented with either 1 or 3 fractals located randomly on 

the screen. They were asked to remember the identity of the fractals (‘what’), and their locations 

(‘where’). After a delay of either 1 or 4 seconds, two fractals appeared at the center of the screen 

along the vertical axis. One of these had appeared in the memory array (target) whereas the 

other one was a foil, which had not been shown in the current trial. Participants were required 

to touch the target and drag it to its original location. They were instructed to be as precise as 

possible, thus allowed to move the item and adjust its location as many times as they needed. 

This design yielded four different conditions (1 and 3 items, 1 and 4 seconds). Each participant 

performed a practice block of 8 trials followed by three test blocks of 40 trials, with a total of 

120 test trials (10 trials x 4 conditions x 3 blocks). The order of the trials in a block was 
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randomly chosen for each block. The locations of the fractals were determined by a MATLAB 

script (MathWorks, Inc) in a pseudorandom manner. 

 

 
Figure 1 | “What was where?” Oxford Memory Task (OMT) 
Panel A: This panel illustrates the task design. Participants were presented with either 1 or 3 fractals 

randomly distributed on the screen. After a 1 or 4 second delay two fractals appeared at the centre of the 

screen, one of which had appeared in the memory array whereas the other one was a distractor. Firstly, 

they needed to identify the object they had seen previously (‘what’), and then drag it back to its original 

location (‘where’). Panel B: The task provides four basic performance metrics: Identification accuracy; 

Absolute Localization Error; Identification time and Localization time. In addition, using the Mixture 

Model, it is possible to assess levels of Target detection, Misbinding, Guessing and Imprecision. 

 

Overall, this task allowed to extract different working memory metrics (see Figure 1, Panel 

B), including (basic metrics): 

• Identification Accuracy: the proportion of trials in which participants correctly 

identified the target. 

• Absolute Localization Error: the Euclidian distance from the center of original item 

location to the center of participant’s response location. 

• Identification Time: the time in seconds taken to identify the correct object. 

• Localization Time: the time in seconds to drag the chosen object to its remembered 

location. 

The Mixture Model of working memory by Bays et al14 was then fitted to the data to unravel 

the differential contribution of memory errors to our dataset. Model fitting was achieved using 
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a permutation approach, where per each single trial, we calculated the distances between the 

response location and the location of: 

1) Target. 

2) Distractor (non-target in that trial). 

3) A distractor taken from a randomly chosen trial. 

 

Depending on which of these distances was the shortest, the response was either counted as 

target (1), distractor (2, i.e., misbinding) or random response (3, i.e., uniform guessing). We 

repeated this procedure 5000 times per trial, introducing a distractor from a randomly chosen 

trial each time. This procedure allowed us to calculate proportions for these three sources of 

response per trial (absolute amount of response type/5000). The introduction of a distractor that 

was randomly chosen from another trial allowed us to differentiate whether an error was 

systematically linked to the very specific trial’s distractor or whether it could be accounted for 

even by a randomly chosen distractor that was not present at trial. Importantly, these metrics 

were calculated uniquely on trials where an object was correctly identified. This approach has 

been previously published using this task and subsequent variations.9,27 

 

The following metrics (mixture model metrics) were therefore calculated: 

• Target detection: the probability of correctly identifying the target. 

• Misbinding: the probability of mislocalizing a correctly identified item to the 

remembered location of another item in the memory array. 

• Guessing: the probability of random guessing responses. 

• Imprecision: the width of the distribution of the responses around the target. 

 

Longitudinal assessment 

At both visits all subjects completed the “What was where?” Oxford Memory Task, the ACE-

III and DS. The summary of demographics and test scores can be found in Supplementary 

Table S1. Group differences in demographics and test scores were calculated using the same 

principles of the cross-sectional assessment.  

 

MRI acquisition and analysis  
T1-weighted volumetric MR brain images were acquired on a 3T Siemens Magnetom Verio 

syngo scanner using a magnetisation prepared rapid gradient echo (MPRAGE) protocol 
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acquired in sagittal orientation (TR = 2000 msec, TE = 1.94 msec, TI = 880 msec, Flip angle = 

8 degrees, FOV read = 256 mm, Voxel size = 1.0 x 1.0 x 1.0 mm). All images were reviewed 

by a trained neurologist to exclude the presence of remarkable macroscopic brain abnormalities 

not compatible with the original diagnosis. Hippocampal volumes (HV) were estimated using 

FSL-FIRST.28 For each participant, left, and right HV were calculated, and bilateral HV was 

computed. We also calculated whole brain volumes for each subject. We subsequently 

computed the head size corrected values for whole brain volumes and HV, using the scaling 

factor derived from SIENAX.29 When referring to HV and whole brain volumes throughout the 

article, only head-size corrected volumes have been used. Images were carefully visually 

inspected after each processing step.  

 

Statistical analysis 
 

All analyses were conducted using MATLAB 2019a, R (version 3.5.2) and JASP (JASP team, 

2022). Data visualization was conducted using software Grammar of graphics plotting in 

MATLAB R2018b (Gramm library)30 and RStudio (Version 1.1.463). Statistical significance 

was set as p < 0.05, two-tailed.  

 

Cross-sectional analysis 

A one-way ANOVA was used to compare subjects’ continuous variables in demographics and 

test scores, with Holm post-hoc correction amongst the four groups, while χ2 test was used to 

compare categorical variables between groups. Additionally, a cumulative measure for each 

metric wad derived by calculating the mean across the 4 conditions (1 item 1 second, 1 item 4 

seconds, 3 items 1 second, 3 items 4 seconds). An ANCOVA, with age, gender, and education 

as covariates, with subsequent Holm post-hoc correction, was used to test differences across 

the groups on each cumulative metric while controlling for factors that differed across groups 

and could impact performance.  

 

We also examined the effects of Set size and Delay across all groups (transdiagnostically), 

calculating a 2 (Set size: 1 item, 3 items) x 2 (Delay: 1 second, 4 seconds) ANOVA for each of 

the digital working memory metrics. Effect size was quantified using Eta Squared (η2), defined 

as large (η2 > 0.14), medium (η2 > 0.06) or small (η2 > 0.01).31 
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Longitudinal analysis 

A 4 (Group) x 2 (Session) ANCOVA, with age, gender and education as covariates, with 

subsequent Holm post-hoc correction, was used to test differences across the groups and 

sessions on each cumulative metric. Additionally, we tested whether the baseline values 

extracted from our tests could be used to predict cognitive decline over one year at standard 

neuropsychological tests. To this end, we calculated the change between ACE scores from the 

second visit and the first visit, and looked at whether any of the metrics was able to predict 

cognitive decline after 1 year. We ran linear regression for each metric separately and compared 

the results with the Cocor package in RStudio.32 

 

MRI analysis 

A generalized linear model was used to study correlations between neuropsychological 

measures and hippocampal volumes, while correcting for age, gender and education. 

Comparisons between regression coefficients were compared using the Cocor package in 

RStudio.32 

 

Linear support vector machine 

A linear support vector machine classifier (Classification learner, Matlab) was used to test the 

performance of a model including age, gender, education and the eight digital metrics derived 

from the “What was where?” Oxford memory Task (OMT), in discriminating between the four 

different diagnostic groups (EHC, SCI, MCI and AD), and a competing model using age, 

gender, education, and ACE scores, also derived from the same dataset. 

 

Results 

Demographics and standard neuropsychological tests 
Age, gender, and education were not matched across groups, and therefore were included as 

covariates when comparing group performances (Table 1). As expected, ACE scores were 

statistically significantly different across groups, with AD showing the lowest scores, followed 

by MCI, then SCI and finally EHC. DS scores were not different between EHC and SCI but 

declined significantly in MCI and AD patients. Patients with SCI scored higher on 

questionnaires of depression and quality of sleep compared to the other groups.    
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 EHC SCI MCI AD p-value 

all 
p-value 

EHC/SCI 
p-value 

SCI/MCI 
p-value 

MCI/AD 

         
Age 67.3 (8.6) 57.6 (7.8) 69.7 (8.9) 70.6 (9.0) *<0.001 *<0.001 *<0.001 0.582 

Gender (M/F) 58/98 23/26 39/18 34/29 *<0.001 0.222 *0.025 0.105 

Education 14.9 (4.1) 15.3 (4.7) 11.8 (3.2) 13.2 (3.7) *<0.001 0.480 *<0.001 0.136 

Handedness 

(R/L/A) 
128/26/2 45/4/0 49/6/2 57/3/3 0.150 0.305 0.799 0.470 

         
ACE 95.9 (3.1) 92.7 (6.3) 87.9 (3.8) 73.9 (15.7) *<0.001 *0.013 *0.004 *<0.001 

DS 17.6 (4.4) 17.4 (5.2) 14.8 (3.3) 14.2 (4.5) *<0.001 1.0 *0.008 1.0 

HADS 8.3 (5.6) 23.0 (3.7) 11.5 (6.8) 9.2 (6.5) *<0.001 *<0.001 *<0.001 0.129 

GDS 2.4 (2.7) 6.2 (3.8) 5.1 (3.8) 3.8 (3.6) *<0.001 *<0.001 0.097 0.066 

PSQI 5.6 (3.1) 9.3 (4.4) 6.3 (3.6) 5.1 (3.6) *<0.001 *<0.001 *<0.001 0.163 

 
 

Table 1 | Demographics and tests 
ACE=Addenbrookes Cognitive Examination-III; DS=Digit Span; HADS=Hospital Anxiety and 

Depression Scale; GDS=15-item Geriatric Depression Scale; and PSQI=Pittsburgh Sleep Quality Index. 

M = male, F = female. R = right-handed, L = left-handed, A = ambidextrous. 

 

Cross-sectional analysis 

All digital metrics were able to discriminate between the groups, with high effect size for a 

between-group difference (Table 2, column ALL, Figure 2). They were able to discriminate 

between EHC and AD and SCI and AD (Table 2, columns EHC/AD and SCI/AD). No metric 

was able to distinguish between EHC and SCI, which highlights the fact that despite these 

patients’ complaints, they perform within normal range on the visual STM test used here. On 

the other hand, compared to healthy controls, patients with MCI showed lower Identification 

Accuracy, had higher Absolute Localization Error rates, lower rates of Targets detected, higher 

amount of Guessing, higher rates of Misbinding, and higher memory Imprecision.  
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Figure 2 | Cross-sectional analysis  
Panel A: between-group analysis for basic performance metrics. Panel B: between-group analysis for 

mixture model metrics. An ANCOVA, with age, gender, and education as covariates, with subsequent 

Holm post-hoc correction, was used to test differences across the groups. 

 

Absolute Localization Error, Target detection, Misbinding and Guessing were also able to 

discriminate between people with SCI and MCI (Figure 2, Table 2, column SCI/MCI). 

However, the precision of their memory recall (Imprecision), as well as the proportion of 

correctly identified items (Identification Accuracy) were not different between those groups. 

Absolute Localization Error was the only metric that was not able to track disease progression 

between patients with MCI and AD dementia, probably because it was already quite high in 

patients with MCI (Figure 2 Panel A, Table 2, column MCI/AD). In the comparison between 

MCI and AD dementia, Misbinding was significantly higher in patients with AD dementia, but 

in this sample the metric had the lowest of all effect sizes (Figure 2 Panel B, Table 2, column 

MCI/AD).  

 

   ALL EHC/SCI EHC/MCI SCI/MCI EHC/AD SCI/AD MCI/AD 

 Identification 

Accuracy 
F = 38.2,  

*p < 0.001 

η2 = 0.251 

t = 1.8,  

p = 0.139,  

d = 0.322 

t = 3.0,  

*p = 0.007, 

d = 0.504 

t = 0.8,  

p = 0.403, 

d = 0.182 

t = 10.7,  

*p < 0.001, 

d = 1.646 

t = 6.3,  

*p < 0.001, 

d = 1.324 

t = 6.2,  

*p < 0.001,  

d = 1.141 
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Absolute 

Localization 

Error  

F = 27.0,  

*p < 0.001 

η2 = 0.184 

t = -1.5,  

p = 0.124,  

d = -0.273 

t = -5.4,  

*p < 0.001,  

d = -0.909 

t = -2.9,  

*p = 0.011, 

d = -0.6 

t = -8.5,  

*p < 0.001, 

d = -1.314 

t = -4.9,  

*p < 0.001, 

d = -1.041 

t = -2.2,  

p = 0.058,  

d = -0.405 

 Identification 

Time 
F = 27.9,  

*p < 0.001 

η2 = 0.205 

t = 0.6,  

p = 0.506,  

d = 0.118 

t = -2.3,  

p = 0.073,  

d = -0.374 

t = -2.3,  

p = 0.073, 

d = -0.492 

t = -8.8,  

*p < 0.001, 

d = -1.358 

t = -5.3,  

*p < 0.001, 

d = -1.476 

t = -5.3,  

*p < 0.001,  

d = -0.984 

Localization 

Time 
F = 27.4,  

*p < 0.001 

η2 = 0.199 

t = 0.8,  

p = 0.423,  

d = 0.142 

t = -2.2,  

p = 0.059, 

d = -0.369 

t = -2.8,  

p = 0.067, 

d = -0.502 

t = -8.7,  

*p < 0.001, 

d = -1.342 

t = -7.0,  

*p < 0.001, 

d = -1.484 

t = -5.3,  

*p < 0.001,  

d = -0.972 

 Target 

detection  
F = 37.5,  

*p < 0.001 

η2 = 0.246 

t = 0.9,  

p = 0.361,  

d = 0.162 

t = 5.4,  

*p < 0.001, 

d = 0.900 

t = 3.4,  

*p = 0.002, 

d = 0.738 

t = 10.3,  

*p < 0.001, 

d = 1.587 

t = 6.7,  

*p < 0.001, 

d = 1.426 

t = 3.7,  

*p < 0.001, 

d = 0.687 

 Misbinding F = 20.5,  

*p < 0.001 

η2 = 0.154 

t = -0.3,  

p = 0.764,  

d = -0.053 

t = -4.3,  

*p < 0.001, 

d = -0.720 

t = -3.1,  

*p = 0.007, 

d = -0.667 

t = -7.4,  

*p < 0.001, 

d = -1.147 

t = -5.2,  

*p < 0.001, 

d = -1.094 

t = -2.3,  

*p = 0.043, 

d = -0.427 

 Guessing F = 42.0,  

*p < 0.001 

η2 = 0.268 

t = -1.2,  

p = 0.245,  

d = -0.206 

t = -5.6,  

*p < 0.001,  

d = -0.920 

t = -3.3,  

*p = 0.002, 

d = -0.714 

t = -11.0,  

*p < 0.001, 

d = -1.688 

t = -7.0,  

*p < 0.001, 

d = -0.768 

t = -4.2,  

*p < 0.001,  

d = -0.768 

 Imprecision F = 24.7,  

*p < 0.001 

η2 = 0.179 

t = -1.4,  

p = 0.141,  

d = -0.261 

t = -4.1,  

*p < 0.001,  

d = -0.672 

t = -1.9,  

p = 0.120, 

d = -0.411 

t = -8.5,  

*p < 0.001, 

d = -1.311 

t = -5.0,  

*p < 0.001, 

d = -1.050 

t = -3.4,  

*p = 0.002, 

d = -0.639 

 
 

Table 2 | Summary results from the between-group analysis 

 

There was a main effect of Set size, of large magnitude (η2 > 0.14) in all metrics, except 

Imprecision, where it was of medium magnitude (η2 > 0.06), (Supplementary Table S3 and 

S4, Figure S1 and S2). Set size for Misbinding was not included because it cannot be computed 

for 1 item, as at least two objects are required for misbinding to occur. All metrics, except for 

Misbinding, also showed an effect of Delay, which however was of small (η2 > 0.01) to medium 

(η2 > 0.06) magnitude. Identification time, Identification accuracy, Absolute Localization Error 

and memory Imprecision also showed a significant Set Size by Delay interaction, which was 

however of small magnitude (η2 > 0.01), with a synergistic impact of higher number of items 

and longer delays determining worse memory performance. 
 

Longitudinal analysis 
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Group and Session effects 

All metrics showed a significant effect of Group, with high effect size (η2 > 0.14), even if the 

sample size was much smaller compared to the bigger cross-sectional dataset (Figure 3, 

Supplementary Table S5). Only Localization Time showed a main effect of Session (F = 4.3, 

*p = 0.039, η2 = 0.024) (Figure 3, Supplementary Table S5). Absolute Localization Error 

and memory Imprecision showed a significant Group by Session interaction (Figure 3, 

Supplementary Table S5). Post-hoc analysis for Absolute Localization Error and Imprecision 

showed a significant difference between sessions only in the AD group (Absolute Localization 

Error: t = -3.120, *p = 0.031, d = - 1.274, Imprecision: t = - 4.064, *p = 0.002, d = -1.660). 

 

 
Figure 3 | Longitudinal analysis  
Panel A - longitudinal analysis of basic performance metrics. Panel B - longitudinal analysis of mixture 

model metrics. Baseline session (Time 0) in red, follow-up session after 1 year (1 year) in light blue. 

 

 

As a comparison, we also computed the effects of Group and Session for the two 

neuropsychological tests used, the ACE and DS (Supplementary Figure S3). For ACE there 

was an effect of Group (F = 206.04, *p < 0.001, η2 = 0.812), an effect of Session (F = 10.16, 

*p = 0.002, η2 = 0.013), and a Group x Session interaction (F = 9.41, *p < 0.001, η2 = 0.037). 

For DS there was only an effect of Group (F = 6.67, *p < 0.001, η2 = 0.160), but no effect of 

Session or a Group x Session interaction. Post-hoc analysis was significant for ACE with 

respect to session for the AD group (F = 5.82, *p < 0.001), and for all groups comparisons (*p 

<0.001 except EHC vs SCI *p = 0.009), and for DS only for group comparisons between the 
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AD group and the other groups (EHC vs AD *p <0.001, SCI vs AD *p = 0.003, MCI vs AD *p 

= 0.009). 

 
Digital metrics in the prediction of cognitive decline 

All metrics at baseline were able to independently predict cognitive decline after 1 year 

(Supplementary Table S6). The metric which performed the best in predicting a decline in 

ACE scores after 1 year was memory Imprecision, t = 5.5, *p < 0.001, R2 = 0.411. As a 

comparison, both ACE itself at baseline and hippocampal volume performed worse than 

memory Imprecision (ACE: h-test ACE, z = 6.34, *p < 0.001, Hippocampal volume: h-test, z 

= 5.74, *p < 0.001). 

 

Neuroimaging analysis 

All metrics were able to independently predict hippocampal volume in the whole dataset (see 

Figure 4). As comparison, age had a smaller effect size compared to Identification accuracy in 

predicting hippocampal volume in the regression analysis (age: t = - 2.823, *p = 0.005, 

Identification accuracy, t = 3.251, *p = 0.001, h-test, z = - 4.3602, *p < 0.001). Moreover, 

Identification accuracy was the metric that was more tightly correlated with hippocampal 

volumes compared to the other metrics (h-test, z = 3.721, *p < 0.001), and performed as well 

as ACE (t = 3.761, *p < 0.001) in predicting hippocampal volume (h-test, z = - 0.190, p = 

0.8494). 

 
Figure 4 | Correlations between hippocampal volumes and digital metrics 
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r2 represents the overall model fit, the p-value refers to the contribution of the metric to the regression. 

EHC in coral red, SCI in green, MCI in light blue, AD in violet. The regression line has been plotted for 

the whole dataset, in grey. HV = head-size corrected hippocampal volume, in mm3. 

 

Linear support vector machine 

Overall classifier  

For the model using the combination of the eight digital metrics (here labeled as OMT), overall 

accuracy was 61.8%, and the area under the curve (AUC) for predicting group classification 

was respectively 0.82 for healthy controls, 0.85 for patients with SCI, 0.80 for MCI, and 0.87 

for AD dementia (Figure 5, Panel A – right, Panel B). In comparison, overall accuracy for the 

model including ACE was 71.4%, and the AUCs were respectively 0.92 for healthy controls, 

0.83 for patients with SCI, 0.90 for MCI and 0.96 for AD dementia (Figure 5, panel A – left, 

Panel B).  

 

We computed pairwise comparisons using the DeLong method for comparing ROC curves33 

between the model including OMT and the one including ACE for each group, which were 

respectively: EHC: Z = 4.83, *p < 0.001, SCI: Z = - 1.34, p = 0.179, MCI: Z = 3.81, *p < 0.001, 

AD: Z = 3.89, *p < 0.001. Therefore, the model using our digital metrics did not perform better 

than ACE in classifying healthy controls, patients with MCI and AD dementia, but was as good 

as the ACE in patients with SCI (Figure 5).  
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Figure 5 | Linear support vector machine classifier – all groups 

Panel A: Linear support vector machine classifier across all groups. The first model included ACE, age, 

gender and education, and the second all the eight OMT metrics, age, gender and education. Both models 

were tested for predicting group classification separately for EHC, SCI, MCI and AD. Panel B: Head-

to-head comparison of ROC (receiver operating characteristic) curves for ACE and OMT models. 

Graded blue colours belong to ACE model: light blue = EHC, turquoise = SCI, blue = MCI, dark blue 

= AD. Graded red colour belong to the OMT model: yellow = EHC, orange = SCI, red = MCI, dark red 

= AD.  

 

Pairwise classifier  

Despite these multigroup classifiers being useful to blinded automatic diagnostic 

classifications, in a clinical setting we are less likely presented with a scenario when we have 
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four different diagnoses that could fit the subject’s clinical profile. We therefore performed 

specific pairwise group comparisons where our metrics could potentially be clinically useful. 

As shown in Figure 6, the model including ACE and the one using OMT metrics perform 

similarly in the differential diagnosis between healthy elderly controls and patients with SCI 

(AUC ACE = 0.86, AUC OMT = 0.82, Z = 1.33, p = 0.182) and between SCI and MCI (AUC 

ACE = 0.91, AUC OMT = 0.92, Z = -0.757, p = 0.449). However, when examining patients 

with MCI and AD dementia, whilst the ACE performs extremely well, OMT metrics are not as 

good (AUC ACE = 0.91, AUC OMT = 0.75, Z = 2.84, *p = 0.004). 

 

 
Figure 6 | Linear support vector machine classifier – pairwise  

The first model (ACE) includes ACE, age, gender and education, while the second (OMT) includes all 

eight OMT metrics, age, gender and education. 

 

Discussion 

In this study we have shown that digital visual working memory metrics extracted by the “What 

was Where?” Oxford Memory Task are useful to detect early signs of cognitive impairment in 

a large cohort of subjects in the AD continuum. They are also able to detect disease progression 

cross-sectionally, between MCI and AD, but also longitudinally after 1 year. Identification 

accuracy seems the metric that best reflects the degree of underlying hippocampal atrophy, 

while Absolute Localization Error and memory Imprecision are useful to predict cognitive 

decline at standard tests of cognition over one year. Using a linear support vector machine 

classifier we found that these metrics seem to perform equally as good as standard tests of 

cognition such as the ACE in discriminating between healthy controls, patients with SCI and 
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MCI, while they are not as accurate as ACE in later stages of the disease, such as in the 

comparison between MCI and AD dementia.  

 

All digital metrics were able to discriminate between healthy controls and AD dementia 

patients, as well as between SCI and AD dementia (Table 2, Figure 2). However, no metric 

was able to distinguish between healthy controls and patients with SCI. This finding is 

consistent with data that show that the majority of people with a diagnosis of SCI will not 

subsequently develop AD dementia.18 Another important finding is that Absolute Localization 

Error, Target Detection, Misbinding and Guessing were all able to discriminate between 

patients with SCI and MCI. This might have potentially useful implications, as in clinical 

practice it can sometimes be difficult to distinguish between these groups on standard tests of 

cognition.  

 

Both Identification accuracy and memory Imprecision did not differ significantly between 

healthy controls and patients with SCI, nor between SCI and MCI. However, there was a 

significant difference between healthy controls and the MCI group. In the comparison between 

MCI and AD, all digital metrics, except Absolute Localization Error, were significantly 

different. Absolute Localization Error seems to be sensitive to early stages of disease, as it was 

useful in discriminating between healthy controls and MCI, as well as between SCI and MCI. 

But beyond the MCI stage it did not deteriorate significantly further in patients with AD.  

Overall, Absolute Localization Error might be viewed as an ‘early’ digital marker because it 

seems to change more prominently in the early phases of cognitive impairment. Interestingly, 

it was the only marker which was able to highlight disease progression in asymptomatic 

mutation carriers in the FAD group studied by Pavisic et al,5 while in the same report 

Identification accuracy only declined in symptomatic patients. This further supports the idea 

that Absolute Localization Error might be considered as an early marker. 

 

On the other hand, Identification time and Localization time might be viewed as ‘late’ markers, 

as in our sample they became significantly different only when patients reached the AD 

dementia stage. This is consistent with known effects of slowing of responses, e.g., slower 

reaction times (RT), in patients with AD dementia compared to age-matched elderly controls34 

and patients with MCI.35,36 Evidence of slower reaction times in patients with MCI compared 

to age-matched controls has been more mixed, and whilst a recent metanalysis reported slower 

RT in this group,37 the results from our study do not support this finding. However, the 
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investigations included in the metanalysis covered only two diagnostic groups, while here four 

groups were compared and the analyses were corrected for multiple comparisons, with a lower 

risk of bias but also possibly a reduced statistical significance in head-to-head differences. 

 

Mixture model metrics including Target Detection, Guessing and Misbinding, were able not 

only to distinguish between a healthy status and MCI, but also to discriminate between patients 

with SCI and MCI and MCI and AD, so were useful metrics to provide an accurate stratification 

of patients and could be considered as both ‘early’ and ‘late’ markers.  

 

Across groups, set size effects had a major impact on memory recall, showing an effect of large 

magnitude in all metrics, except for memory Imprecision, where it was of medium magnitude 

(Supplementary Table S3 and S4, Figure S1 and S2). This highlights how consuming STM 

capacity resources by adding items to remember results in lower performance, not only by 

reducing the precision with which the items are stored, but also causing slower responses, 

higher spatial localization error, lower percentages of correctly identified items and targets 

detected, and higher rates of random guessing and misbinding. Apart from Misbinding, all other 

metrics also showed an effect of delay, which however was of small to medium magnitude. 

This points towards the fact that remembering an increasing number of items has a much more 

detrimental impact on memory recall compared to time-dependent memory degradation. A 

significant effect of set size on memory performance is in line with what previously reported 

with the same paradigm in healthy controls and patients with sporadic AD and PD.9,10 However, 

the latter studies either did not have sufficient data to examine the effect of delay,10 or 

investigated only a limited subset of these metrics and included a large number of healthy 

controls but a very small number of patients with either AD or PD (n = 19 each).9 This study 

replicates these findings in a larger clinical cohort of patients with memory impairment. 

 

Measuring changes in our cognitive metrics after one year revealed that they show different 

profiles: some tend to remain very stable over time, while others follow a similar trajectory as 

the decline in performance on the ACE (Figure 3 and Supplementary Figure S3). The metrics 

that best tracked individual changes in cognition over time were respectively Absolute 

Localization Error, but more so, memory Imprecision. Indeed, memory Imprecision performed 

very well in the longitudinal tracking of cognitive decline, so well that its baseline values 

outperformed baseline levels of ACE and hippocampal volumes (Supplementary Table S6). 

One of the most interesting results was that despite a decline in cognition, indexed by a 
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reduction in ACE scores, mixture model metrics (Target detection, Misbinding and Guessing) 

did not change over time. Why is that so? To answer this question, we need to bear in mind 

how these metrics are calculated. They do not reflect absolute values of errors, but they 

calculate the probability of a response belonging to correct target identification, misbinding and 

guessing, which all add up to 1, as they are relative to each other. Therefore, the most likely 

explanation is that the proportion of mistakes made, relative to each other, remains the same 

across time.  

 

Previous evidence has pointed towards Misbinding as being the most important marker of 

hippocampal integrity across different clinical populations.4,11 While we could replicate that 

misbinding rates are indeed associated with hippocampal atrophy, this was not the best 

predictor among the digital metrics used for this experiment. Here, Identification accuracy 

stood out as the metric that most strongly correlated with hippocampal volume, performing 

equally as well validated standard neuropsychological test such as the ACE (Figure 4). It is 

also worth noting that these results were corrected for common confounding factors that could 

impact performance as well as hippocampal integrity, such as age, gender and levels of 

education. More importantly, Identification accuracy explained more variance compared to 

ageing in predicting hippocampal volume in this dataset, which is also encouraging.  

 

Regarding head-to-head comparisons between digital metrics and standard tests of cognition, 

while ACE was overall superior to OMT metrics and better in the discrimination between MCI 

and AD dementia, digital metrics seem to perform similarly to traditional pen-and-paper tests 

when comparing healthy controls to SCI patients, or SCI to MCI, without requiring dedicated, 

time-consuming face-to-face appointments (Figure 5 and 6). This has potential useful clinical 

implications as this test can now be administered fully online and remotely.  

 

There are some limitations to this study. Only 26/63 patients of the Oxford cohort had biological 

confirmation of AD biomarkers, which confirmed presence of amyloid and tau positivity. 

Whilst this sample is representative of patients seen in a memory clinic, subsequent studies 

should aim to validate these findings in a fully biomarker-validated cohort. Moreover, the 

longitudinal dataset had a limited number of participants, due to the study being interrupted in 

response to COVID-19 restrictions. Additionally, participants enrolled in the longitudinal 

dataset were all non-converters, i.e., none of them had their diagnosis changed at their follow-

up visit after 1 year. A much larger longitudinal dataset is needed to replicate these findings 
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and to study which metric might be a better marker of clinical conversion from early stages 

(e.g., SCI and MCI) to AD dementia.  
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