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Abstract 

Rapid antibiotic susceptibility tests (ASTs) are an increasingly important part of clinical care 
as antimicrobial resistance (AMR) becomes more common in bacterial infections. Here, we 
use the spatial distribution of fluorescently labelled ribosomes to detect intracellular changes 
associated with antibiotic susceptibility in single E. coli cells using a convolutional neural 
network (CNN). By using ribosome-targeting probes, a single fluorescence cell image provides 
data for cell segmentation and susceptibility phenotyping. Using 50,722 images of cells from 
an antibiotic-susceptible laboratory strain of E. coli, we showed that antibiotics with different 
mechanisms of action result in distinct ribosome phenotypes, which can be identified by a CNN 
with high accuracy (99%, 96%, and 91% for ciprofloxacin, gentamicin, and chloramphenicol). 
With 6 E. coli strains isolated from bloodstream infections, we used 34,205 images of ribosome 
phenotypes to train a CNN that could classify susceptible cells with 92% accuracy and resistant 
cells with 99% accuracy. Such accuracies correspond to the ability to differentiate susceptible 
and resistant samples with 99% confidence with just 2 cells, meaning that this method could 
eliminate lengthy sample culturing steps and could determine in vitro susceptibility with 30 
minutes of antibiotic treatment. Our ribosome phenotype method should also be able to identify 
phenotypes in other strains and species. 

Introduction 

Bacterial infections were associated with 14% of all global deaths and the majority of sepsis-
related deaths1 in 2019. The widespread use of antibiotics in the treatment and prevention of 
these infections, in medicine and in agriculture, has created a strong evolutionary pressure for 
microbes resistant to these compounds2. In 2019, antimicrobial resistance (AMR) in bacteria 
caused 1.27 million deaths and was associated with 4.95 million deaths worldwide3. Mortality 
is predicted to rise as high as 10 million deaths per year by 2050 if no action is taken4. These 
challenges motivate the development of new antimicrobial treatments and technologies to 
mitigate the effects of resistant infections. 

Antibiotic susceptibility tests (ASTs) are an essential tool for refining treatment and 
minimising inappropriate antibiotic use. However, in most clinical microbiology pathways, 
ASTs are performed after a bacterial pathogen has been cultured and identified, with results 
available in 12-48 hours for common species5. This time delay is often too long to wait in life-
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threatening infection6, leading clinicians to prescribe empirically and use combinations of 
broad-spectrum antibiotics. In clinical trials, the use of rapid ASTs improves clinical outcomes, 
decreases the use of broad-spectrum antibiotics, and shortens the time between sample 
collection and optimal targeted antibiotic treatment7,8. 

The clinical need for rapid ASTs has motivated the development of new diagnostic 
technologies to identify the infecting species and characterise susceptibility. Current growth-
based ASTs quantify the Minimum Inhibitory Concentration (MIC), a marker of the 
susceptibility of the isolated organism to an antibiotic9, which is typically measured using 
turbidity. Faster assays based on genotype and cellular morphology are being developed. The 
bioMerieux BioFire FilmArray system, for example, is a commercial genotype-focused 
platform utilising multiplex polymerase chain reaction to detect species-specific and 
resistance-associated genes in syndromic infections (e.g. respiratory, bloodstream, and joint) 
within an hour10. However, PCR methods cannot detect AMR genes that are not present in the 
PCR probe set, and resistance genes do not always correlate with an isolate’s antibiotic 
response. A rapid phenotypic test that directly measures the bacterial response may offer 
advantages over genotypic assays, especially in Gram-negative species which are more likely 
to have polygenic and combinatorial mechanisms of resistance5,11. 

Some of the discordances between the genotype and the phenotypic susceptibility may be 
explained by phenotypic heterogeneity within a bacterial population, leading to phenomena 
such as persister cells12,13. Techniques that directly measure single-cell antibiotic response are 
advantageous because they can capture this heterogeneity. Many methods have been proposed, 
including using microscopy to measure growth rate14,15, structural changes16,17, or cell death18; 
flow cytometry19; Raman spectroscopy20; and cell impedance21. An example of a commercially 
available phenotypic system is the Accelerate Diagnostics Pheno System, which combines 
fluorescence in situ hybridization (FISH) for species identification with monitoring of single-
cell growth rates to report antibiotic resistance within 7 hours22. 

Visually apparent changes to the intracellular structure of the bacterial cells can also be used 
to measure the bacterial antibiotic response. When antibiotics disrupt cellular physiology, long-
recognised and characteristic phenotypes develop, which have recently been characterised at 
scale with high-content imaging23,24. Our group showed that such phenotypic effects on the 
nucleoid and cell membrane can be visualised within 30 minutes and recognised by trained 
deep-learning models, and that this variability correlates with clinical antibiotic 
susceptibility25. While many novel ASTs have been proposed and developed5,14–22, by using 
single-cell imaging data, we can rapidly and directly capture and assay the diversity of 
antibiotic response within the cell population. 

Here, we present a method for ultra-rapid identification of single-cell antibiotic susceptibility 
by detecting intracellular changes using ribosome-bound FISH probes (Figure 1a). First, 
bacteria from the clinical sample are treated with an antibiotic that will induce phenotypic 
changes in bacteria susceptible to the antibiotic. Following the antibiotic treatment, the cells 
are fixed, permeabilised, and incubated with species-specific FISH probes. Images of the 
fluorescent probes are processed and fed to a pre-trained neural network to classify the bacteria 
as antibiotic-susceptible or antibiotic-resistant. We found that a convolutional neural network 
(CNN) could learn to recognize the distinct ribosome phenotypes of E. coli treated with 
antibiotics with three different mechanisms of action (ciprofloxacin, a fluoroquinolone, 
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targeting DNA gyrase/topoisomerases; gentamicin, an aminoglycoside, targeting the 30S 
ribosomal subunit; and chloramphenicol, an amphenicol, targeting the 50S ribosomal subunit). 
We applied the ciprofloxacin CNN to classify three ciprofloxacin-susceptible and three 
ciprofloxacin-resistant E. coli clinical isolates and found that its accuracy decreased when the 
isolate’s antibiotic response diverged from the lab strain’s phenotype. Therefore, we developed 
a CNN trained on images of the clinical isolates, which was able to classify unseen, holdout 
single-cell images as antibiotic-susceptible with >90% accuracy and antibiotic-resistant with 
>98% accuracy based on their ribosome phenotypes. Our method advances existing phenotypic 
ASTs because, when used in combination with multiplexed FISH and species-specific probes, 
the ribosome fluorescent profile can be used to segment single cells, identify bacterial species, 
and characterise a cell’s antibiotic response in a single step. 

Results 

Characterization of the E. coli antibiotic response by ribosome subcellular distribution 

To train a machine-learning model to classify antibiotic-resistant and antibiotic-susceptible E. 
coli, we characterised the antibiotic-response phenotypes of antibiotic-susceptible cells. 
Previous work has shown the successful classification of antibiotic-susceptible and resistant E. 
coli by a CNN trained to identify changes in DNA morphology25. It has also been shown that 
DNA-rich and ribosome-rich regions spatially anti-correlate in E. coli26. Therefore, we 
reasoned that we may be able to use ribosome phenotypes to classify a bacterium’s 
antimicrobial response. Because of their space-filling properties, we also hypothesized that the 
ribosome signal should suffice for both cell segmentation and phenotype analysis, eliminating 
the need for a membrane dye for cell segmentation. Ribosome fluorescence images may also 
provide richer spatial and intensity features throughout the cell than images of the nucleoid 
morphology.  

To test our hypothesis, we first characterised the sub-cellular ribosome phenotypes of 
antibiotic-susceptible E. coli MG1655 (Figure 1b). MG1655 is a lab-adapted K-12 derivative 
that is susceptible to each of the antibiotics used in this work. After treatment with each of the 
4 antibiotics individually for 30 minutes, the cells were stained with fluorescent FISH probes 
to visualize the effects of antibiotic treatment on their internal structure. For this, we used an 
18-mer single-strand DNA probe with Cy3 dye conjugated to the EUB338 sequence, which 
targets a region in the 16S ribosomal RNA conserved in all members of the domain Bacteria27. 

The antibiotic treatment concentrations were chosen as a multiple of the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) breakpoint9 for Enterobacterales including 
E. coli, so that an empirical benchmark could be applied to other strains. The EUCAST 
breakpoint is a defined concentration of antibiotic used to classify a microorganism as 
antibiotic susceptible and resistant, accounting for clinical factors including antibiotic dosage, 
target infections, pharmacokinetics, and resistance mechanisms. The MIC of a bacterial isolate 
can be compared to the EUCAST breakpoint for a given antibiotic and bacterial species to 
classify it as clinically susceptible (S) or resistant (R). 

The biological effect of antibiotic treatment on the susceptible MG1655 bacteria can be clearly 
seen within 30 minutes. Fluorescence images of the DNA and ribosomes show the 
characteristic changes in cell spatial organization that occur as the cell responds to the antibiotic 
(Figure 1b). Comparing the DNA and ribosome signals shows the anti-correlation between 
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DNA and ribosome density within the cell in untreated and antibiotic-treated conditions. The 
nucleoid compaction caused by chloramphenicol, ciprofloxacin, and gentamicin can be seen as 
clearly in the ribosome images as in the DNA images. These images also show how the 
ribosomes fill the cell, allowing the ribosome signal to be used for both cell phenotyping and 
cell segmentation. 

We characterised the ribosome phenotypes from four biological replicates of E. coli MG1655 
totalling 5,286 untreated cells, 3,215 cells treated with ciprofloxacin (Cip) at 0.5 mg/L (1X 
EUCAST breakpoint), 5,935 cells treated with gentamicin (Gent) at 40 mg/L (20X EUCAST 
breakpoint), and 6,439 cells treated with chloramphenicol (Cam) at 8 mg/L (1X EUCAST 
breakpoint). For E. coli MG1655, treatment with chloramphenicol or ciprofloxacin at 1X 
EUCAST induced phenotypic changes within 30 minutes, but gentamicin treatment 
concentrations lower than 20X EUCAST did not induce phenotypic changes in most cells in 
this time frame (Figure S1). 

By inspecting the nucleoid and ribosome fluorescence signals along the long axis of the cells, 
we can further characterise the treatment phenotypes. In untreated E. coli, the highest ribosome 
density was seen in the centre of the cell and in longer cells there were often two ribosome-
poor nucleoid regions (Figures 1b; 2a). Ciprofloxacin treatment caused a central, compact 
nucleoid region (Figures 1b; 2a) and resulted in cells that were longer than untreated cells 
(Figure 2b). Gentamicin treatment led to a diffuse nucleoid region following the long axis of 
the cell that was often rod-shaped (Figures 1b; 2a). Chloramphenicol treatment caused nucleoid 
compaction compared to the untreated phenotype, causing either a centralised DNA region or 
two dense DNA regions (Figures 1b; 2a). All antibiotic treatments resulted in cells with 
significantly different in average length and average width compared to the untreated 
phenotype (Mann-Whitney non-parametric hypothesis test p<0.05) (Figure 2b-c). The 
antibiotic treatment phenotypes in our images aligned with those found in previous work28–30 
and with the mechanism of action of each antibiotic (Figure 1b; 2). Because these phenotypes 
are quantifiable by ribosome fluorescence intensity mapping and identifiable by the human 
eye, it follows that a neural network could be trained to associate them with an antibiotic 
treatment response. 

Antibiotic-susceptible ribosome phenotypes are identified accurately by a neural network  

To train neural networks that can robustly identify the ribosome phenotypes resulting from 
antibiotic treatments, our fluorescence images were pre-processed prior to their use as training 
data. First, each single-channel image was segmented by a custom CellPose31 model trained to 
segment E. coli by ribosome fluorescence profiles. The segmentations were subsequently 
curated to refine the outlines and remove cells that were outside of the field of view, 
overlapping, or outside of the focal plane32. To regularise learning and prevent overfitting, each 
segmentation was used to create a 64x64 zero-filled image with the ribosome fluorescence in 
the centre, and augmentations (e.g., brightness normalisation, random noise, and geometric 
transformations) were applied before each image was loaded into the training dataset (Figure 
S2). 

To test the reliability and accuracy of the neural network in differentiating the antibiotic-
susceptible phenotypes from untreated E. coli MG1655, a rotating holdout test was performed 
(Figure 3a). For each experiment, a model was independently trained and validated on data 
from three of the biological replicates and tested on the fourth. The validation and testing 
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datasets were balanced to include an equal number of untreated and antibiotic-treated cell 
images to minimise prediction biases. The average balanced accuracy of the models on the four 
test datasets exceeded 90% for all antibiotics: ciprofloxacin~991.6%, gentamicin~967.2%, 
chloramphenicol~9113.8% (Figure 3b). Looking at the models’ predictions, the cells that 
were classified with high confidence (Figure S5) demonstrated the characteristic antibiotic 
phenotypes (Figure 2).  

We then examined the confusion matrices for the four holdout datasets, summed together. The 
ciprofloxacin phenotype model was the most accurate, with a very high average balanced 
accuracy of 98.9%, sensitivity of 98.4%, and specificity of 99.3% (Figure 3c). This may be 
because the ciprofloxacin response causes two phenotypic changes – elongated cells and 
condensed, central nucleoid – both of which can be used by the model in the classification task 
(Figure S3). The gentamicin phenotype model was also highly accurate, achieving an average 
balanced accuracy of 92.6%, sensitivity of 89.9%, and specificity of 95.2% (Figure 3d). 
Finally, the chloramphenicol phenotype model had a balanced accuracy of 88.8%, sensitivity 
of 78.3%, and specificity of 99.3% (Figure 3c). Inspection of the chloramphenicol-treated cells 
that were misclassified as untreated suggests that this model’s increased number of False 
Negative classifications was driven by cells that did not adopt the expected chloramphenicol-
treated phenotype within the antibiotic treatment period, having multiple, diffuse nucleoid 
regions (Figure S4a), whereas False Positive classifications tended to have a central nucleoid 
region (Figure S4b). The balanced accuracies of >90% reported here are for single cells and 
therefore the cumulative accuracy of the classifier on a collection of cells is essentially 100%. 
Accuracy on a sample of cells is discussed further in the section on clinical isolates. 

Ribosome phenotypes can be used to classify ciprofloxacin-resistant clinical E. coli isolates 

Having demonstrated that antibiotic response phenotypes can be reliably induced and classified 
by a CNN, we moved to train a model to classify E. coli isolated from clinical samples as 
susceptible or resistant to ciprofloxacin using the ribosome phenotype. We called an isolate 
“resistant” if its minimum inhibitory concentration (MIC, the concentration required to inhibit 
overnight growth), was above the EUCAST breakpoint9. Isolates with MICs below the 
EUCAST breakpoint were called “susceptible”. We hypothesized that a CNN could learn to 
identify ribosome phenotypes associated with ciprofloxacin sensitivity or resistance, and that 
resistant cells would look similar to untreated cells25 following ciprofloxacin exposure. 

To represent some of the variation present in pathogenic E. coli, we chose three susceptible 
strains (S1, S2, S3) and three resistant strains (R1, R2, R3), each with a different mutation in 
ciprofloxacin resistance-associated genes (Table 1). Each of the susceptible strains have a 
mutation in one of these genes, whereas the resistant strains all have three or more resistance-
associated mutations. For example, strain R2 has two mutations in the GyrA, which encodes 
the A subunit of DNA gyrase; and three mutations in the genes that encode DNA topoisomerase 
IV (two mutations in parC, for the A subunit; and one in parE, for the B subunit). Each of these 
mutations has been associated with increased ciprofloxacin resistance in previous work33–35. 
Each isolate was treated with ciprofloxacin at a concentration previously determined to 
robustly induce phenotypic changes within 30 minutes (10 mg/L, 20X EUCAST breakpoint)25. 

Following ciprofloxacin treatment, all susceptible E. coli strains (S1, S2, & S3) demonstrated 
a ribosome phenotype similar to ciprofloxacin-treated E. coli MG1655, with a compact, central 
nucleoid region that we can detect indirectly because it results in low ribosome density in the 
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central region (Figure 4a: S1, S2, S3). Some also showed an elongated morphology (Figure 4a: 
S1, S3). While some cells from the resistant strains resembled untreated E. coli MG1655, most 
cells from the resistant strains showed a different ciprofloxacin response, wherein the cells 
were elongated but retained diffuse nucleoid regions that spanned the cell length (Figure 4a: 
R1, R2, R3). 

In previous work, we have shown that a classifier trained on the nucleoid phenotypes of 
untreated and ciprofloxacin-treated E. coli MG1655 was able to classify susceptible and 
resistant clinical isolates accurately because resistant clinical isolates resembled untreated 
MG1655, while susceptible clinical isolates resembled ciprofloxacin-treated MG165525. We 
applied this method to our ribosome images, using the CNN trained on ciprofloxacin-treated 
MG1655 to classify clinical isolates. 

The MG1655 ciprofloxacin classifier had variable accuracy when applied to ciprofloxacin-
treated clinical isolates (Figure S6a). The classifier recognized ciprofloxacin-susceptible 
phenotypes with high accuracy. For S1 and S3, it classified cells as ciprofloxacin-susceptible 
with 95.610.2% and 93.62.4% accuracy, respectively. The accuracy was slightly lower for 
S2 cells (84.65.4%), possibly because these cells are less likely to be elongated than 
ciprofloxacin-treated MG1655 (Mann-Whitney non-parametric hypothesis test p<0.05; Figure 
4a, S2 isolate). For resistant isolates, the MG1655 classifier was less reliable. Compared to 
untreated MG1655, the ciprofloxacin-treated resistant isolates had similarly diffuse nucleoid 
regions but were elongated (Figure 4a: R1, R2, R3). The MG1655 classifier classified 
90.62.8% of R2 cells as ciprofloxacin-resistant, but only 33.30.3% of R1 cells and 
56.815.1% of R3 cells (Figure S6b). Representative cell images show that the R3 cells that 
were misclassified as susceptible had an elongated cell shape and a diffuse nucleoid (Figure 
S6a: R3), whereas R2 cells that were correctly classified as resistant had a shape and nucleoid 
phenotype more similar to the untreated MG1655 (Figure S6a, R2 isolate). The variability in 
accuracies for R1, R2, and R3 clearly show that the ribosome phenotypes resulting from 
ciprofloxacin treatment are too diverse to be reliably recognised by the MG1655 classifier, 
especially for resistant strains that develop an elongated shape with a diffuse nucleoid.  

Therefore, we hypothesized that a CNN trained on images of ciprofloxacin-susceptible and 
resistant clinical E. coli isolates would be able to learn these variable responses and would 
perform better at the classification task. For this model, the training dataset was composed of 
34,205 images of clinical E. coli treated with ciprofloxacin, which were segmented, zero-filled, 
and augmented as was done for the E. coli MG1655 model. We trained two six-strain models 
to check consistency on different biological replicates. For each of the six-strain models, two 
biological replicates were used for the training and validation datasets and one was used for a 
holdout test to assess the model’s accuracy on unseen data. In total, the testing dataset 
comprised 28,448 cells from three susceptible and three resistant clinical isolates (Figure 4b). 

The susceptible-resistant CNN learned to identify phenotypes associated with ciprofloxacin-
treated susceptible and resistant strains with a single-cell balanced accuracy of 95.38.3%; it 
displayed an accuracy of 98.82.3% in classifying resistant cells and an accuracy of 
91.715.8% in classifying susceptible cells (Figure 4b). Because these high accuracies were 
on a per-cell basis, we were able to estimate the power of the model to classify an unknown 
population of E. coli as antibiotic-susceptible, antibiotic-resistant, or a mixture of the two. We 
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simulated cell samples with 100% resistant cells, 100% susceptible cells, or a 50-50 mixture, 
using the sensitivity and specificity of our assay. 

Given its high sensitivity (98.8%) and specificity (91.7%), our susceptible-resistant classifier 
has the power to differentiate a 100% resistant sample from a 100% susceptible sample with 
99% confidence after sampling as few as 2 cells (Figure 4c). With a reasonable sample size of 
10-100 bacteria isolated from a clinical specimen, the confidence level of our prediction would 
increase. In the case of a mixed infection or contaminated sample, we could differentiate a 
mixed sample from a resistant sample (12 cells) or a susceptible sample (20 cells) with the 
same level of confidence (Figure 4c). Stratifying the classifications by strain, we showed that 
our classification accuracy remained above 80% for all six strains (Figure S7). When 
examining the relationship between a given strain’s MIC and the fraction of cells classified as 
resistant, fewer than 20% of cells from strains with an MIC less than the EUCAST breakpoint 
were called resistant, whereas nearly 100% of cells from strains with an MIC above the 
EUCAST breakpoint were called resistant (Figure 4a). Compared to the MG1655 model, the 
susceptible-resistant model has similar or higher accuracy for all susceptible strains and is more 
accurate on all resistant strains (+64.1.7% for R1, +7.96.1% for R2, +42.715.9% for R3) 
(Figure S8). 

Ribosome phenotypes can be used to classify unseen strains and antibiotic concentrations 

To explore the generalizability of a CNN to previously unseen strains and antibiotic 
concentrations, another model was trained on just one susceptible (S2) and one resistant strain 
(R4). These strains showed characteristic ciprofloxacin-susceptible and ciprofloxacin-resistant 
phenotypes after 30 minutes treatment with 1X EUCAST ciprofloxacin (0.5 mg/L) (Figure 5a). 
This model was trained on a dataset of 2,888 cell images with an 80:20 training-validation split 
and tested on the same holdout dataset as the six-strain model, composed of unseen images 
from the six clinical isolates treated at 20X EUCAST (10 mg/L) for 30 minutes. The 1X 
EUCAST model was tested on each of the 3 biological replicates and performed with an 
average accuracy of 78.210.7% on cells from susceptible strains and an accuracy of 
82.517.5% on cells from resistant strains (Figure 5b). Although lower in accuracy than the 
six-strain model, the two-strain model demonstrates an ability to reliably differentiate 
susceptible and resistant cells with relatively high accuracy while classifying images from 
never-before-seen strains treated at a different concentration of ciprofloxacin. This 
demonstrates the robustness of the ribosome phenotype classification method, so long as the 
model has seen sufficiently similar training data. 

 

Discussion 

We have shown that ribosome-targeted FISH probes can be used to visualize intracellular 
antibiotic response phenotypes in E. coli that differ based on the mechanism of action of the 
antibiotic, and that these phenotypes can provide single-cell AST data with a single label. We 
demonstrated that distinct ribosome antibiotic response phenotypes exist for three clinically 
relevant antibiotics, and that these can be learned by a CNN with >90% accuracy. In clinical 
isolates of E. coli, we found that the antibiotic response can be more complicated, and it cannot 
be assumed that the resistant strain will always resemble the untreated phenotype. However, 
by using a model trained to identify the phenotypes of clinical isolates, we achieved an average 
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single-cell classification accuracy of 95.3%. The ribosome phenotype classification method 
was also shown to extend to clinical strains not shown to the model in the training data and 
treated at a different antibiotic concentration. If deployed in a real-world AST, as the CNN 
models have access to training data from additional susceptible and resistant strains, the 
performance of the ribosome phenotype classifier would only be expected to improve. 

In the context of a diagnostic test, our current single-cell accuracy means that with only 2 cells, 
we can differentiate a susceptible from a resistant sample with 99% confidence and can identify 
mixed infections with a sample of 20 bacterial cells. On a realistic scale of between 10 to 100 
bacteria captured from a dilute sample such as blood or cerebrospinal fluid36, this level of 
accuracy could enable confident diagnosis even in less ideal imaging conditions. Compared to 
the previous deep-learning-based AST25 based on nucleoid and cell membrane staining, our 
ribosomal method achieves similar or greater accuracy while requiring only a single fluorescent 
label (92.1% vs. 91% on susceptible cells; 98.5% vs. 91% on resistant cells).  

This previous deep-learning-based AST also showed that it could provide equivalent 
information to growth-based assays25 through the relationship between the proportion of cells 
classified as antibiotic-susceptible and the MIC of the strain. Here, using the ribosome 
phenotype, we also find a strong relationship between the MIC of the clinical isolate and its 
morphology after antibiotic treatment with ciprofloxacin. While the previous method used 
untreated lab-strain E. coli as a proxy for the resistant phenotype, we found that our MG1655-
trained ribosome phenotype classifier had low accuracy when classifying resistant strains with 
a diffuse nucleoid but elongated cell shape. This could be because the MG1655 treated with 
ciprofloxacin is longer than untreated cells, and the ribosome phenotype classifier is classifying 
predominantly by cell length. Given the difference we found between clinical-strain and lab-
strain phenotypes, we recommend that antibiotic response phenotypes are characterized in 
clinical isolates when possible, although lab strains can be used as a starting point. 

The antibiotic response phenotypes of pathogenic E. coli are diverse, and there are many 
insights that could be learned from the 47,704 high-resolution single-cell images that were 
obtained for this study and are being made available for research (see Data Availability 
section). Generating these large, curated datasets of high-resolution bacterial images is time-
intensive, because many high-throughput systems are optimised for eukaryotic cells, but they 
can be powerful in developing our understanding of bacterial antibiotic response. Beyond the 
heterogeneity in response within a single sample, we found that two isolates with the same 
MIC (0.25 mg/L) but different genotypes showed different morphologies and were classified 
as resistant at different rates (6% vs. 18%). These divergent responses form avenues for future 
research. 

Compared to growth-based assays14–16, this method is limited to assessing the ribosome 
phenotype at a single timepoint because of the fixation and permeabilization steps necessary 
for FISH. The advantages of the ribosome-labelling FISH approach are the plethora of 
structural features that are amenable to deep-learning-based classification and the potential for 
simultaneous species ID. The combination of live-cell growth rate and fixed-cell phenotypic 
data could be even more powerful in assessing a cell’s antibiotic response. 

Here, we demonstrate the accuracy of a ribosome phenotype AST on E. coli clinical isolates 
treated with ciprofloxacin. To have greater clinical utility, this method will need to be extended 
to other bacterial species and antibiotics. FISH probes targeting the ribosomal RNA have been 
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used to identify a variety of Gram positive and negative species for clinical applications37–40. 
In the future, these probes could be combined with ribosome phenotyping. It is likely that the 
extension of this method from E. coli to other Gram-negative bacilli will be more 
straightforward, while the smaller size of cocci and lower permeability of Gram-positive 
bacteria may be a greater challenge. Similarly, we have shown that three antibiotics with 
intracellular targets (ciprofloxacin, gentamicin, chloramphenicol) cause characteristic 
ribosome phenotypes that can be identified by a CNN. We expect that this method can be 
extended to other antibiotics, so long as they reliably induce a visible change in the ribosome 
phenotype within the time scale of the test. As was shown for gentamicin (Figure S1), the 
benchmark treatment concentration may differ for each antibiotic. The length of antibiotic 
treatment may also need to be adjusted, especially for slow-growing species. Despite these 
challenges, when used in combination with bacterial genotyping, a single-cell imaging assay 
like this one could also be used to profile new resistance-associated mutations. This work 
serves as a guide for how deep learning can be used with fluorescence microscopy to learn 
intracellular phenotypes with high levels of accuracy, which can be applied to different species, 
and antibiotics, as well as to many biological, clinical and biotechnological applications. 

In the context of ultra-rapid ASTs, although more conventional cytological profiling has 
advantages in interpretability16,24, the expected diversity of ribosome phenotypes in response 
to antibiotic treatment in different bacterial strains and species is one of the motivators for a 
CNN-based phenotypic AST, because a CNN can be expected to improve in performance when 
it is able to learn from additional, real-world data41. 

By combining our single-cell ribosome-based assay with highly efficient microfluidic capture 
chips36, an AST could be performed on cells captured directly from the clinical specimen, 
eliminating the need for lengthy culture steps, and use multiplex FISH probes that bind to 
species-specific regions on the ribosomal RNA to report both the species ID and antibiotic 
susceptibility data. 

Methods 

Bacterial strains and sample preparation. Escherichia coli MG1655, a lab-adapted non-
pathogenic K-12 derivative, was used as the reference strain for characterising antibiotic-
susceptible ribosome phenotypes. Clinical strains were grown from stored blood culture 
isolates obtained for diagnostic and research purposes by the Microbiology Laboratory of the 
Oxford University Hospitals NHS Foundation Trust, Oxford, UK. All clinical isolates had been 
sequenced on the Illumina platform and AMR genotypes were assigned using the ResFinder42 
database with Abricate v0.9.843 (--min-id 95 –min-cov 95) as part of a previous study44 (Table 
1).  

The minimum inhibitory concentration (MIC) of each strain was tested in biological duplicate 
according to the broth microdilution method45 (Table 1, Table S1). The MIC was defined as 
the lowest antibiotic concentration inhibiting growth when the cultures were incubated 
overnight in Mueller-Hinton broth at 37℃. 

Bacterial cultures were prepared in a shaking incubator at 37℃ in 5 mL lysogeny broth 
(MG1655) or Mueller-Hinton broth (clinical isolates) until reaching logarithmic growth, or 
OD600nm of 0.2. Then, antibiotics were added to reach the specified concentration (see EUCAST 
Breakout Points, Table S1) and the samples were returned to the incubator for the 30-minute 
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treatment period. Samples were then fixed in 2% paraformaldehyde for 20 minutes. After 
fixation, the samples were centrifuged and the cell pellets were washed once with PBS, then 
re-centrifuged and re-suspended in 5 mL PBS before being split into 1 mL aliquots and 
permeabilised in 500 µL absolute ethanol before being stored at -20℃ until use. 

Before imaging, the cells were centrifuged to remove the ethanol supernatant, washed with 500 
µL PBS, and resuspended in hybridization buffer (20% v/v formamide, 0.9 M NaCl, 20 mM 
Tris pH 7.5, 0.01% SDS w/v). For labelling, 4’,6-diamidino-2-phenylindole (DAPI, 1 µg/mL) 
and 25 nM EUB338-Cyanine3 were added to the solution and the sample was incubated for 20 
minutes. The ssDNA EUB338-Cyanine3 FISH probe has the sequence Cyanine3 – 5’ – gct gcc 
tcc cgt agg agt – 3’ (Sigma Aldrich). Following incubation, the samples were washed and 
resuspended in 150 µL PBS. 

Image acquisition. Samples were imaged on agarose pads prepared with 1.5% (w/v) high-
purity agarose (Bio-Rad, catalogue number 1613101) in distilled water. Images were collected 
on the Nanoimager-S microscope (ONI, Oxford, UK) with a 100X oil-immersion objective in 
multi-acquisition mode. The DAPI stain was illuminated by a 405 nm laser in epifluorescence 
mode at a laser power of 5.1 kW/cm2 for an acquisition time of 20 ms. The Cyanine 3 
fluorophore was illuminated with a 532 nm laser in epifluorescence mode at a laser power of 
16.5 kW/cm2 for 20 ms. 

Image processing and segmentation. Each field of view was segmented using Napari-
BacSeg32, a user-friendly bacterial analysis platform that allows microscopy images to be 
segmented using machine learning models, such as CellPose31 and OmniPose46. BacSeg can 
also be used to train custom CellPose or OmniPose models to improve segmentation 
performance and minimise the need to curate segmentations or fix segmentation errors. Within 
the software, the resulting segmentations can be easily curated and then exported in multiple 
formats to facilitate downstream analysis. Descriptive statistics of the segmented bacteria can 
also be computed and exported. The BacSeg Napari47 plugin can be installed from from the 
Napari Hub, the Python package manager PyPi, or GitHub (https://github.com/piedrro/napari-
bacseg). 

For our segmentations, custom CellPose31 models were trained on our 532 nm ribosome data 
for 100 epochs using the standard Napari-BacSeg hyperparameters to improve segmentation 
performance; these were then used for cell segmentation. Cells on the edge of the image, 
overlapping cells, vertical cells, or cells outside of the focal plane were removed from the final 
dataset during the segmentation and curation process. 

Cell phenotypes. From the curated segmentations, cell lengths, widths, and midlines were 
generated using the ColiCoords48 plugin within Napari-BacSeg32 with 10 midline vertices. For 
each cell, the intensity in each channel is normalised from 0 to 1 and the mean intensity is 
calculated for each channel for 100 bins along this midline. For a population of cells, the mean 
intensity and the standard deviation of the intensity is calculated for each of these 100 bins. 
This provides a mean intensity for each bin along the long axis of the cell. Because the cell 
lengths cannot be assumed to be normally distributed, hypothesis testing was conducted with 
the Mann-Whitney non-parametric test with a significance value of 0.05 in Origin Pro 2021. 

Neural network training. Images and segmentation maps were exported from Napari-BacSeg32 
to create standardised 64x64 images of each cell zero-filled outside the segmentation boundary. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.18.24309111doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309111
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

To account for different staining and illumination brightness, histogram normalisation was 
applied to each image. The images were randomly rotated, flipped, translated, sheared, and 
blurred with geometric and noise transforms from the Albumentations package49 before being 
loaded into the neural network. 

The convolutional neural network was built with PyTorch50. Each model was run for 100 
epochs with a batch size of 10, a learning rate of 0.001, and a training-validation split of 
0.80/0.20. Optuna51 was used to optimise the hyperparameters for each model. The validation 
and testing datasets were balanced by class to reduce bias. Because the task was a single-label 
binary classification, DenseNet12152 with the Cross-Entropy loss function was used as the 
neural network structure. The Adam function53 was used for adaptive learning rates. 

Accuracy Metrics and Sample Size Simulation. Plots and phenotype statistics such as the Mann-
Whitney non-parametric test were done using Origin Pro 2021. The Mann-Whitney non-
parametric test was chosen because the phenotype measurements cannot be assumed to be 
normally distributed, as they are composed of cells at different stages of the cell cycle. The cell 
classification simulation to determine sample size was calculated using MATLAB R2022b. 

1. Balanced Accuracy. All accuracies are reported with the 95% confidence interval,  2. 
Here we define resistant cells as “Positives” and susceptible cells as “Negatives.” For a one-
class binary classification task, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

For a two-class classification task, given that: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

then 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
ଵ

ଶ
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦). 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑎𝑙𝑙𝑠
 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑙𝑙𝑠
 

 

2. Sample Size Simulation. Given a sample of cells of size N and a certain proportion of 
susceptible and resistant cells (100:0, 50:50, 0:100), we simulated the measured Resistant 
Fraction and 95% confidence interval. We simulated random samples of 10,000 susceptible 
and resistant cells at the defined proportions and transformed them into detected samples using 
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the accuracy of our susceptible-resistant classifier. A resistant cell was detected as resistant 
98.8% of the time (sensitivity) and a susceptible cell was detected as susceptible 91.7% of the 
time (specificity). Random populations of between 1-40 cells were sampled and the Resistant 
Fraction (resistant cells/total cells) was calculated. After 1,000 trials, the mean Resistant 
Fraction and 99% confidence interval (2.58) was plotted for each sample size. We defined 
the minimum sample size as the smallest sample for which the 99% confidence intervals did 
not overlap. 

Ethics. Ethical approval for the use of clinical isolates processed by the John Radcliffe Hospital 
microbiology laboratory in the development of diagnostic assays was granted by the UK’s 
Health Research Authority (London – Queen Square Research Ethics Committee [REC 
reference: 17/LO/1420]). 
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E. coli Clinical 
Isolate 

Ciprofloxacin 
MIC (mg/L) 

Relevant genotype information 

gyrA marR parC parE 

Susceptible 1 (S1) 0.015 
   

I355T 

Susceptible 2 (S2) 0.25 
 

S3N 
  

Susceptible 3 (S3) 0.25 
   

I529L 

Resistant 1 (R1) 2 D87Y, 
S83L 

 
S80I 

 

Resistant 2 (R2) 16 D87N, 
S83L 

 
E84V, 
S80I 

I529L 

Resistant 3 (R3) 64 D87N, 
S83L 

 
S80I S458A 

Resistant 4 (R4) 128 D87N, 
S83L 

 
S80I S458A 

Table 1. E. coli clinical isolates with their MICs and AMR genotypes. Each clinical isolate 
used in this project is listed with its MIC and relevant genotype information. All strains are 
Escherichia coli isolated from bloodstream infections in the United Kingdom, obtained and whole-
genome sequenced for a previous study44. MICs were determined by broth microdilution. (See 
Methods: Bacterial strains and sample preparation for details of MIC and sequencing methods).  
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Figure 1. Proposed workflow for using ribosome phenotypes in an ultra-rapid antibiotic 
susceptibility test.  

(a) Workflow: First the clinical isolate is treated with antibiotics at a standard concentration for 30 
minutes. Then, a standard FISH protocol is used to label the ribosomes with ssDNA fluorescent 
probes; in this case, EUB338-Cy3 binds a conserved region in the 30S subunit. The samples are 
imaged on a fluorescence microscope before neural networks use the ribosome signal to segment and 
then classify the cells as susceptible or resistant to the prescribed antibiotic treatment.  

(b) Ribosome Phenotypes: Representative fluorescence images are shown of E. coli MG1655 with 
and without antibiotic treatment (magenta, DNA stained with DAPI; green, ribosomes labelled with 
EUB338-Cy3 probes; combined DNA and ribosome signal). The scale bar is 2 µm. The ribosome 
density can be seen to anti-correlate with the DNA-dense regions. The untreated panel shows fixed 
cells with no antibiotic treatment. The chloramphenicol panel shows cells treated with 8 mg/L 
chloramphenicol (1X EUCAST breakpoint) for 30 minutes before fixation. The ciprofloxacin panel 
shows the same, treated with 0.5 mg/L ciprofloxacin (1X EUCAST breakpoint). The gentamicin panel 
shows the same, treated with 40 mg/L gentamicin (20X EUCAST breakpoint). 
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Figure 2. Ribosome intensity line profiles reveal ribosome-nucleoid anti-correlation and 
characteristic phenotypes of antibiotic response.  

(a) Along the long axis of the cell, the mean normalised ribosome (Cy3, grey) and nucleoid (DAPI, 
magenta) intensities are calculated for each of 100 bins. The shading shows  1 standard deviation of 
the mean. The untreated E. coli line profiles show two nucleoid-rich regions, correlated with 
decreased ribosome intensity. This figure is composed of profiles from 5,286 untreated E. coli 
MG1655. The ciprofloxacin panel shows the same, for 3,215 E. coli MG1655 treated with 1X 
EUCAST ciprofloxacin for 30 minutes. The line profile shows a central, compact nucleoid region 
with greater segregation from the ribosomes. The gentamicin panel shows the same, for 5,935 E. coli 
MG1655 treated with 20X EUCAST gentamicin for 30 minutes. This line profile shows a diffuse 
nucleoid region along the long axis of the cell with less ribosome-nucleoid segregation. The 
chloramphenicol panel shows the same, for 6,438 E. coli MG1655 treated with 1X EUCAST 
chloramphenicol. This line profile shows nucleoid compaction compared to the untreated phenotype, 
with a centralised DNA region or two dense DNA regions.  

(b) The cell lengths (μm) are shown for untreated E. coli MG1655 and for each of the antibiotic 
treatments. The box shows the 25%~75% percentile range, the bars show the 1%-99% percentile 
range, and the line denotes the median. Each antibiotic results in a length distribution statistically 
different from the untreated population with p<0.05 by the Mann-Whitney non-parametric test. (c) 
The cell widths (μm) are shown for untreated E. coli MG1655 and for each of the antibiotic 
treatments. The box shows the 25%~75% percentile range, the bars show the 1%-99% percentile 
range, and the line denotes the median. Each antibiotic results in a width distribution statistically 
different from the untreated population with p<0.05 by the Mann-Whitney non-parametric test. 
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Figure 3. Ribosome phenotype recognition is robust across biological replicates.  

(a) Four biological replicates of E. coli MG1655 were tested for each antibiotic and for the untreated 
condition. To test phenotype robustness and repeatability, a holdout cross-validation was performed in 
which each model was trained and validated on images from three of the biological replicates and 
tested on images from the fourth. The training images received random data augmentations before 
being passed to the model, whereas the holdout dataset was passed directly to the model for testing.  

(b) The balanced accuracy of the ribosome phenotype classifier is shown for each antibiotic. Each 
point represents a biological replicate. The mean balanced accuracy is shown as on each column and 
the error bars indicate the 95% confidence interval of the mean on the four biological replicates.  

(c) Confusion matrices for the ribosome phenotype classifier. The total number of cells is a sum of the 
results from four experiments, each with a model trained on three biological replicates and tested on a 
fourth holdout replicate. The number of images in each class is shown, along with the percentage of 
cells for each treatment condition. The treatment condition is shown on the columns and the model’s 
predicted classification is shown on the columns. Right column: positive predictive value (PPV) and 
negative predictive value (NPV) of the model’s predictions are shown. Bottom row: accuracy of the 
model on antibiotic-treated cells (Sensitivity), accuracy of the model on untreated cells (Specificity), 
and the Balanced Accuracy (Accuracy) are shown. See Accuracy Metrics for details. 
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Figure 4. Susceptible (MIC < EUCAST breakpoint) and resistant (MIC > EUCAST 
breakpoint) E. coli isolates can be differentiated by the fraction of cells called resistant 
by the model.  

(a) The fraction of cells in the sample called resistant by the susceptible-resistant classifier (Resistant 
Fraction) is plotted against the MIC of the strain (mg/L) on a logarithmic scale, with error bars 
indicating the 95% confidence interval of the mean on two biological replicates. The test dataset is 
composed of holdout images, previously unseen by the classifier, from each clinical isolate. The 
EUCAST breakpoint (0.5 mg/L, green) and the treatment condition (10 mg/L, blue) are shown with 
shaded vertical lines. All strains with an MIC below the EUCAST breakpoint have a resistant fraction 
less than 0.2, whereas the fraction classified resistant is nearly 1.00 for the strains with an MIC above 
the EUCAST breakpoint. Representative, correctly classified images of  ribosome phenotypes from 
each of the clinical isolates are shown for each point. Scale bars are not shown on the images because 
cells are resized to standardized 64x64 images before being passed to the CNN.  

(b) The confusion matrix for the ciprofloxacin-resistant and ciprofloxacin-susceptible classifier 
trained on 6 strains on a holdout, unseen dataset of 6 strains.The testing dataset is composed of 28,448 
images from unseen biological replicates. See Accuracy Metrics for details on Accuracy, Sensitivity, 
Specificity, PPV, and NPV. 

(c) The number of cells necessary to classify a sample as coming from a population of susceptible or 
resistant bacteria. Simulated samples of different susceptible:resistant ratios (S:R) were transformed 
through the sensitivity and specificity of the susceptible-resistant classifier to determine the minimum 
number of cells necessary to differentiate them. Here, we plot the mean Resistant Fraction and 99% 
confidence interval after 1,000 trials with samples ranging from 1 to 40 cells sampled (N) for 
susceptible:resistant ratios of 0:100 (purple triangles), 50:50 (blue circles), and 100:0 (green 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.18.24309111doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309111
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

diamonds). As the number of cells sampled increases, the confidence interval of the Resistant Fraction 
narrows. Susceptible samples can be differentiated from resistant samples with a sample of 2 cells 
(purple dotted line). A mixed sample can be differentiated from a resistant sample with 12 cells (blue 
dotted line) or from a susceptible sample with 20 cells (green dotted line). The confidence interval for 
resistant cells is narrower than that of susceptible cells because the classifier is more sensitive than it 
is specific. 
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Figure 5. A CNN trained on isolates treated at 1X EUCAST maintains single-cell 
accuracy >75% on isolates treated at 20X EUCAST.  

(a) Representative, correctly classified images of the ribosome phenotypes of strains R4 and S2 
treated at 1X EUCAST (0.5 mg/L) for 30 minutes. Scale bars are not shown because cells are resized 
to standardized 64x64 images before being passed to the CNN.  

(b) The susceptible-resistant classifier trained on 6 clinical isolates of E. coli treated with 
ciprofloxacin at 20X EUCAST (black circles) is compared to the classifier trained on 2 clinical 
isolates of E. coli (R4, S2) treated at 1X EUCAST (red squares). The error bars denote the 95% 
confidence interval of the mean accuracy. The 20X EUCAST model was tested on 28,448 holdout test 
images from 2 biological replicates of the 6 clinical E. coli isolates treated at 20X EUCAST 
ciprofloxacin for 30 minutes. The 1X EUCAST model was tested on 50,681 unseen images from the 
same 20X EUCAST dataset. For every isolate, the 20X EUCAST model is more likely to call 
resistant cells resistant and less likely to call susceptible cells resistant. However, the 1X EUCAST 
model maintains an accuracy of 78.210.7% on cells from susceptible strains and an accuracy of 
82.517.5% on cells from resistant strains, despite being trained on images of cells treated at a 
different concentration and classifying previously unseen strains. 
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