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Abstract 
 
Sex and age are major risk factors for chronic diseases. Recent studies examining age-related 
molecular changes in plasma provided insights into age-related disease biology. Cerebrospinal 
fluid (CSF) proteomics can provide additional insights into brain aging and neurodegeneration. 
By comprehensively examining 7,006 aptamers targeting 6,139 proteins in CSF obtained from 
660 healthy individuals aged from 43 to 91 years old, we subsequently identified significant sex 
and aging effects on 5,097 aptamers in CSF. Many of these effects on CSF proteins had 
different magnitude or even opposite direction as those on plasma proteins, indicating distinctive 
CSF-specific signatures. Network analysis of these CSF proteins revealed not only modules 
associated with healthy aging but also modules showing sex differences. Through subsequent 
analyses, several modules were highlighted for their proteins implicated in specific diseases. 
Module 2 and 6 were enriched for many aging diseases including those in the circulatory 
systems, immune mechanisms, and neurodegeneration. Together, our findings fill a gap of 
current aging research and provide mechanistic understanding of proteomic changes in CSF 
during a healthy lifespan and insights for brain aging and diseases. 
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Introduction 
 
Aging is a complex and gradual process involving both physiological and pathological changes 
characterized by progressive functional decline, resulting in decreased fitness, increased 
susceptibility, and vulnerability to diseases, and eventually death1. Many chronic diseases, 
including obesity, diabetes, cardiovascular disease (CVD)2, stroke, and neurodegenerative brain 
diseases,3 occur more frequently as aging, and multiple of these diseases often co-occur. These 
age-related diseases are the leading causes of mortality and increasing healthcare costs. With 
increased life expectancy, these costs are continually rising and represent an ever-growing 
challenge. In addition to aging, clear sex differences exist in many of these diseases and 
continue to present across the lifespan. Parkinson's disease (PD)4 and cardiovascular diseases5 
are more prevalent in males, whereas Alzheimer's disease (AD) is more prevalent in females6.  
Other diseases including osteoporosis7 and multiple sclerosis8 also show the disparity between 
males and females. Therefore, understanding the mechanisms of aging and sex differences and 
their association with age-related diseases and resulting comorbidity conditions is essential for 
developing therapies that mitigate age-related disease and prolong healthy aging and 
longevity.9-12 
 
Several studies using omics data including methylations, transcriptomics, and proteomics13 
examined age-related changes, identifying a broad spectrum of biomarkers associated with the 
aging process and providing new insights into the biology of chronic diseases14. Compared to 
methylation and transcriptomic levels, proteins are final effectors of most physiological pathways, 
often dysregulated in diseases, and important drug targets. Most human proteomic studies have 
considered plasma due to easy accessibility13,15. For example, Lehallier et al. identified dynamic 
changes in several plasma proteomes throughout the life span, demonstrating biological aging 
is a better predictor for morbidity and mortality than chronological aging16,17. Koichiro et al. 
identified sex differences in serum protein composition18. Couillard et al. found that females 
have three times higher plasma leptin and weight-losing hormones than males19. These and 
several other plasma proteomic studies have successfully utilized plasma proteome profiling, 
elucidated the aging process, and provided quantitative and functional characterization of 
pathological conditions20. Compared to plasma, cerebrospinal fluid (CSF) is adjacent to the 
brain and can better capture the aging process of brain and central nervous system. For most 
neurodegenerative diseases, CSF proteins are gold standard biomarkers and provide critical 
pathological changes occurring in the brain. As certain age-associated diseases including 
neurodegeneration demonstrate their pathological evidence through CSF, studying CSF aging 
signatures has immense potential in uncovering idiopathic conditions that cannot be discovered 
using other specimens. However, due to the perceived invasiveness of obtaining CSF samples 
via lumbar puncture, relatively few studies collect CSF samples from healthy individuals.  
 
We hypothesize that the CSF proteome has different sex and aging signatures when compared 
to the plasma proteome, which in turn can uncover biological aging processes that may be 
specific to brain aging. To test this hypothesis, we generated 7,006 aptamers targeting 6,162 
proteins in CSF from 994 cognitively normal individuals across three large cohorts (Table 1). We 
pursued an unbiased and hypothesis-free approach to examine the impact of aging and sex 
differences on CSF proteome in the discovery cohort and validated them in the two independent 
cohorts. We performed clustering analysis to group CSF proteins into modules, each with 
similar sex and aging trajectories. Because aging plays a significant role in the pathophysiology 
of age-related diseases, we subsequently examined these modules for disease and gene 
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ontology. Our findings show distinctive aging trajectories and sex differences in CSF proteome 
and their connection to common chronic diseases. 
 
 

Results 
Sex and aging effects of CSF proteomics are distinctive, compared to plasma  
To examine the impact of aging and sex differences on CSF proteome, we collected CSF 
samples from 660 cognitively healthy individuals in the Knight Alzheimer Disease Research 
Center (Knight ADRC) and subsequently quantified proteomic data through aptamer-based 
SOMAscan platform (SOMAscan7k)21. After a rigorous data processing and quality control, 
7,006 aptamers targeting 6,162 human proteins remained and were utilized in the study. By 
performing regression analysis in this cohort, we identified 4,682 proteins significantly 
associated with age (including NEFL, GDF15, and MYL4; Fig.1a; Supplementary Table 1) and 
1,587 proteins significantly associated with sex at FDR < 0.05 (including PUDP, MYL4, PZP, 
and APCS; Fig. 1b; Supplementary Table 2). There were 1,172 proteins affected by both age 
and sex (Fig. 1c). Among the age associated proteins, 3,037 proteins (64.9%) including NEFL, 
GDF15, and CFD increased with age, while 1,645 proteins (35.1%) including NEU1 and ID2 
decreased with age (Fig. 1d). Among the sex associated proteins, 831 proteins (52.4%; 
including MYL4 and APCS) had higher abundance levels in males, while 756 proteins (47.6%; 
including PUDP and PZP) had higher abundance levels in females (Fig. 1d). The remaining 
1,909 proteins such as BCHE and GSTT1 were not affected by either age or sex (Fig. 1d).  
 
To validate these age and sex effects on CSF proteomics, we obtained the same SOMAscan7k 
proteomic data in CSF from 334 individuals in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and Fundació ACE Alzheimer Center Barcelona (FACE) cohorts, which were examined 
for aging effects and sex differences (Supplementary Tables 3-4). Out of the 4,682 age 
associated proteins in Knight ADRC, 1,942 proteins (41.5%) were nominally significant in this 
validation data at P < 0.05. Of the 1,587 sex associated proteins in Knight ADRC, 939 proteins 
(59.2%) were nominally significant in this data. When checked with all 7,006 analytes, 
correlation between the Knight ADRC and the validation data was very high (Pearson 
correlation ρ=0.85, P < 2.0×10-16, for aging effect, Fig 1c; ρ=0.86, P < 2.0×10-16, for sex 
difference; Fig. 1d), indicating the robustness of these identified aging effects and sex 
differences in CSF proteins.  
 
To examine whether these findings would be specific to CSF or shared with plasma, we also 
obtained the SOMAscan7k proteomic data in plasma from 1,384 healthy individuals in Knight 
ADRC. In plasma data, we found 3,296 proteins associated with age (Supplementary Fig.1a; 
Supplementary Table 5) and 3,873 proteins associated with sex (Supplementary Fig.1b; 
Supplementary Table 6) at FDR < 0.05. There were 1,803 proteins associated with both age 
and sex (Supplementary Fig.1c). These age and sex effects on plasma proteome was also 
validated with the external UKB-PPP (ρ=0.44 for aging effect, Fig 1c; ρ=0.52 for sex difference; 
Supplementary Fig. 1d-e). These moderate correction values were somewhat expected as the 
different proteomic platforms were used (SOMAscan in Knight ADRC vs. OLINK in UKB-PPP). 
 
When these effects on plasma proteomics were compared to those on CSF proteomics, their 
correlations were much reduced (ρ=0.39 for aging effect, Fig 1c; ρ=0.23 for sex difference; Fig. 
1g-h). The aging effects of 1,824 (55.3%) proteins were not consistently identified in CSF and 
plasma, with 693 (21.0%) showing the opposite directions between CSF and plasma. While 
1,472 (44.7%) proteins (including GDF15; βA=0.011 in CSF vs 0.0099 in plasma; Fig. 1g; 
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Supplementary Fig. 1f) had the same directions in both CSF and plasma, several of these 
proteins had pronounced magnitude differences in their aging effect. For example, PTN 
increased with age 13 times faster in plasma than in CSF (βA=0.0008 in CSF vs 0.0105 in 
plasma; Fig. 1g; Supplementary Fig. 1f), while MYL4 increased with age seven times faster in 
CSF than in plasma (βA=0.0034 in CSF vs 0.0005 in plasma). With sex effects, only 502 (13.0%) 
proteins (including CGA|FSHB; βS=0.389 in CSF vs 0.713 in plasma; Supplementary Fig. 1f) 
had the same direction in CSF and plasma. For the remaining 3,371 (87.0%) proteins, sex 
effects were not consistent in CSF and plasma. For example, C3 in CSF had higher abundance 
in males, but C3 in plasma had higher abundance in females (βS=-0.125 in CSF vs 0.112 in 
plasma; Supplementary Fig. 1f). In contrasts, LANCL1 in CSF had higher abundance in females, 
but LANCL1 in plasma had higher abundance in males (βS=0.038 in CSF vs -0.054 in plasma; 
Fig. 1h; Supplementary Fig. 1f). These findings point that CSF proteome show distinctive age 
and sex differences compared to plasma proteome. 

 
CSF biological age is consistent to plasma biological age 
To examine the biological age using proteomics in CSF and in plasma, we constructed a 
proteomic clock based on the 569 Knight ADRC samples that had proteomic data in both CSF 
and plasma. Since we found that proteins showed sex differences, we constructed sex-stratified 
biological clocks. We split the data into testing vs training (3/4 vs 1/4) and subsequently 
selected the model based on four-fold cross-validation. In CSF from males, the optimal 
proteomic aging model included 120 proteins (Fig. 2a; Supplementary Table 7), which provided 
the biological age highly consistent with the chronological age (correlation ρ=0.97 in training 
data; ρ=0.75 in testing data; Fig. 2b). Similarly, in CSF from females, the biological age 
predicted based on 134 proteins was highly consistent with the chronological age (ρ=0.97 in 
training data; ρ=0.87 in testing data; Fig. 2b). In the independent ADNI and FACE cohorts, 
these sex-specific biological clocks based on CSF proteomics provided comparable 
performance (in ADNI, ρ=0.72 for males and ρ=0.61 for females; in FACE, ρ=0.75 for males and 
ρ=0.61 for females; Supplementary Fig. 2a). Compared to the CSF aging model, the proteomic 
aging model in plasma included fewer proteins (62 proteins in males and 89 proteins in females; 
Fig. 2a; Supplementary Table 7). The biological aging in plasma performed equally well (ρ=0.92 
in training males; ρ=0.86 in testing males; ρ=0.94 in training females; ρ=0.83 in testing females; 
Fig. 2c). These plasma clocks were validated well in an additional set of 815 Knight-ADRC 
samples (ρ=0.83 for males and ρ=0.81 for females; Supplementary Fig. 2b).  
 
To compare the predicted biological age based on CSF or plasma clocks, we examined 143 
Knight ADRC samples in which plasma and CSF were collected within 6 months. Across all 
samples, there was no statistically significant difference in the predicted biological ages based 
on CSF or plasma clocks (paired t-test P=0.915). The correlations between predicted biological 
age based on CSF or plasma clocks was moderate (ρ=0.61; Fig. 2d). When the correlation was 
examined separately for each sex, males showed somewhat higher correlation than females 
(ρ=0.67 in males; ρ=0.58 in females).  
 
To examine whether predicted biological age based on CSF or plasma clocks had a similar 
relationship with chronological age (i.e., delayed, or accelerated aging), we computed the delta 
(the departure of each predicated biological age from the chronological age) in CSF and plasma. 
The overall correlation of the difference between predicted age based on CSF and plasma 
clocks and chronological age was ρ=0.620 with almost no difference in males and females 
(ρ=0.624 in males; ρ=0.632 in females; Fig. 2e). For 103 individuals (72%), the differences 
between age predicted by both CSF and plasma clocks and chronological age were in the same 
direction (kappa statistic=0.44). Fifty-three individuals (23 males; 30 females) showed delayed 
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aging based on both the CSF and plasma clock, where predicted biological age was younger 
than the chronological age, while 50 samples (20 males; 30 females) showed accelerated aging 
with their biological age older than the chronological age. In the remaining 40 samples (28%; 17 
males; 23 females), the differences between age predicted by both CSF and plasma clocks and 
chronological age were in different directions (e.g., the individual’s CSF clock provided 
accelerated aging, while his/her plasma clock provided delayed aging). Together, these results 
show that CSF proteomic data generally provide consistent information as the plasma proteomic 
data in terms of individual’s biological age.  

 
Network analyses of CSF proteomics identify modules with distinctive age and 
sex signatures 
To reduce the complexity of the proteome, we performed weighted gene co-expression network 
analysis (WGCNA) with 7,006 aptamers in the Knight ADRC CSF samples. The network 
analysis provided 16 modules, which collectively included a total of 5,131 aptamers targeting 
4,917 proteins (Fig 3a; Supplementary Table 8). The remaining 1,875 aptamers were not 
assigned into any of the 16 modules. When we visually examined each module with locally 
estimated scatterplot smoothing (LOESS) in males and females separately, each module 
included proteins with similar aging or sex signatures (Fig. 3b; Supplementary Fig. 3). Among 
them, several modules exhibited non-linear age trajectories. 
 
When each module was tested for aging effects, we found 13 modules significantly correlated 
with age (at P<0.05; Fig. 3a; Supplementary Table 9). Correlations within each sex (in males 
and females separately) were like those in the combined data (Supplementary Table 9). For 
some modules (M3, M4, and M6), aging trajectories in males and females were parallel with 
similar patterns (for example, showing protein levels increasing or decreasing around the same 
age). Several modules (including M10 and M15) had complex aging trajectories. For example, 
females increasing their protein abundances around the age when males decreasing their 
proteins. Seven modules (M1, M3, M5, M6, M7, M13, and M14) were positively correlated with 
age, showing increasing protein abundances as aging (Fig. 3a). Among them, M7 (including 
KCNE5, HSPB6, and MYL9) had the highest positive correlation (ρ=0.50, P=3.3×10-42). Proteins 
in M7 showed a stronger linear aging trajectory in males, whereas proteins showed non-linear 
aging trajectory with increasing abundance until 75 years old and decreasing afterward. In M5, 
the male trajectory increased until 65 years old and remained constant afterward, whereas its 
female trajectory stayed constant until 65 years old and changed afterward. With strong non-
linear trajectory, the correlation with age for M5 (ρ=0.082; P=3.45×10-02) did not capture full 
aging effect. Five modules (M2, M4, M9, M10, and M15) were negatively correlated with age, 
showing decreasing protein abundances as aging. M2 (including NEU1 and ID2) had the lowest 
correlation, showing most decreases (ρ=-0.37, P=7.2×10-23).  
 
When each module was tested for sex differences, nine modules showed statistically significant 
sex differences at P < 0.05 (Fig. 3). In three modules (M3, M6, and M7), males had higher 
protein levels. Among them, M6 (including APCS, ELMO1, PI3, PLG) showed the most 
noticeable sex difference with the largest Cohen’s distance (-0.70, P=1.8×10-17), whose aging 
trajectories in males and females were parallel. In six modules (M2, M4, M5, M10 and M11), 
females had higher protein levels. Among them, M2 (including ENPP2, FIBP, and TNNI1) 
showed the largest sex differences (Cohen’s d=0.25, P=1.51×10-03), with non-linear aging 
trajectories parallel in males and females. 
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Enrichment analysis highlights modules linked to multiple aging diseases 
To identify the protein modules relevant to common aging diseases, disease ontology 
enrichment was performed by examining enrichment for the diseases classified in the 
international classification of diseases’ 10th revision (ICD-10). For the 1,145 diseases that were 
examined with each of 16 modules, 106 diseases were significantly enriched with eight modules 
(M2, M3, M5, M6, M7, M9, M13, and M15) at FDR < 0.05 (Fig. 4a; Supplementary Table 10). To 
uncover mechanistic insights into their relevance with diseases, we subsequently performed 
gene ontology (GO) enrichment for these eight modules. Six modules (M2, M3, M5, M6, M7, 
and M13) showed enrichments for GO biological processes (BP) at FDR < 0.05 (Supplementary 
Table 11). To examine cellular context of these modules and individual proteins, we also 
performed enrichment analysis using cell type expression data from human brain cells22 
(Supplementary Table 12). 
 
Six modules (M3, M5, M7, M9, M13 and M15) showed enrichment for three or fewer IDC-10 
chapters. M3 showed enrichment for the complement deficiency disease in the blood and 
immune disease chapter (FDR = 2.42×10-02), involving 11 proteins including C7, C4A, C1S, and 
C3 (Supplementary Fig. 4a), mainly expressed in the microglia and astrocytes. M3 showed 
enrichment for 8 GO pathways including extracellular matrix organization (FDR = 2.55×10-02) 
and complement activation (FDR = 2.55×10-02), explaining its link to complement deficiency 
disease (Supplementary Fig. 4b). M5 was enriched for lysosomal storage diseases, 
mucopolysaccharidoses (FDR=6.89×10-03), involving seven proteins including IDUA, NT5E, 
GNS and EGFR (Supplementary Fig. 4c). They were enriched for 25 GO pathways including 
synapse assembly (FDR = 7.09×10-03) and the lysosomal protein catabolic process (FDR = 
2.67×10-02; Supplementary Fig. 4d). M7 was enriched for the keloid skin disease (FDR = 
8.79×10-03) involving 15 proteins including TAGLN, SERPINE1, and FLNA (Supplementary Fig. 
4e). They showed enrichment for GO pathways in actin cytoskeleton organization (FDR = 
6.88×10-06), which regulates several essential wound-healing components23, thereby explaining 
its link to skin diseases (Supplementary Fig. 4f). M9 was enriched for the musculoskeletal 
system (spondylitis, FDR = 4.45×10-03), the digestive system (recurrent aphthous ulcer, FDR = 
0.02), and eye diseases (keratoconjunctivitis, FDR = 0.026), involving multiple proteins including 
IFNG, PLG and IL23R (Supplementary Fig. 4g). M13 was enriched for enterovirus infections 
(FDR = 1.55×10-02) involving eight proteins (VIM, STAT1, and G6PD; Supplementary Fig. 4h). 
They were enriched for GO pathways involved in translation (FDR = 2.84×10-02) and stress 
granule assembly (FDR = 4.99×10-02; Supplementary Fig. 4i). Stress granules formed from 
mRNAs modulates the stress response and viral infection24, explaining its link to infections and 
parasitic diseases. M15 was enriched for dilated cardiomyopathy (FDR=1.05×10-02), with ten 
proteins including CASP8, GCH1, TNNT2, and ADCYAP1, mainly expressed in the microglia 
and neuron (Supplementary Fig. 4j).  
 

Two modules are linked to neurodegeneration and multiple aging diseases 
We found that modules M2 and M6 were enriched for multiple ICD-10 chapters, suggesting their 
relevance to comorbidity conditions across multiple aging diseases (Supplementary Table 10).  
 
M2 showed significant enrichment for 32 diseases spanning 13 ICD-10 chapters at FDR < 0.05 
(Fig. 4a). 43 proteins including APOE, APP, and IL6 were involved with mental disorders (multi-
infarct dementia, FDR = 0.029) and diseases in the nervous system (transient ischemic attack, 
FDR=2.96×10-02; sleep apnea syndrome, FDR = 3.44×10-02; Fig 4b). Enrichment for blood and 
immune mechanism was found with 52 proteins including JAK2, CCL5, and IL1B; eosinophilia, 
FDR = 0.029; blood coagulation disorders, FDR = 4.20×10-02; Fig: 5c). Enrichment for 
circulatory system was notable (81 proteins including APOE, AGT, SERPINA3; subarachnoid 
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hemorrhage, FDR = 2.96×10-02; cerebral amyloid angiopathy, FDR = 2.96×10-02; Supplementary 
Fig. 5a). M2 was the only module that was enriched for neoplasms (acute megakaryocytic 
leukemias, FDR = 8.74×10-03; prostate cancer, FDR =1.52×10-02), involving 259 proteins 
including CD36 and ANGPTL4 (Supplementary Fig. 5b). Proteins involved with the additional six 
ICD-10 chapters were presented in Supplementary Fig. 6. Proteins in M2 were enriched for 
microglia and macrophage (57 proteins including NFKB, C3, and IL1B, enrichment P = 1.34×10-

02, Fig. 4e).  
 
For 384 GO pathways, belonging to the 25 higher-level representative terms, M2 showed 
enrichment (Fig. 4f). Pathways related to neurodegeneration and immune mechanisms include 
cellular response to peptide (response to stress, FDR = 2.63×10-04; neuron apoptotic process, 
FDR = 2.19×10-02) and negative regulation of apoptotic process (FDR = 3.16×10-03). Several 
pathways related to neoplasm were found, including apoptosis, leukocyte activation 
(FDR=2.54×10-03), cell cycles and cell death (necrosis), RNA splicing (FDR = 1.08×10-07), and 
RNA localization (FDR=1.20×10-02). Cancer cells exploit RNA splicing to promote tumor 
growth25-28. When tumor cells avoid apoptosis, regulated cell death is activated during tumor cell 
proliferation in defense tumor progression and migration29,30. Adhesion cascade leads to 
localization of inflammatory cells to tumor sites including the recruitment of effector leukocytes31. 
In addition, pathways involved leukocyte activation explain this module’s relevance to peripheral 
T-cell lymphoma and other types of leukemia.  
 
Among all 16 modules, M6 showed enrichment for the largest number of diseases (70 belonging 
to 14 ICD-10 chapters) with the highest statistical significance (Fig. 4a; Fig. 5a). In M6, 61 
proteins including LRRK2, SERPINA3, and C3 were involved with mental disorders (mild 
cognitive disorder, FDR = 8.37×10-03; schizophrenia, FDR = 2.51×10-02) and nervous system 
(multiple sclerosis, FDR = 1.81×10-02; late onset AD, FDR = 5.02×10-02; Fig. 5b). The most 
significant enrichment was found for blood and immune mechanism (complement deficiency 
disease, FDR = 2.14×10-09; blood coagulation disorders, FDR = 7.96×10-08), involving 68 
proteins including PLG, SELE, SERPINA3 (Fig. 5c). In addition, the circulatory system 
(cardiovascular diseases, FDR = 1.16×10-08; atherosclerosis, FDR = 4.81×10-07; Supplementary 
Fig. 7a), infections (septicemia, FDR = 1.65×10-06; Supplementary Fig. 7b), metabolic diseases 
(diabetes mellitus, FDR = 1.04×10-05; Supplementary Fig. 7c) were strongly enriched for this 
module. Proteins involved with the additional five ICD-10 chapters were presented in 
Supplementary Fig. 8.  
 
Among all 16 modules, M6 also had the highest statistical significance for GO pathways, 
showing enrichment for 126 GO biological processes belonging to the 18 higher-level 
representative terms at FDR < 0.05 (Fig. 5d). The strongest enrichment was involved with 
humoral immune response (FDR=2.14×10-19; complement activation, FDR = 2.14×10-19). In 
particular, complement activation plays a defensive role in our body through proteolytic 
cascades and opsonization32, explaining a direct link to complement deficiency disease. The 
second strongest enrichment involved blood coagulation (FDR=5.64×10-10; coagulation, FDR = 
1.189×10-10; defense response, FDR = 2.47×10-08), which explains the link to blood coagulation 
disorders of the blood and immune system. Other pathways included phagocytosis recognition 
(FDR = 6.13×10-05), zymogen activation (FDR = 5.73×10-07), and regulation of coagulation (FDR 
= 5.89×10-08). Proteins in M6 were enriched for endothelial cells (15 proteins including APOL1 
and SELE; enrichment P = 1.41×10-02, Fig. 5e). 
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Discussion 
In this study, we systematically investigated the aging effects and sex differences on CSF 
proteomics in a large scale. CSF protein levels can be influenced only by factors or diseases 
that influence the brain and the central nervous system, showing more direct relevance to brain 
aging and diseases. By comprehensively examining 7,006 aptamers targeting 6,139 proteins in 
CSF obtained from 660 healthy individuals aged from 43 to 91 years old, we subsequently 
identified significant sex and aging effects on 5,097 aptamers in CSF. They were confirmed by 
two additional independent cohorts. We found that many of the sex and aging effects on CSF 
proteins had different magnitude or even opposite direction, when compared to their 
corresponding effects on plasma proteins, indicating distinctive CSF-specific signatures. 
Clustering of these CSF proteins revealed not only the modules with clear aging trajectories but 
also the modules with sex differences in their protein abundance. We subsequently identified 
the relevance for complex diseases for the eight modules, out of which two modules (M2 and 
M6) showed striking connection to neuropsychiatric diseases and many aging diseases.  
 
In this study, we identified significant age-associated increase in GDF15, NEFH, NEFL, and IL6. 
The growth differentiation factor 15 (GDF15) is one of the transforming growth factor-beta 
cytokine superfamily essential in regulating cellular response to stress signals. 
Elevated GDF15 levels are reported be associated with pathological conditions involving 
inflammation, myocardial ischemia, and cancer33,34. Increase of GDF15 with aging has been 
reported in several studies16, including their link to mitochondrial function decline with aging35. 
Neurofilament heavy polypeptide (NEFH) is one of type IV intermediate cytoplasmic filament 
proteins in neurons36, which provide structural support for the axon and regulate axon diameter, 
thus maintaining the transmission of electrical impulses along axons37. Neurofilament light 
polypeptide (NEFL) is a neuronal cytoplasmic protein from the member of the intermediate 
filament protein family, highly expressed in myelinated axons. It increases in CSF and blood 
along with axonal damage in neurological disorders including inflammatory, neurodegenerative, 
traumatic and cerebrovascular diseases38-40. Age-associated increase of NEFL has been 
previously reported41-43. Interleukin 6 (IL6), a multifunctional cytokine, is a major contributor to 
acute phase inflammatory response. While it is normally present in low levels, IL6 is increased 
in aging and with chronic age-related diseases including neurodegeneration, diabetes, 
rheumatoid arthritis, cancer, atherosclerosis, and infections44-46. In addition, this study confirmed 
several of 82 age-associated proteins (including PTN, MB, and CST3) identified by Baird et al47. 
Johnson et al in his systemic review compiled 32 age-associated proteins that were consistently 
reported across multiple studies16. Out of these 32 proteins, our study confirmed the significant 
aging effects of 23 proteins including GDF15, ANXA1, C3, C4A, and EGFR16,17,48-52 in both CSF 
and plasma. 
 
This study found the strong sex difference in APOE, SERPINA3, C3, PLG, SERFINF2, SELE, 
APCS, which are known to be critical for multiple diseases including neurodegeneration, 
cardiovascular disease (CVD), kidney failures, and diabetes. Apolipoprotein E (APOE), a carrier 
protein for cholesterol and lipids, is produced in abundance in the brain and serves as the 
principal lipid transport vehicle in CSF53. It is critically involved in the pathogenesis of AD and 
CVD, through induction at high concentration in peripheral nerve injury and repair by 
redistribution of lipids to regenerating axons and to Schwann cells during remyelination. The 
APOE gene alleles modulate human aging53-56. SERPINA3, a part of protease inhibitors, is 
critically involved in the anti-inflammatory response and antiviral responses57, and identified as a 
specific biomarker of delirium and AD58,59. Complement component 3 (C3) is the central point of 
the three-cascade activation pathway of the complement system. The complement plays a role 
in inflammatory processes, metabolism, apoptosis, mitochondrial function, Wnt signaling 
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pathways, and plays a significant role in aging-related diseases, including AD, macular 
degeneration, and osteoarthritis60,61. Plasminogen (PLG) is the zymogen of plasmin, a broad 
specificity serine protease whose activity contributes to pathological conditions including 
cardiovascular diseases, infections, metabolic disorders, asthma, kidney disorders, and 
musculoskeletal diseases62-68. SERPINF2 is a serine protease inhibitor of plasmin, modulates 
insulin sensitivity, and is associated with CVD, blood coagulation disorders, rheumatoid arthritis, 
asthma, and diabetes69-71. Soluble endothelial leukocyte adhesion molecule-1 (SELE), a part of 
cell adhesion molecules expressed only on endothelial cells by cytokines, is a pro-inflammatory 
protein important in cell-cell/cell-matrix interactions during immune responses and inflammatory 
process72. Elevated levels are associated with CVDs, diabetes, cerebrovascular diseases and 
rheumatoid arthritis73-76. Serum amyloid P component (APCS) is a soluble pattern-recognition 
protein, binding to damaged membranes, nuclear autoantigens, and determinants on microbial 
pathogens and recruiting other elements of host defense77. APCS is involved in the regulation of 
matrix formation, regulation of complement activation and an acute phase response protein in 
response to infection and inflammatory cytokines during the innate immune response78 
 
Multiple studies including Lehallier et al. clustered plasma proteins into modules and found non-
linear changes throughout the lifespan, which may be important to fully appreciate the 
undulating changes17. In this study, we examined the clustering of the CSF proteins into 
modules and identified not only the modules with often non-linear aging trajectories but also the 
modules with clear sex differences. Module 6 showed the strongest sex differences and the 
most extensive enrichment for multiple aging diseases including neurodegeneration. Several 
studies demonstrated the immune system's role in contribution to diverse pathological 
conditions, which aligns with our findings. Immune system functions have been associated with 
neurodegeneration including AD. Gate et al. revealed the adaptive immune response in AD79 
and demonstrated the T-cell involvement in Lewy body dementia80. In addition, we found strong 
connection of two module (M2 and M6) to complement deficiency disease. Complement, a 
group of over 30 proteins involved in the complement pathway or cascade, is critical in the 
inflammation response of the innate immune system against micro-organisms and infections81-86. 
The complement system orchestrates opsonization, facilitate cytotoxic destruction, formulate 
membrane attack complexes (MAC), and the liberation of peptides that promote inflammatory 
responses86. Complement deficiencies arise when any of these proteins are missing from the 
cascade or fail to function properly, which results in increase prevalence in infections by 
pyogenic organisms via phagocytosis81,86. Both modules showed enrichment of the related 
biological processes involved in translation, phagocytosis, stress granule assembly, and cell-cell 
adhesion87-96.  
 
Several clocks based on transcriptomics, methylations, or proteomics in plasma provided 
insights for biological aging and their relevance to the diseases. These studies demonstrated 
that biological aging is profoundly involved in the pathogenesis of many diseases and age-
related health conditions. In this study, we constructed sex-specific proteomic clock in both CSF 
and plasma. While an individual protein may change differently in CSF and plasma as aging, the 
performance of the CSF or plasma-based clocks was similar in terms of the correlation with the 
chronological age. Furthermore, they also provided similar inference on whether an individual 
has delayed or accelerated aging. These results indicate that brain aging may be like the overall 
biological aging based on circulating plasma proteomics.  
 
Our study has some limitations. First, while this study has the largest sample size to examine 
aging and sex differences in CSF proteomics from healthy individuals as of today, it is based on 
a cross-sectional study. Therefore, a longitudinal follow-up study may be needed to validate the 
findings from this study. Second, while the aging and sex effects of CSF proteins were often 
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different from those of plasma proteins, the sex specific proteomic clock in these biofluid 
provided similar performance. This may be because this study examined only healthy 
individuals, who often exhibit a less pronounced degree of accelerated aging, when compared 
to individuals with diseases. An additional follow-up will be needed to distinguish the organ-
specific biological aging. Third, to examine the relevance of CSF proteins to biological 
processes and diseases, we employed statistical and computational approaches. Additional 
follow-up in the select proteins will be needed for their clinical utility. 
 
In summary, we comprehensively examined age effects and sex differences in over 6,000 CSF 
proteins, identifying 4,682 age-associated and 1,587 sex-different proteins. These age effects 
and sex differences were distinctive of CSF, when compared to plasma. Many of these proteins 
were involved in multiple diseases including neurodegeneration and cardiovascular diseases. 
Our findings based on CSF proteomics fill a gap of current aging research and help 
understanding the role of age and sex in CSF protein regulation during a healthy lifespan. They 
may help developing personalized treatment for aging interventions and clinically translatable 
interventions for brain aging and diseases.  
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Methods 
Study populations 
This study examined 1,807 cognitively normal individuals from the Knight Alzheimer Disease 
Research Center (Knight-ADRC)97-99, Alzheimer's Disease Neuroimaging Initiative (ADNI)100, 
and Fundació ACE (FACE) 101 studies (Table 1). The age of these individuals spanned from 43 
to 91 years old, representing middle and elderly adults. The Knight-ADRC at Washington 
University in St. Louis aims to advance AD research with the goal of treatment or prevention of 
AD. The ADNI is a longitudinal multicenter study designed to develop clinical, imaging, genetic, 
and biochemical biomarkers for the early detection and tracking of AD. Headquartered in 
Barcelona, FACE has collected and analyzed almost 18,000 genetic samples, diagnosed over 
8,000 patients. This study was approved by the Institutional Review Boards of the Washington 
University School of Medicine in St. Louis, and the research was performed in accordance with 
the approved protocols.  
 

Proteomics data 
Cerebrospinal fluid (CSF) samples from the Knight-ADRC, ADNI, and FACE were collected 
using lumbar puncture (LP) in the morning after an overnight fast. All samples underwent the 
identical protocols for preparation and processing, and stored at -80 °C. All samples were 
randomized across plates to avoid batch effects and were sent together to SomaLogic. Protein 
levels were quantified using the SOMAscan platform based on a multiplexed, single-stranded 
DNA aptamer assay. The quantitative levels of 7,584 aptamers were reported as relative 
fluorescence unit (RFU). Initial data normalization was performed by SomaLogic using 
hybridization controls for intra-plate and median signal to account for inter-plate variances102. 
Normalization against an external reference to control for biological variances was also 
performed by SomaLogic103. In-house quality control (QC) was also performed to exclude 
outliers. More details of the QC process were published elsewhere103,104. After processing, CSF 
proteomic data consisted of 7,006 aptamers targeting 6,139 proteins in CSF from 994 
individuals. Plasma proteomic data consisted of 6,905 aptamers targeting 6,106 proteins in 
plasma from 1,372 samples.  
 

Age effects and sex differences in CSF and plasma proteomes 
To examine the effect of age and sex on CSF protein abundance, we performed regression 
analysis using the following model: 
 

log�� �Protein abundance� � �� � ��	
� � ��  
�� � ��������� � �������� 
 
Our primary interest is the age effect βA and the sex effect βS on log10-transformed protein 
abundance. Age is an individual’s age at LP; sex is coded as 1 for a female and 0 for a male; 
PlateID is a plate identifier for proteomic sample; and Cohort is a cohort information (Knight-
ADRC, ADNI, FACE). Analysis was performed first using the Knight-ADRC data, where a cohort 
was excluded in the model. Additional analysis was performed using the combined set of ADNI 
and FACE data. To control for multiple testing, the false discovery rate (FDR) < 0.05 based on 
the FDR-BH method was used.105 In addition, to compare the effect of sex and age on CSF 
proteomics with those of plasma proteome, the same analysis was performed using the Knight-
ADRC plasma proteomic data. 
 

Proteomics based biological clock 
We constructed sex-stratified predictive models for biological age using proteomic 
measurements with the least absolute shrinkage and selection operator (LASSO) regression. 
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Four models were constructed: aging clocks for males and females, each separately with CSF 
proteomics and plasma proteomics. To compare the predictive models between CSF and 
plasma proteomic data, we considered 569 individuals that had both CSF and plasma samples. 
We used log transformed RFU values of 6,738 analytes in both CSF and plasma proteomic data. 
We split the data into training data (3/4 with 177 males and 249 females) and testing data (the 
remaining 1/4 with 60 males and 83 females). The R package glmnet106 was used for LASSO 
regression analysis. The shrinkage parameter that controls the model complexity was 
determined using 4-fold cross-validation on the training data. To examine model performance, 
we examined Pearson correlation coefficient and root mean squared error (RMSE) between the 
predicted ages and the actual chronological age.  
 

Network analyses of CSF proteomics 
To cluster CSF proteins into modules, we performed the weighted gene co-expression network 
analysis (WGCNA)107. Specifically, we utilized the blockwiseModules function with the following 
parameters: power=7, corType=” bicor”, networkType=” signed”, deepSplit=4, 
reassignThreshold=0.05, and mergeCutHeight=0.15. After adjusting for covariates, the soft 
threshold power was determined as 7 by considering both the scale-free topology model fit 
(�� � 0.9595) and mean connectivity. We used bicor, a median-based measure of similarity that 
is more robust to outliers than the Pearson or Spearman correlation coefficient108. A signed 
network was considered to account for both positive and negative correlations. The topological 
overlap matrix (TOM) was first calculated to determine the interconnection within the network 
structure. Hierarchical clustering analysis was conducted based on the calculated 1-TOM values 
to classify the proteins into distinct modules. The final modules were defined by grouping and 
rearranging similar groups using the dynamic tree cut method109. For each module, we 
calculated the first eigenvector, known as the eigen protein. For the aging effect in each module, 
we considered the Pearson correlation coefficient between the eigen protein and age. For the 
sex differences in each module, we considered Cohen’s distance110 between male eigen 
proteins and female eigen proteins. 
 

Sex-specific aging trajectory 
To visualize aging trajectories of each protein, we used the locally estimated scatterplot 
smoothing (LOESS)111 method in R. To examine sex differences, we drew LOESS lines for 
males and females, separately. In addition, to examine the sex-stratified aging trajectories in 
each module, we obtained the average line of LOESS lines in males and females, separately, of 
all the proteins belonging to that module. In addition, to determine whether these sex-stratified 
aging trajectories in the Knight-ADRC data were reproducible, we examined proteomic data 
from two independent data (ADNI and FACE) in the same manner. Specifically, we created a 
grid point for age and calculated the Pearson correlation coefficients of the LOESS values at 
these points between the two datasets. We performed a one-sided correlation test at the FDR < 
0.05 using the FDR-BH method105. Only those validated proteins were included in the 
subsequent enrichment analysis. 
 

Enrichment analysis 
For disease ontology, we performed enrichment analysis using the enrichDGN function in the R 
package DOSE112. The Entrez gene names for the validated proteins in each module were 
considered. To convert the CUI113 codes used by DisGeNET into the international classification 
of disease, 10th revision (ICD-10) codes developed by World Health Organization, we used the 
Python package Owlready2 (ref114). ICD-10 codes115 are available at 
https://icd.who.int/browse10/2019/en. Using the first three digits of ICD-10 codes, 1,145 
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diseases were grouped into 22 chapters. Cases without a matching ICD code were excluded 
from the analysis.  
 
For Gene Ontology (GO) biological processes, we performed enrichment analysis using 
enrichGO function in the R package clusterProfiler116. Significant GO terms were visualized into 
the hierarchically related GO pathways based on their similarity to distill them into common 
higher-level representative terms using REVIGO117. GO IDs were restricted to Homo sapiens 
species and visualization was created with treemaps.  
 
To obtain cellular context of these modules and individual proteins, we also performed 
enrichment analysis using cell type expression data from human brain cells22 (Supplementary 
Table 12). Based on the cell type data from gene expression data from human astrocytes, 
neurons, oligodendrocytes, microglia/macrophages, and endothelial cells, we obtained the 
degree of specificity to relevant cell types for the proteins. For 5,750 proteins, these cell-type 
expression data were available. Fisher’s exact test was used to examine cell-type enrichment of 
each module against the cell-types for 5,750 proteins. 
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Table 1. The sex and aging distribution of the individuals included in this study. 

Healthy individuals 
CSF Plasma 

Knight-ADRC Knight-ADRC ADNI FACE 

N 660 166 168 1,382 

    Males 280 (42%) 89 (54%) 83 (49%) 565 (41%) 

    Females 380 (58%) 77 (46%) 85 (51%) 817 (59%) 

Age (mean, range) 70 (43, 91) 75 (60, 90) 66 (48, 86) 73 (44, 91) 
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Fig. 1: Age effects and sex differences in CSF proteomics.  
(a) Age effects on CSF proteins in Knight ADRC. (b) Sex differences in CSF proteins in Knight ADRC. 
(c) Significant proteins associated with age and/or sex at FDR < 0.05. (d) Protein abundance across 
ages for selected proteins in males (blue dots) and females (orange dots). The locally estimated 
scatterplot smoothing (LOESS) lines were separately in males (blue) and females (red). (e) 
Comparison of age effects on CSF proteins in independent ADNI and FACE (y-axis) versus those in 
Knight ADRC (x-axis). (f) Comparison of sex differences in CSF proteins in ADNI and FACE versus 
those in Knight ADRC. (g) Comparison between aging effects on plasma proteins versus those in CSF 
proteins. (h) Comparison between sex differences in plasma proteins versus those in CSF proteins  
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Fig. 2: Sex-specific proteomic clocks in CSF and plasma  
(a) Summary of creating sex-specific proteomic clocks. (b) Performance of CSF proteomic clock with 
chronological ages (x-axis) and predicated biological ages in CSF (y-axis). (c) Performance of plasma 
proteomic clock. (d) Comparison between CSF predicted age (x-axis) and plasma predicated age (y-
axis) in males (blue) and females (red). (e) Comparison of delta ages in CSF versus in plasma. The 
delta age is a departure of the predicted age from the chronological age. 
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Fig. 3 Clustering of CSF proteins into 16 modules using WGCNA  
(a) WGCNA identified the 16 proteins modules. The age row shows the correlation coefficient between 
proteins and ages (red for increasing with age; blue for decreasing). The sex row shows Cohen’s 
distance between proteins in females vs those in males (red for higher in females; blue for higher in 
males). *** for P < 0.0001, ** for P < 0.001, and * for P < 0.05. (b) Aging trajectory for the select 
modules. LOESS lines for individual proteins in males (thin blue lines) and females (thin orange lines). 
The thick lines are the average across them separately in males (blue) and females (red). The number 
of included analytes (n) is shown. Aging trajectory for all modules is shown in Supplementary Fig. 3. 
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Fig. 4: Enrichment of module M2.  
(a) The enrichment of 8 modules for the 16 ICD-10 disease chapters. (b) M2 proteins involved with 
mental and neuro-diseases. (c) M2 proteins involved with blood and immune mechanisms. (d) Upset 
plot for M2 proteins enriched with the 11 chapters. Congenital and unclassified are excluded. The pie 
chart shows the number of M2 proteins overlapping across the ICD-10 chapters (e) Cell-type specificity 
of M2 (f) Gene ontology enrichment of M2. 
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Fig. 5: Enrichment of module M6  
(a) Upset plot for M6 proteins enriched with the 11 chapters. Respiratory, congenital and unclassified 
were excluded. The pie chart shows the number of M6 proteins overlapping across the ICD-10 
chapters. (b) M2 proteins involved with mental and neuro-diseases. (c) M2 proteins involved with blood 
and immune mechanisms. (d) Gene ontology enrichment of M6 (e) Cell-type specificity of M6. 
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