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A B S T R A C T

Vision loss due to chronic-degenerative diseases is a primary cause of blindness worldwide. Deep learning architectures 

utilizing optical coherence tomography images have proven effective for the early diagnosis of ocular pathologies. 

Nevertheless, most studies have emphasized the best outcomes using optimal hyperparameter combinations and 

extensive data availability. This focus has eclipsed the exploration of how model learning capacity varies with different 

data volumes. The current study evaluates the learning capabilities of efficient deep-learning classification models 

across various data amounts, aiming to determine the necessary data portion for effective clinical trial classifications of 

ocular pathologies. A comprehensive review was conducted, which included 295 papers that employed OCT images to 

classify one or more of the following retinal pathologies: Drusen, Diabetic Macular Edema, and Choroidal 

Neovascularization. Performance metrics and dataset details were extracted from these studies. Four Convolutional 

Neural Networks were selected and trained using three strategies: initializing with random weights, fine-tuning, and 

retraining only the classification layers. The resultant performance was compared based on training size and strategy to 

identify the optimal combination of model size, dataset size, and training approach. The findings revealed that, among 

the models trained with various strategies and data volumes, three achieved 99.9% accuracy, precision, recall, and F1 

score. Two of these models were fine-tuned, and one used random weight initialization. Remarkably, two models 

reached 99% accuracy using only 10% of the original training dataset. Additionally, a model that was less than 10% the 

size of the others achieved 98.7% accuracy and an F1 score on the test set while requiring 100 times less computing 

time. This study is the first to assess the impact of training data size and model complexity on performance metrics 

across three scenarios: random weights initialization, fine-tuning, and retraining classification layers only, specifically 

utilizing optical coherence tomography images.
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1. Introduction

Chronic-degenerative diseases are a leading cause of death globally, accounting for 70% of all deaths. According to the World 

Health Organization (WHO), around 422 million individuals are affected by Type 1 and 2 Diabetes Mellitus (DM) [1]. The 

International Diabetes Federation (IDF) projected that this number could rise to 700 million by 2045 [2]. In 2020, DM ranked as 

the ninth leading cause of death worldwide [3]. A long-term consequence of inadequate glycemic control in DM patients is visual 

impairment, which may lead to various ocular pathologies [4], [5], [6].

Among these, Age-related Macular Degeneration (AMD), a major cause of blindness globally, affects millions and is particularly 

severe in individuals over 60 in developed countries. It is categorized into two types: neovascular (wet) and non-neovascular 

(dry). Dry AMD, which accounts for 85% of cases, generally has a more favorable prognosis compared to wet AMD, responsible 

for about 80% of severe vision loss from the condition [7], [8]. Consequences of poor vision include increased risk of falls, 

depression, and the need for long-term care if unable to perform activities of daily living, such as dressing, eating, and working.

Diabetic Retinopathy (DR), prevalent in approximately 33% of DM patients, leads the causes of preventable blindness 

worldwide [2], [9]. Other related conditions include Diabetic Macular Edema (DME), Drusen formation, and Choroidal 

neovascularization (CNV). This study focuses on analyzing classification methods to detect these three pathologies using medical 

imaging [10] [11]. Recent advances have shown that deep learning algorithms, particularly using optical coherence tomography 

(OCT) [12], [13], [14] and fundus images [15], [16], can automatically extract pathological features. Furthermore, features 

identified in one pathology may be applicable to others, allowing for efficient classification across multiple conditions [17].

Convolutional Neural Networks (CNNs), first proposed by Krizhevsky, are effective for extracting features from medical 

images [18]. A typical CNN model includes several layers: convolutional layers that detect complex patterns, a nonlinear 

activation function, and a pooling layer that reduces dimensionality to enhance model robustness against small changes in input. 

The process concludes with fully connected layers that lead to a classification output. The training of CNNs involves adjusting 

internal weights to minimize a cost function, followed by a transfer learning process to apply learned features to new datasets.

This paper assesses various deep learning architectures for detecting retinal pathologies, comparing performance metrics 

against the current state of the art. It also evaluates the impact of training data volume, model complexity, and their influence on 

performance in scenarios including random weight initialization, fine-tuning through transfer learning, and retraining only the 
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classification layers. Despite most studies achieving over 99% accuracy in classifying retinal pathologies with OCT images [11], 

[14], [19], [20], [21], [22], [23],[24] the relationship between model learning capacity and data volume has been underexplored. 

This study aims to address this gap, potentially guiding the data requirements for clinical trials to effectively classify ocular 

pathologies.

2. Materials and Methods

This study evaluated the capability of recent CNNs architectures to detect retinal pathologies using Optical Coherence Tomography 

images. The assessment was divided into two phases: first, a systematic review of current deep learning classification methods was 

conducted; second, the performance of the most effective CNNs, trained to differentiate between normal and three specific retinal 

pathologies, was compared.

2.1. Systematic Review of Classification Algorithms

A comprehensive literature survey was performed using three journal databases: Web of Science, PubMed, and IEEE 

Xplore. The objective was to collect prior studies involving OCT images and deep learning. The search was structured 

around the following query: (OCT OR "Optical Coherence Tomography") AND (Retina) AND (Classification) AND 

("Deep Learning" OR "Convolutional Neural Network" OR "CNN" OR "Machine Learning").

The query illustrated in Figure 1 outlines the systematic process of identifying, screening, and including studies for a 

review on the application of deep learning models for classifying retinal pathologies using Optical Coherence Tomography 

(OCT) images, based on the PRISMA methodology {Citation}. Initially, records were identified from three databases: 

IEEE (n = 204), Web of Science (n = 242), and PubMed (n = 224), resulting in a total of 670 records. Prior to screening, 

118 duplicate records and 443 records marked as ineligible by automation tools were removed, leaving 109 records for 

screening. During the screening phase, all 109 records were reviewed for relevance, and no records were excluded or not 

retrieved. In the eligibility assessment stage, the 109 reports were evaluated based on the inclusion criteria, leading to the 

exclusion of 40 reports that did not include the pathology of interest and 14 reports that did not utilize deep learning 

models. Ultimately, 55 new studies were included in the final review, with no additional reports of new included studies. 

This thorough and unbiased selection process ensured that only studies relevant to the research question were included, 

focusing on the application of deep learning techniques in OCT image analysis for retinal pathologies. The comparative 

outcomes of these studies are detailed in Table 1.

The trend shows an increasing annual publication rate in this field. The utilization of pre-trained CNNs has emerged as a 

predominant method for classifying retinal pathologies from OCT images, with some studies introducing minor modifications to 

these architectures to enhance performance. The employment of such pre-trained models stands out as one of the most common 
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and practical strategies in the literature. Regarding datasets, most of the papers selected via the methodology outlined above relied 

on publicly available datasets, though several studies also incorporated privately sourced images. Table 2 presents a compilation 

of these public datasets, including citations and the distribution of data used in each study. Notably, the dataset provided by 

Kermany et al. [26] is frequently cited and utilized for training and testing deep learning classifiers. This dataset encompasses 

images associated with three retinal pathologies: DME, CNV, and Drusen.

2.2. Performance Review of Deep Learning Architectures

Having identified the most effective classification methods from the literature, as determined by their performance metrics on the 

Kermany OCT dataset, this study aims to compare the performance of these methods. It will also assess the influence of model 

learning capacity when exposed to varying amounts of input data. This evaluation will be conducted under three distinct scenarios. 

The following subsections provide a detailed description of this comparative analysis process.

2.2.1. Top-Ranking Models

In this study, we selected four distinct models for an in-depth performance comparison in classifying retinal pathologies using the 

OCT dataset mentioned earlier. The selected models are:

 Xception: Introduced in 2015 with updates in 2017, known for its depth and complexity [27].

 ResNet-50: A convolutional neural network (CNN) proposed in 2016, recognized for its deep residual learning framework 

[28].

 OpticNet: The leading CNN for DME classification, first introduced in 2019 [29].

 OctNET: A novel and efficient approach for retinal disease classification, introduced in 2021 [30].

OpticNet and OctNET were specifically pre-trained on the Kermany OCT dataset, while Xception and ResNet-50 were pre-

trained on the ImageNet dataset, a large visual database, which contains more than 14 million images hand-annotated [31]. Prior 

studies have shown that the use of pre-trained models can enhance the learning process by leveraging previously learned features 

to recognize basic shapes, which can be beneficial for medical imaging tasks [32], [33].

2.2.2. Dataset for Training Models

The widely recognized Kermany et al. dataset is extensively used for training and testing models in retinal pathology classification. Hosting 

84,484 images, it categorizes them into four classes: Normal, CNV, Drusen, and DME. The dataset is divided into training, testing, and 

validation subsets. The allocation of images to each subset is detailed in Table 3. The dataset is publicly available and can be accessed 

online for research purposes [26].

2.2.3. Training Comparison
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To compare training effectiveness, this study evaluated model performance by partitioning the entire dataset of 84,484 

images into smaller, incremental subsets representing specific percentages of the total dataset: 1%, 2.5%, 5%, 7.5%, 9%, 10%, 

20%, 40%, 60%, 75%, 90%, and 100%. Each subset was further divided, allocating 64% of the images for training, 20% for 

testing, and 16% for validation. Each model underwent training with these subsets and was assessed against the consistent 

validation and test sets established earlier. The selection of training images was randomized for each subset size but fixed across 

models for comparative consistency.

Hyperparameters

During the training phase, all models were trained for 30 epochs with batches of 50 images each. For OpticNet, OctNET, and 

Xception, the ADAM optimizer was employed with a learning rate set at 0.001. Conversely, ResNet-50 demonstrated improved 

performance using the Stochastic Gradient Descent with Momentum (SGDM) optimizer, utilizing a learning rate of 0.1 and 

momentum of 0.6. The specific parameter configurations and outcomes for each CCN model are detailed in Table 4.

Training Methodology

The training methodology involved repeating the process across three different model states, as outlined in Table 5, 

and depicted in Figure 2, to assess the efficacy of model training. The approach is codified in the Algorithm 1, utilizing 

nested loops; the outermost loop cycles through the model states, the next iterates over varying percentages of the OCT 

image dataset, and the innermost loop conducts training on each architecture variant with the allocated image subsets. 

Performance metrics for each model were recorded against the testing set upon completion of training.

2.2.4. Performance Metrics

To assess the performance of models with differing volumes of input data, standard classification metrics were 

utilized. These metrics provide insights into the accuracy and effectiveness of each model's predictive capabilities.

Confusion Matrix

The confusion matrix is an integral tool in classification tasks, comparing actual to predicted labels. It's particularly 

important for binary classification, with four primary components: true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN). These components help to identify both correct predictions and various types of errors 

(see Figure 3). For problems involving more than two classes, the matrix expands to cover all category permutations, 

aiding in the detailed analysis of model predictions.

Accuracy

Accuracy is a straightforward metric that calculates the proportion of correctly identified instances in relation to all 
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the predictions made by the classification model for OCT image datasets (see equation 4.1).

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4.1)

IoU (Intersection over Union)*

 IoU is a metric that evaluates the proportion of overlap between the predicted positive cases and the actual positive 

cases, excluding the true negatives. It's a measure of the accuracy of the model's predictions. (see equation 4.2).

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4.2)

Recall (sensitivity)*

This metric assesses how effectively the model can identify correct instances of a specific class within the dataset 

(see equation 4.3).

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.3)

Precision*

Precision measures the accuracy of the model's positive predictions, specifically the proportion of actual positives 

among all instances classified as positive (see equation 4.4).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.4)

F1-Score*

This metric balances precision, which is the correctness of positive predictions, and sensitivity, the model's ability 

to correctly identify all relevant instances (see equation 4.5).

𝑓1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 =  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(4.5)

Cohen Kappa

 The Cohen Kappa coefficient is a metric for assessing the accuracy of a model's predictions, offering a measure of 

reliability that is particularly useful in contexts with imbalanced datasets (see equation 4.6).

𝑘 =
2 ∗ (𝑇𝑃 ∗ 𝑇𝑁 ― 𝐹𝑁 ∗ 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) ∗ (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁)
(4.6)
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AUC (Area Under the Receiver Operating Characteristic Curve)

The AUC represents the area under the ROC curve, which illustrates a model's capacity to distinguish between 

classes at various threshold settings. It reflects the balance between correctly identifying true positives and 

avoiding false positives.

In multiclass classification problems, such as identifying the four categories DME, Drusen, CNV, and Normal metrics 

marked with an asterisk (*) use a weighted average strategy. This involves comparing each label individually, then 

adjusting the metric based on the prevalence of each label in the dataset, and finally averaging the results across all labels.

3. Results
Table 1 provides a comprehensive summary of studies employing machine learning and deep learning techniques for the 

analysis of Optical Coherence Tomography (OCT) images, covering the period from 2014 to 2024. It details the diverse 

architectures utilized, including SVM, VGG16, AlexNet, GoogLeNet, and InceptionV3, among others, many of which are 

pre-trained on extensive datasets. The table categorizes each study by the datasets used, the ocular features classified (such 

as Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV), and Drusen), and the performance metrics 

reported (including accuracy, sensitivity, specificity, precision, F1-score, and AUC). These studies collectively highlight 

significant progress in the field, showcasing the enhanced accuracy and efficiency in classifying ocular pathologies through 

OCT image analysis. Notwithstanding the impressive accuracy, often exceeding 99%, achieved by these studies in 

classifying retinal pathologies using OCT images, the impact of model learning capacity relative to data volume remains 

underexplored.

The training of all models was conducted using Python with the Keras library on TensorFlow version 2.4.1. These operations 

were carried out on a server equipped with an Intel(R) Xeon(R) Bronze 3204 six-core 64-bit processor, 256GB of DDR4 

RAM, and an NVIDIA RTX 8000 GPU with 48GB of DDR5 VRAM.

3.1. Metrics and Performance

The metrics results, as presented in the figures 4-7, illustrate the performance of various training methodologies. Figure 4 

indicates that a maximum of thirty epochs sufficed to optimize accuracy without overfitting. Figure 5 contrasts the accuracy 

and F1 score against the volume of training images, noting performance gains in models trained with random weights as the 

image count increased.

OpticNet consistently outperformed other models with both random weights and fine-tuning, irrespective of training set size. 

ResNet-50, while underperforming with random weights, was surpassed by Xception in the fine-tuning scenario. OctNet, 

lacking pre-training, excelled only with random weights under OpticNet. All models showed poor performance when only the 
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classification layers were unfrozen, equivalent to a random guess. Training times, visualized in Figure 6, correlated with 

architecture complexity: larger models with more parameters demanded longer training periods, showing an exponential 

relationship with size.

3.2. Performance Comparison

Figure 7 contrasts the confusion matrices and ROC curves for the best and worst-performing models in detecting DME 

against other categories. It compares the performance of ResNet-50 trained on 1% of the data to OpticNet trained on the 

full dataset. OpticNet achieved near-perfect accuracy, while ResNet-50's accuracy was significantly lower, with 

widespread misclassifications across categories. Notably, ResNet-50 often confused DRUSEN for CNV and mislabeled 

NORMAL images as DRUSEN. Table 6 presents a comparative analysis of the performance of ResNet-50, Xception, and 

OpticNet models across varying training conditions and dataset sizes. Performance metrics such as accuracy, Intersection 

over Union (IoU), recall, precision, F1-score, Cohen Kappa, and Area Under the Curve (AUC) offer insights into each 

model's capabilities across different training methodologies, namely unfreezing classification layers, fine-tuning, and 

employing random weights. The analysis reveals significant performance enhancements correlated with increased data 

volume and the effectiveness of fine-tuning in optimizing model accuracy. OctNET's results are presented solely for the 

random weights approach, showcasing a significant improvement in performance as training data volume increases.

4. Discussion

Recent studies have consistently demonstrated high accuracy, often exceeding 99%, with differences emerging at the third 

decimal place (see Table 1). Despite the increasing number of publications suggesting modifications to existing models or the 

development of new ones, these studies tend to prioritize complexity over efficiency, frequently overlooking the 

computational cost and training time. There is also a lack of consideration for training these models with subsets of the 

available data, rather than the full dataset.

In this research, the models implemented and trained have surpassed all those reviewed in the systematic analysis, achieving 

up to 99.9% accuracy and recall. The exception is OctNET, which attained 98% precision, deviating slightly from the 

original paper. Such discrepancies might stem from variations in the training hyperparameters or how the dataset was 

divided. Nonetheless, the difference in reported performance is marginal, under 1%. Notably, OpticNet's performance with 

random weights and a mere 10% of the training set surpassed any other model trained on the Kermany dataset, which 

typically utilized the full dataset.

Fine-tuning is the leading strategy, significantly outperforming the unfreezing classification layers approach [23], [34]. This 
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underperformance is attributed to a constant learning rate, contrary to the recommended practice of adjusting it during 

retraining to encourage convergence. The inadequacy of the unfreezing method is highlighted by results comparable to a 

random classifier, as seen in Figure 6. On the other hand, the random weights approach shows promise with larger datasets, 

achieving comparable accuracy to fine-tuning beyond a certain data volume.

The analysis indicates that larger training sets typically improve model performance. However, a key finding is that there's 

a threshold approximately 10% of the full training set, or 8,348 image where models fine-tuned on this subset already 

achieve above 98% accuracy. With random weights, models reach at least 97% accuracy, except for OctNET, which 

requires around 41,000 images to hit the 97% mark. For the Xception and OpticNet models, fine-tuning on as few as 6,261 

and 4,174 images, respectively, suffices to achieve 99% accuracy. Generally, with fine-tuning or random weights, models 

attain over 99% accuracy starting from training sets with at least 6,261 images.

The growth of training time with an increase in training set size is exponentially greater across all model architectures. 

With fewer parameters to train, there's a significant reduction in computational time. OctNET stands out for its 

exceptionally rapid training time, which is an order of magnitude faster than other models like OpticNet or Xception. This 

efficiency becomes critical for models requiring frequent updates with new data, as the time difference between mere 

minutes for OctNET and several hours for others is a crucial consideration for continuous retraining and deployment.

OpticNet delivered the highest performance, likely due to its design, which is specialized for OCT image classification. 

Despite this, it shared similar challenges with other models when only the classification layers were unfrozen. In fine-tuning 

scenarios, OpticNet's advantage is more pronounced, possibly because it was pre-trained on a relevant dataset. Interestingly, 

OctNET's performance was on par with pre-trained models, challenging the expectation that pre-training should lead to quicker 

improvements with increasing dataset size. This could indicate that the pre-trained features were not as advantageous for OCT 

classification or that OCT images do not require complex models for high accuracy.

5. Conclusion

This study performed a systematic review to identify research papers where machine learning algorithms were applied to 

diagnose retinal pathologies from OCT images. A selection of high-ranking models from the literature was tested using widely 

used datasets, and three distinct training strategies were evaluated. This comparison aimed to determine the minimum dataset 

size required for robust model training. Furthermore, the study analyzed the trade-off between model performance metrics and 

training time to determine the most practical models for real-world application, with OpticNet emerging as the most effective in 

several training contexts.
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The systematic review revealed that prior research did not comprehensively assess the impact of training set size, typically 

adhering to the maxim “more data yields better results”. This study challenges that notion, demonstrating certain CNN 

architectures can reach optimal performance with only about 10% of the full dataset. It further illustrates that a model with fewer 

parameters less than 6% of the total can achieve comparable outcomes, significantly reducing both computational demands and 

hardware needs. Moreover, models pre-trained on specialized datasets like OpticNet with the Kermany dataset are immediately 

effective for specific tasks, such as detecting retinal pathologies. Conversely, models like ResNet and Xception, pre-trained on 

the more generalized ImageNet, might require additional tuning for specialized medical imaging tasks. This situation 

demonstrates why models with random initial weights can sometimes match or exceed the performance of those with specific 

pre-training, highlighting the importance of dataset relevance over general pre-training.
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Tables

Table 1: Summary of Studies on Deep Learning Architectures for OCT Image-Based Retinal Pathology Classification, Detailing Authors, 

Publication Years, CNN Architectures, Datasets, Classified Pathologies, and Performance Metrics.

Architectures Features Classified
Authors Year

CNN Model
Datasets

DME CNV Drusen Other
Metrics

Srinivasan  
et al.
[35] 2014 SVM Srinivasan ✓ AMD

Accuracy:
Normal: 0.8667

AMD: 1.0
DME: 1.0

Awais et al. 
[36] 2017 ✓ VGG16 

(pre-trained) SERI ✓

Accuracy: 0.875

Sensitivity: 0.935

Specificity: 0.81

Chan et al. 
[37] 2017 ✓

AlexNet 
(pre-trained) 

+ SVM
SERI ✓

Accuracy: 0.9607

Sensitivity: 
0.9448

Specificity: 
0.9766

Karri, 
Chakrabort

y, and 
Chatterjee

[38]

2017 ✓ GoogLeNet 
(pre-trained) Duke ✓ AMD Accuracy: 0.94

Rasti, 
Mehridehna

vi, et al.
[39]

2017 ✓ WCME

Private: 
50 Normal, 50 

DME
48 AMD

✓ AMD

Sensitivity: 
0.9463

Precision: 0.9521

F1-score: 0.9458

AUC: 0.986

Chan et al.
[40] 2018 ✓ AlexNet + 

PCA + SVM SERI ✓

Accuracy: 0.9688

Sensitivity: 
0.9375

Specificity: 1.0

Kamble et 
al. 

[41]
2018 ✓

Inception-
Resnet-v2 

(pre-trained)

SERI

Private:
4 DME,

79 Normal

✓

Accuracy: 1.0

Sensitivity: 1.0

Specificity: 1.0

Kaymak 
and Serener 

[42]
2018 ✓ AlexNet Kermany ✓ ✓ ✓

Accuracy: 0.971

Sensitivity: 0.996

Specificity: 0.984

Kermany et 
al.

[26]
2018 ✓ Inceptionv3 

(pre-trained) Kermany ✓ ✓ ✓

Accuracy: 0.966

Sensitivity: 0.978

Specificity: 0.974

Perdomo et 
al.

[43]
2018 ✓ SERI ✓

Accuracy: 0.9375

Sensitivity: 
0.9375

Specificity: 
0.9375
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AUC: 0.927

Rasti, 
Mehridehna

vi, et al.
[40]

2018 ✓ WCNN-RF

Duke
Private:

3840 Normal,
3840 DME

✓ AMD

Accuracy: 0.9798

Sensitivity: 
0.9822

Precision: 0.9867

AUC: 0.989

Huang et al. 
[44] 2019 ✓ LGCNN

Kermany
Private:

1581 CNV,
4592 DME,

1563 Drusen,
1168 Normal

✓ ✓ ✓ Accuracy: 0.899

Li et al. 
[45] 2019 ✓ VGG-16 

(pre-trained) Li ✓ ✓ ✓

Accuracy: 0.986

Sensitivity: 0.978

Specificity: 0.994

Mishra, 
Mandal, 

and Puhan
[19]

2019 Multi-level 
DAM

Duke
NEH ✓ AMD

Accuracy: 0.9962

Sensitivity: 
0.9962

Precision: 0.996 
F1-score: 0.996

AUC: 0.9997
Moura, 

Novo, and 
Ortega 

[46]

2019 ✓

CNN + 
Feature 

Selector + 
SVM

Private
200 Normal,

200 DME
✓ Accuracy: 0.975

Rastogi, 
Padhy, and 

Sa
[47]

2019 ✓ DenseNet-
BC Kermany ✓ ✓ ✓

Accuracy: 0.9765

Sensitivity: 
0.9557

Specificity: 
0.9915

Precision: 0.964

AUC: 0.9775

Wang and 
Wang 
[14]

2019 CliqueNet
Duke

NEH
✓ AMD

Accuracy: 0.99

Sensitivity: 0.992

Precision: 0.985

AUC: 0.99

Adel et al. 
[48] 2020 ✓

Xception 
(pre-trained) 

+ HL
Kermany ✓ ✓ ✓ Accuracy: 0.98

Alqudah 
[49] 2020 ✓ AOCT-NET Zhang

Farsiu ✓ ✓ ✓ AMD

Accuracy: 0.9712

Sensitivity: 
0.9712

Specificity: 
0.9928

Berrimi and 
Moussaoui 

[50]
2020 ✓ InceptionV3 

(pre-trained) Kermany ✓ ✓ ✓ Accuracy: 0.9927

Hassan, 2020 RRI-Net Kermany ✓ ✓ AMD Accuracy: 0.988
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Qin, and 
Ahmed 

[51]
Sensitivity: 0.976

Specificity: 0.992
Ibrahim, 
Fathalla, 

and 
Youssef 

[52]

2020 HyCAD Li
Kermany ✓ ✓ ✓

Accuracy: 0.988

Sensitivity: 0.994

Specificity: 0.982

Kim and 
Tran 
[53]

2020 Ensemble 
learning Kermany ✓ ✓ ✓

Accuracy: 0.989

Sensitivity: 0.989

Specificity: 0.996

Vellakani 
and 

Pushbam 
[54]

2020 ✓

Xception + 
LSTM 

(Long Short-
Term 

Memory)

Private ✓ ✓ AMD

Accuracy: 0.969

Sensitivity: 0.969

Specificity: 0.938

Wang et al. 
[55] 2020 ✓ VGG19 

(pre-trained)

Private:
119 wetAMD, 

124 GA,
132 Drusen, 122 

Normal

✓
wetAM

D
GA

Accuracy: 0.9314

Anam, 
Novamizant
i, and Rizal 

[56]

2021 ✓ EfficientNet Kermany ✓ ✓ ✓

Accuracy: 0.906

Sensitivity: 
0.9075

Precision: 0.9075

F1-score: 0.905
Gupta, 

Tripathi, 
and Gupta 

[57]

2021 ✓ VGG16 Li ✓ ✓ ✓ Accuracy: 0.9733

Haq, Fariza, 
and 

Ramadijanti 
[20]

2021 ✓ Inceptionv3 
(pre-trained) Kermany ✓ ✓ ✓

Accuracy: 
0.99793

Sensitivity: 
0.99794

Specificity: 
0.99931

Kim and 
Tran
[53]

2021 ✓

VGG16 
(pre-trained) 

+ VGG19 
(pre-trained) 

+ 
Inceptionv3 
(pre-trained)

Kermany ✓ ✓ ✓

Accuracy: 0.987

Sensitivity: 0.987

Specificity: 0.996

Rahimzade
h and 

Mohammad
i 

[58]

2021 ✓ ROCT-Net Kermany ✓ ✓ ✓

Accuracy: 0.987

Sensitivity: 0.987

Specificity: 
0.9957

Rajinikanth 
et al.
[59]

2021 SVM-FG Kermany ✓

Accuracy: 0.9286

Sensitivity: 
0.9047

Specificity: 
0.9524

Precision: 0.95
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F1-score: 0.9268

Reza et al. 
[60] 2021 ✓ ResNet50 Kermany ✓ ✓ ✓ Accuracy: 0.969

Sharma, 
Khanna, 

and 
Bhargava

[21]

2021 ✓ Kermany ✓ ✓ ✓

Accuracy: 0.9938

Precision: 0.9938

AUC: 1.0

A P et al. 
[30] 2021 ✓ OctNET Kermany ✓ ✓ ✓

Accuracy: 0.9969

Precision: 0.9969

Sensitivity: 
0.9969

F1-score: 0.9968

Thakoor et 
al. 

[61]
2021 ✓

Private:
97 non-AMD, 

169 non-
neovascular 

AMD
80 neovascular 

AMD

NVAM
D

Non-
NVAM

D

Accuracy: 0.778

Tian et al. 
[62] 2021 ✓ Kermany ✓ ✓ ✓ Accuracy: 0.9959

Asif, 
Amjad, and 
Qurrat-ul-

Ain
[22]

2022 ✓ ResNet50 Kermany ✓ ✓ ✓

Accuracy: 0.9948

Sensitivity: 0.99

F1-score: 0.99

Precision: 0.99

Esfahani et 
al.

[63]
2022 ✓ ECL CNN Duke ✓ AMD

Sensitivity: 
0.9954

Precision: 0.9943

Raen, 
Islam, and 

Islam
[64]

2022 ✓ ResNet50 
(pre-trained) Kermany ✓ ✓ ✓

Accuracy: 0.9981

Precision: 0.9968

F1-score: 0.9976

Sotoudeh-
Paima et al. 

[65]
2022 ✓ FPN-

VGG16

Kermany

NEH
✓ ✓ ✓

Accuracy: 0.999

Sensitivity: 1.0

Specificity: 0.998

Subramania
n et al. 

[66]
2022 ✓

Kermany

Private
✓ ✓ ✓

AMD
DR
MH
CRS

Accuracy: 0.9934

Sensitivity: 
0.9712

Precision: 0.9762

F1-score: 0.9724

Tayal et al. 
2022
[67]

2022 ✓ Kermany ✓ ✓ ✓

Accuracy: 0.9714

Sensitivity: 
0.9447

Specificity: 
0.9816

F1-score: 0.958
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Schwartz 
2022
[68]

2022 ✓

Deep 
Learning 

Framework 
with 

multiple 
models

UK Biobank ✓ RPD

Sensitivity:
 Model 1: 78.3%, 
Outlier Detection 
Model 2: 96.7%, 

Drusen/RPD 
Classification 

Model 3: 97.8%

Specificity: 
Model 1: 93.7%, 
Outlier Detection 
Model 2: 76.8%, 

Drusen/RPD 
Classification 

Model 3: 99.0%

Accuracy: 
Model 1: 90%, 

Outlier Detection 
Model 2: 81.6%, 

Drusen/RPD 
Classification 

Model 3: 98.4%; 

AUC: 
Model 1: 0.95, 

Outlier Detection 
Model 2: 0.93, 
Drusen/RPD 
Classification 
Model 3: 0.99

Kappa: 
Model 1: 0.72, 

Outlier Detection 
Model 2: 0.59, 
Drusen/RPD 
Classification 
Model 3: 0.97

Min Hu
2023
[69] 2023 ✓

ResNet50NF 
(two-step 

hierarchical 
CNN)

Shenyang Aier 
Excellence Eye 

Hospital
✓

Nascent 
geograp

hic 
atrophy 
(nGA)

Geograp
hic 

atrophy 
(GA)

Accuracy: 
Normal: 99.68%, 
Drusen: 94.12%, 
nGA: 91.56%, 
GA: 97.12%; 

Sensitivity: 
Normal: 99.67%, 
Drusen: 90.04%, 
nGA: 81.87%, 
GA: 93.7%; 

Specificity: 
Normal: 99.68%, 
Drusen: 95.89%, 

nGA: 94.0%, GA: 
98.57%; 

F1 Score: 
Normal: 99.12%, 
Drusen: 90.3%, 
nGA: 81.65%, 
GA: 94.22%; 

Macro-F1 Score: 
91.32%;

 
Kappa: 96.09%
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Opoku
2023
[70] 

2023 ✓ SFFT-
CapsNet

Kermany

California 
Retinal 

Research 
Foundation

Medical Center 
Ophthalmology 

Associates

Beijing Tongren 
Eye Center

✓ ✓ ✓

Accuracy: 99.0%, 

Sensitivity: 100%, 

Precision: 99.8%, 

Specificity: 100% 

AUC: 1

Choudhary
2023
[71] 2023 ✓

VGG-19 
(with 

transfer 
learning)

Kermany ✓ ✓ ✓

Accuracy: 99.17% 

Sensitivity: 99.0%

Specificity: 99.5%

AUC: 0.9997

Wang
2023
[72]

2023 ✓

DSS-MIL 
(Deep Semi-
Supervised 
Multiple 
Instance 

Learning)

Private (Triton-
DME):

24 B-scans

Private 
(Heidelberg-

DME):
865 DME

531 Normal

✓

Accuracy:
Heidelberg-DME:
B-scan: 92.90% 
Volume: 90.80% 
Triton-DME: B-

scan: 91.32% 
Volume: 90.40%

F1 Score: 
Heidelberg-DME: 
B-scan: 83.53% 
Volume: 88.89% 
Triton-DME: B-

scan: 80.38% 
Volume: 87.71%

AUC: Heidelberg-
DME: B-scan: 

97.47% Volume: 
97.01% Triton-
DME: B-scan: 

97.12% Volume: 
96.97%

Opoku
2023
[73] 2023 ✓ CLAHE-

CapsNet Kermany ✓ ✓ ✓

Accuracy: 97.7%, 

Sensitivity: 99.5%

Precision: 99.3% 

Specificity:
CNV: 100%, 
DME: 100%
Drusen: 99%
Normal: 99%

AUC: 1

Huang
2023
[74] 2023 ✓

GABNet 
(Global 

Attention 
Block 

Network)

Kermany ✓ ✓ ✓

Accuracy: 99%

Sensitivity: 99%

Specificity: 
99.67%

F1: 99

AUC: 0.9994
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Akinniyi
2023
[75] 2023 ✓

Multi-Scale 
Ensemble 

Deep 
Architecture 
(Pyramidal 

network 
with 

DenseNet20
1 as 

backbone)

Kermany

Duke
✓ ✓ ✓

Binary 
Classification: 

Accuracy: 97.79% 
Sensitivity: 

95.55% 
Specificity: 

99.72%
AUC: 99.86%

3-Class 
Classification: 

Accuracy: 96.83%
Sensitivity: 

97.75% 
Specificity: 

98.87%

4-Class 
Classification: 

Accuracy: 94.26% 
Sensitivity: 

96.29% 
Specificity: 

98.74%

Aykat
2023
[76]

2023 ✓

 
EffXceptNet 
(Hybrid of 
EfficientNet
V2S and 
Xception)

Kermany ✓ ✓ ✓

Accuracy: 99.90%

Precision: 99.90%

Recall: 99.90%

 F1 Score: 99.90%

Cai
2023
[77] 2023 Vision 

Transformer

Private (Eye 
Center of the 

Renmin 
Hospital of 

Wuhan 
University):
1254 early 

DME
991 advanced 

DME
672 severe 

DME
402 atrophic 
maculopathy

✓

Overall: 
Accuracy: 82.00%
F1 Score: 83.11%

AUC: 0.96

Early DME: 
Accuracy: 90.87%
Precision: 88.46% 

Sensitivity: 
87.03%

Specificity: 
93.02%

F1 Score: 87.74%
AUC: 0.96 

Advanced DME: 
Accuracy: 89.96% 
Precision: 80.31%

Sensitivity: 
88.18%

Specificity: 
90.72%

F1 Score: 84.06%
AUC: 0.95 

Severe DME: 
Accuracy: 94.42%
Precision: 89.42%

 Sensitivity: 
63.39%

Specificity: 
98.40%

F1 Score: 88.18%
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AUC: 0.87 

Atrophic 
Maculopathy: 

Accuracy: 95.13%
 Precision: 

87.74%
 Sensitivity: 

89.42%
 Specificity: 

96.66%
F1 Score: 88.57%

AUC: 0.98

Liew
2023
[78]

2023

MSKξMP 
(Multi-Size 
Kernels 
ξcho-
Weighted 
Median 
Patterns)

Duke

NEH
✓ ✓ ✓

Accuracy: 99.78% 

Accuracy:
96.63% Duke

Accuracy: 88.51% 
NEH

Mohamed 
Elkholy

2024
[79]

2024 ✓

 VGG16 
(with 

transfer 
learning)

Kermany ✓ ✓ ✓ Accuracy: 97%

Priti Bansal
2024
[80]

2024 ✓ OCT-CNN

Kermany

The Shanghai 
First People’s 

Hospital
 

The California 
Retinal 

Research 
Foundation

Medical Center 
Ophthalmology 

Associates

Beijing Tongren 
Eye Center

✓ ✓ ✓

Accuracy: 
CNV: 99.28% 
DME: 99.9% 

Drusen: 99.38% 
Normal: 100% 

Precision: 
Average 99.3% 

Recall: 
Average 99.28%

F1 Score: 
Average 99.28%

Prabha
2024
[81]

2024 ✓ RD-OCTNet

Private:
Normal: 487
nAMD: 519
DME: 448
RVO: 440

✓

Accuracy: 95.2% 

Sensitivity: 96% 

Specificity: 95% 

Precision: 95%

F1 Score: 95% 

AUC: 
nAMD: 0.99
DME: 0.97,
RVO: 1.0, 

Normal: 0.99

Elsharkawy
2024
[82]

2024 ✓
DeepLabV3

+ and 
custom CNN

Private:
Normal: 157

early AMD: 122
intermediate 
AMD: 168
GA: 122

inactive wet: 
211

Early 
AMD

Interme
diate 
AMD
GA

Accuracy: 90.82%
Kappa: 89.10%
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active wet: 220
non-AMD: 285

Inactive 
Wet 

AMD
Active 
Wet 

AMD 
Non-
AMD 

diseases

Wang
2024
[83]

2024 ✓

GeCoM-Net 
(Geometric 
Corresponde
nce-based 
Multimodal 
Learning 
Network)

GAMMA ✓

Impaire
d Visual 
Acuity 
(VA)

Glauco
ma

DME:
AUROC: 99.7%

Impaired VA: 
AUROC: 87.0%

Glaucoma: 
AUROC: 

improvement of 
2.9% over SOTA 

methods

Table 1: Summary of Studies on Deep Learning Architectures for OCT Image-Based Retinal Pathology Classification, Detailing Authors, 

Publication Years, CNN Architectures, Datasets, Classified Pathologies, and Performance Metrics.
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Dataset Source Normal Dry AMD DME CNV Drusen

Duke/Srinivasan [35] 15 15 15 0 0

SERI [84] 64 0 64 0 0

Kermany [26] 26,315 0 11,348 37,205 8,616

Li et al.[45] 51,390 0 11,599 37,456 8,867

Rasti et al. [40] 2,375 0 1,185 0 1,524 

Table 2: Overview of public OCT datasets highlighting image counts across different retinal pathologies.

Label Train Test Validation

NORMAL 17002 5313 4250

CNV 23971 7491 5993

DME 7423 2320 1855

DRUSEN 5674 1773 1419

Table 3: Distribution of images in the Kermany dataset across training, testing, and validation sets by category.

Model Number of 
Parameters

OpticNet 12,495,492
Xception 22,910,480
ResNet-50 25,636,712
OctNET 743,812

Table 4: Number of trainable parameters for each evaluated model, reflecting their complexity.

State Trainable Layers Pre-trained

Unfreeze classification layers Last dense (classification) Yes

Fine-tuning All Yes

Random weights All No

Table 5: Overview of CNN model training approaches highlighting trainable layers and use of pre-training. 
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Model Train images Train methodology Accuracy IoU Recall Precision F1-score
Cohen-

Kappa
AUC

Unfreeze classification 0.311 0.171 0.311 0.329 0.288 0.081 0.545

Fine-tuning 0.499 0.320 0.499 0.321 0.369 0.332 0.945835

Random weights 0.250 0.063 0.250 0.063 0.100 0.000 0.506

Unfreeze classification 0.263 0.125 0.263 0.262 0.212 0.018 0.542

Fine-tuning 0.983 0.968 0.983 0.984 0.983 0.978 0.992
8,348

Random weights 0.974 0.950 0.974 0.976 0.974 0.966 0.994

Unfreeze classification 0.222 0.106 0.222 0.189 0.185 -0.037 0.435

Fine-tuning 0.999 0.998 0.999 0.999 0.999 0.999 1.000

ResNet- 50

83,484

Random weights 0.999 0.998 0.999 0.999 0.999 0.999 1.000

Unfreeze classification 0.248 0.073 0.248 0.157 0.120 -0.003 0.522

Fine-tuning 0.500 0.325 0.500 0.325 0.371 0.333 0.925835

Random weights 0.264 0.078 0.264 0.165 0.128 0.019 0.516

Unfreeze classification 0.253 0.076 0.253 0.211 0.127 0.004 0.508

Fine-tuning 0.999 0.998 0.999 0.999 0.999 0.999 1.000
8,348

Random weights 0.996 0.992 0.996 0.996 0.996 0.994 1.000

Unfreeze classification 0.253 0.076 0.253 0.211 0.127 0.004 0.507

Fine-tuning 0.999 0.998 0.999 0.999 0.999 0.999 1.000

Xception

83,484

Random weights 0.998 0.996 0.998 0.998 0.998 0.997 1.000

Unfreeze classification 0.250 0.063 0.250 0.063 0.100 0.000 0.496

Fine-tuning 0.978 0.958 0.978 0.980 0.978 0.971 1.000835

Random weights 0.564 0.381 0.564 0.646 0.533 0.419 0.846

Unfreeze classification 0.250 0.063 0.250 0.063 0.100 0.000 0.496

Fine-tuning 0.996 0.992 0.996 0.996 0.996 0.994 1.000
8,348

Random weights 0.999 0.998 0.999 0.999 0.999 0.999 1.000

Unfreeze classification 0.250 0.063 0.250 0.063 0.100 0.000 0.496

Fine-tuning 0.996 0.992 0.996 0.996 0.996 0.994 1.000

OpticNet

83,484

Random weights 0.999 0.998 0.999 0.999 0.999 0.999 1.000

835 Random weights 0.588 0.380 0.588 0.646 0.511 0.450 0.872

8,348 Random weights 0.897 0.812 0.897 0.908 0.896 0.862 0.991OctNET

83,484 Random weights 0.987 0.974 0.987 0.987 0.987 0.982 1.000

Table 6: Comparative performance metrics of selected CNN models across three different training methodologies
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Figure Captions

Figure 1: Paper Query Results and Selection Process. From the three journal databases, we initially retrieved 358 papers. After removing duplicates, 295 

papers remained. We then conducted a refined query to identify papers that discussed at least one of the specific pathologies, narrowing it down to 64 

papers. Ultimately, 43 of these papers, which utilized machine learning-based classification techniques, were selected for further analysis.

Figure 2: Differentiated Training Methodologies for CNN Models: a) Unfreezing Classification Layer utilizes pre-trained network parameters, 

freezing all except the final layers for targeted training. b) Fine-Tuning permits updates to all layers of a pre-trained network, integrating newly 

initialized layers. c) Training from scratch establishes a fully trainable network with no transfer learning, starting with a random initialization of all 

layers.

Figure 3: Confusion matrix for a binary classification problem. The matrix diagonal corresponds to the correct predictions, whereas any other 

value corresponds to confusion between the predicted and true labels.

Figure 4: Training Accuracy over Epochs on three training scenaries: This graph displays training accuracy over 30 epochs for different 

models under three training scenarios: (A) using random weights, (B) applying fine-tuning, and (C) unfreezing classification layers. Each curve 

traces a model's learning progression, with epochs on the horizontal axis and accuracy on the vertical.

Figure 5: Curves depicting the test set performance across different training set sizes in logarithmic scale: (A) showcases accuracy and F1-score 

for models trained with random weights; (B) presents these metrics for models using the fine-tuning approach, excluding OctNET; and (C) 

illustrates outcomes for models with only the classification layers trained.

Figure 6: Training times in logarithmic scale for each model along the train set size percentage in logarithmic scale in x-axis for all the proposed 

models.

Figure 7: Overall results comparison. A. Confusion matrix for ResNet-50 with unfroze last classification layers trained with just 1% of the complete 

training set. B. Confusion matrix of the OpticNet model trained with the complete training set (blank squares denote a zero value). C. ROC curve of 

the above models (ResNet with 1% training set and OpticNet with 100%).

Algorithm Captions

Algorithm 1: Iterative training methodology across various image sets for multiple model evaluation.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309070doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309070
http://creativecommons.org/licenses/by/4.0/

