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Abstract 

An important aim in psychiatry is the establishment of valid and reliable associations linking 

profiles of brain functioning to clinically relevant symptoms and behaviors across patient 

populations. To advance progress in this area, we introduce an open dataset containing 

behavioral and neuroimaging data from 241 individuals aged 18 to 70, comprising 148 

individuals meeting diagnostic criteria for a broad range of psychiatric illnesses and a healthy 

comparison group of 93 individuals. These data include high-resolution anatomical scans, 

multiple resting-state, and task-based functional MRI runs. Additionally, participants completed 

over 50 psychological and cognitive assessments. Here, we detail available behavioral data as 

well as raw and processed MRI derivatives. Associations between data processing and quality 

metrics, such as head motion, are reported. Processed data exhibit classic task activation 

effects and canonical functional network organization. Overall, we provide a comprehensive and 

analysis-ready transdiagnostic dataset, which we hope will accelerate the identification of 

illness-relevant features of brain functioning, enabling future discoveries in basic and clinical 

neuroscience.  
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Background & Summary 
In recent years, there has been growing interest in establishing how alterations in brain anatomy 

and function may, at least in part, underpin the onset and maintenance of common psychiatric 

illnesses. However, progress in understanding these brain-behavior relationships in psychiatry 

has faced challenges partly due to a lack of open-access clinical cohorts and the restricted 

sampling of brain function and behavior across patient populations. While developments have 

been made in both brain-based explanatory and predictive models of clinically relevant 

behaviors, most of what we currently know about in vivo brain functioning comes from studying 

healthy populations. As such, the increased availability of clinically focused open-access data 

will facilitate the identification of network function characteristic of symptom-relevant behavioral 

and cognitive domains.  

 

To date, research on the neurobiological origins of psychiatric illness has primarily focused on 

discrete illness categories studied in isolation. Although researchers have historically treated 

patient populations as discrete entities, murky boundaries often exist between nominally distinct 

diagnostic categories1-3. Transdiagnostic data collection efforts provide the unique opportunity to 

identify symptom and disorder general impairments that may transcend conventional diagnostic 

boundaries4,5. While existing large-scale population neuroscience datasets like the UK Biobank 

and Human Connectome Project6 have proven indispensable to foundational research 

questions in neuroscience, they predominantly consist of individuals without psychiatric illness. 

This narrow scope restricts the range of measurable behaviors, limiting our capacity to connect 

the full continuum of functioning to biological and environmental factors, given the incidence of 

psychiatric diagnoses (approximately 23% of all adults in the United States as of 2021 and a 

lifetime prevalence of approximately 50% starting in adolescence7). We present openly available 

data from the Transdiagnostic Connectomes Project (TCP) to work towards addressing these 

shortcomings. The TCP compiles richly phenotyped behavioral and MRI data from individuals 
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with and without psychiatric diagnoses, covering a broad spectrum of human behavior. This 

resource provides the opportunity to uncover the neural substrates of illness-relevant behaviors 

across traditional diagnostic boundaries.  

 

Methods  
In this section, we begin by describing recruitment strategies, screening procedures, and overall 

demographics of TCP participants. We then describe the clinician-administered measures, self-

report questionnaires, and cognitive tests all participants completed. Finally, we describe the 

MRI data, detailing the acquisition parameters for each scan. 

 

Participants 

Between November 2019 and March 2023, 241 participants completed the TCP study at one of 

two sites within the United States of America: 1) Yale University, Department of Psychology, 

FAS Brain Imaging Center, located in New Haven, Connecticut and 2) McLean Hospital Brain 

Imaging Center, located in Belmont, Massachusetts. Participants were recruited from the 

community via flyers, online advertisements, and patient referrals from participating clinicians. 

Participants provided written informed consent following guidelines established by the Yale 

University and McLean Hospital (Partners Healthcare) Institutional Review Boards (See 

Supplementary Appendix A for representative study consent forms from each site). Participants 

were eligible for the study if they were 1) 18-65 years old, 2) had no MRI contraindications, 3) 

were not colorblind, and 4) had no diagnosed neurological abnormalities. All participants 

underwent a Structured Clinical Interview for DSM-5 (SCID-V-RV) to assess the presence of 

current or past psychiatric illness. Interviews were conducted by clinical psychologists or trained 

research assistants who were supervised by qualified clinical psychologists. Research 

assistants and their clinical supervisors met weekly to discuss interview findings. The final study 

population included both healthy individuals without a history of illness or treatment and 
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individuals with a diverse set of clinical presentations, including affective and psychotic 

psychopathology. A diagnostic and demographic breakdown of study participants is provided in 

Fig. 1.  

After online or phone-based screening, participation in the TCP consisted of three study 

sessions (Fig. 1A). Participants completed 1) an in-person clinical, demographic, and health 

assessment, including a diagnostic interview, clinician-administered scales, and self-report 

scales (see Behavioral measurements for a complete list); 2) an MRI session, including 

anatomical, resting-state functional and task-based functional neuroimaging (see MRI data 

acquisition), as well as an additional battery of self-report cognitive and behavioral measures; 3) 

an online cognitive and behavioral assessment, including the TestMyBrain8 cognitive 

assessment and a supplemental set of self-report assessments (see Behavioral measurements 

for a complete list).  
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Figure 1. Overview of the Transdiagnostic Connectome Project (TCP). (a) Schematic representation 
of the Transdiagnostic Connectomes project, illustrating the recruitment of participants across two sites. 
Participants underwent three assessment sessions, including in-person clinician evaluations, self-report 
measures, neuroimaging, and online cognitive and self-report assessments. (b) Breakdown of primary 
mental health diagnoses for each individual based on the Structured Clinical Interview for DSM-5 (SCID-
V-RV) criteria. (c) Bar chart displaying age distributions across the two sites, with bars colored based on 
the proportion of self-reported sex within each age bracket. (d) Geographic distribution of TCP 
participants' place of birth. The dot size represents the number of participants from each location, with a 
world map at the bottom and an enlarged map of the United States of America on top. (e) Distribution of 
race and ethnicity according to National Institute of Health criteria, categorized for individuals with and 
without a mental health diagnosis. 
 

MRI data acquisition 

MRI data were acquired at both sites using harmonized Siemens Magnetom 3T Prisma MRI 

scanners and a 64-channel head coil. T1-weighted (T1-w) anatomical images were acquired 

using a multi-echo MPRAGE sequence following parameters: acquisition duration of 132 

seconds, with a repetition time (TR) of 2.2 seconds, echo times (TE) of 1.5, 3.4, 5.2, and 7.0 

milliseconds, a flip angle of 7°, an inversion time (TI) of 1.1 seconds, a sagittal orientation and 

anterior (A) to posterior (P) phase encoding. The slice thickness was 1.2 millimeters, and 144 

slices were acquired. The image resolution was 1.2 mm3. A root mean square of the four 

images corresponding to each echo was computed to derive a single image. T2-weighted (T2-

w) anatomical images with the following parameters: TR of 2800 milliseconds, TE of 326 

milliseconds, a sagittal orientation, and AP phase encoding direction. The slice thickness was 

1.2 millimeters, and 144 slices were acquired. 

All seven functional MRI runs were acquired with the same parameters matching the HCP 

protocol6,9, varying only the conditions (rest/task) and separately acquired phase encoding 

directions (AP/PA). For the resting-state, Stroop task, and Emotional Faces task, a total of 488, 

510, and 493 volumes were acquired, respectively, all using the following MRI sequence 

parameters: TR = 800 milliseconds, TE = 37 milliseconds, flip angle = 52°, and voxel size 

=2mm3. A multi-band acceleration factor of 8 was applied. An auto-align pulse sequence 

protocol was used to align the acquisition slices of the functional scans parallel to the anterior 
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commissure-posterior commissure (AC-PC) plane of the MPRAGE and centered on the brain. 

To enable the correction of the distortions in the EPI images, B0-field maps were acquired in 

both AP and PA directions with a standard Spin Echo sequence. Detailed MRI acquisition 

protocols for both sites are available in Appendix B. In total, four resting-state (2�AP, 2�PA), 2 

Stroop task acquisitions (1�AP, 1�PA), and 1 Emotional Faces task acquisition10 (1�AP) 

acquisitions were collected. Select participants out of the total sample did not complete each 

functional neuroimaging run; thus the sample sizes for each run were as follows: resting-state 

AP run 1, n = 241; resting-state PA run 1, n = 241; resting-state AP run 2, n = 237; resting-state 

AP run 2, n = 235; Stroop task AP, n = 226; Stroop task PA, n = 224; and Emotional Faces task 

AP, n = 226. 

Task fMRI paradigms  

We collected functional MRI data while participants engaged in two tasks: 1) the Stroop task 

and 2) the Emotional Faces task. Fig. 2 shows the two task paradigms, including timing 

specifications for fixation periods, trial durations, inter-stimulus intervals, and response 

collection methods. In all task fMRI runs, stimuli were presented using the PsychoPy 

presentation software11 and projected onto a screen viewed through a mirror mounted atop the 

MRI scanner’s head coil.  

 

The Stroop task is a classical experimental manipulation of cognitive control–specifically, the 

ability to inhibit automatic responses when presented with conflicting information to accomplish 

a given task goal and/or context12-17. During the task, participants were presented with various 

color name words (e.g., red, blue, and green) that were shown in various “ink” colors (i.e., font 

colors) and asked to identify the color of the ink (Fig. 2A). If the ink and the written word 

matched (e.g., “red” shown in red font), this was a congruent trial and is relatively easy and fast 

to identify. However, if the ink and the written word did not match (e.g., “red” shown in blue font), 
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this was an incongruent trial and is more difficult and slower to identify. This is known as the 

“Stroop effect” (or “Stroop interference”) and is quantified via reduced accuracy and slower 

reaction time on incongruent versus congruent trials. The Stroop effect is generally more 

pronounced (i.e., larger accuracy and reaction time differences between conditions) when a 

participant has lower inhibitory cognitive control or difficulty recruiting the neurocognitive 

resources needed to process conflicting information accurately18. Resolving interference in an 

experimentally manipulated context is thought to capture the extent to which one can deploy 

cognitive flexibility and/or selective attention in everyday life19-21. The Stroop effect has been 

investigated using various task adaptions in a variety of clinical research programs, including 

studies of psychotic22-25, attentional26-29, mood30-32, and substance use disorders33-35. 

Additionally, cognitive control is negatively impacted across a large number of psychiatric 

disorders36-39. Therefore, behavioral performance and neurocognitive processes exhibited while 

performing the Stroop task are well-suited to the transdiagnostic research questions 

addressable with the TCP dataset.  

 

The Emotional Faces task10 is also a widely implemented task paradigm in neuroimaging. 

Participants were presented with images of human faces or geometric shapes and asked to 

categorize stimuli as either faces or shapes (Fig. 2B). Trials that showed pictures of human 

faces included people with neutral, positive (e.g., happy), and negative emotional expressions 

(e.g., anger) taken from the NimStim database of face stimuli40; trials showing shapes included 

ovals with different orientations. Three images were arranged in a triangle, and participants 

were instructed to indicate which of the two bottom shapes or faces matched the shape or face 

at the top of the screen. This task is relatively easy; therefore, behavioral performance is not 

typically of central interest. Instead, this task paradigm reliably elicits a response within regions 

of the amygdala during emotional face relative to shape trials and can provide neuroimaging 

studies with 1) essential benchmarking using a well-established task activation and 2) an entry 
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point for neuroscience research questions on affective processing. The latter is an important 

consideration for transdiagnostic research, given that a variety of psychiatric conditions are 

known to involve dysregulated processing of emotions and deficits in social cognition. These 

topics have been examined using the Emotional Faces task in studies of autism spectrum 

disorder41,42, anxiety disorders43,44, post-traumatic stress disorder45, psychotic disorders46, 

psychopathy47, and those exhibiting social phobia48. 
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Figure 2 - Functional neuroimaging task paradigms. (a) The Stroop task paradigm. For each 
functional run (2 total: AP and PA), an initial fixation (2 s) was followed by the presentation of color name 
words (red, green, or blue) in either congruent or incongruent ink color. Participants were given a button 
box with three buttons that were pre-mapped to record responses as either red, green, or blue and were 
told to identify the color of the ink on each trial. Stimuli were presented for 250 ms, and responses were 
allowed within the variable interstimulus interval (var. ISI; response periods denoted by asterisks), which 
included a range of 2.25 through 8.25 s. There were three congruent trial types, shown for about 70% of 
trials (18 each), and six incongruent trial types, shown for about 30% of trials (4 each). There were 78 
trials for each functional run, each approximately 6.8 minutes (or 510 TRs at 0.8 s each) in total. (b) The 
Emotional Faces task paradigm. There was an initial countdown of four screens showing 1 to 4 in 
consecutive order (6s total). Then, every six trials showed a cue that either said “Match Faces” or “Match 
Shapes”. Participants were given a button box with two pre-mapped buttons that recorded responses as 
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either “left” or “right” and were told to choose which of the two (left or right) of the bottom images matched 
the top image in the triangle. Stimuli were presented for 1.8 through 2 s, and there was an ISI fixation 
between each trial. Feedback plus ISI was approximately 1 s per trial. Each of the faces and shapes trial 
types were shown in equal amounts (50% of trials each). There were 109 trials altogether, which lasted a 
total of 6.6 minutes (493 TRs). Note that some components of these figures have been slightly modified 
from their original presentation form for ease of visualization and to protect the privacy of the original 
models; the face stimuli shown are photographs of authors of this manuscript meant to be representative, 
but not exact matches, of the original images used in the experiment. We confirm that all authors 
consented to the inclusion of their photographs in the manuscript for public dissemination. 
 

Behavioral measurements 

Table 1 lists the entire battery of assessments across the three testing sessions. The selected 

measures index a broad range of functional, lifestyle, emotional, mental health, cognitive, 

environmental, personality, and social factors. These assessments include multiple commonly 

used clinical tools such as the Montgomery-Åsberg Depression Rating Scale (MADRS49), 

Depression Anxiety Stress Scale (DASS50), Positive and Negative Syndrome Scale (PANSS51), 

and Young Mania Rating Scale (YMRS52), as well as scales that capture distinctive aspects of 

experiences such as Temperament and Character Inventory53, Temporal Experience of 

Pleasure Scale54, Experience in Close Relationship Scale55, and the Positive Urgency 

Measure56. The dataset also includes common measures of cognition, including the Shipley 

Vocabulary Test57 and the TestMyBrain suite8, including matrix reasoning, as well as self-report 

measures such as Cognitive Emotion Regulation Questionnaire58, Cognitive Failures 

Questionnaire59 and Cognitive Reflection Test60. Item-level participant responses are available 

for download (see Data Records). The associated distributions, missingness, means, medians, 

and standard deviation for the total sample for all scales and subscales are provided in 

Supplement Table 1.  

 

Table 1. List of all behavioral assessments. 

Session 1 (Clinical Assessment) Short Name Reference 

SCID-5: Structured Clinical Interview for DSM-5* SCID-5 First et al., 201561 

Health and demographics questionnaire* n/a n/a 

Anxiety Symptom Chronicity* ASC n/a 
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Clinical Global Impression* CGI Busner & Targum, 200762 

Columbia Suicide Severity Rating Scale* CSSRS-I Posner et al., 201163 

Range of Impaired Functioning Tool* LIFT-RIFT Leon et al., 199964 

Montgomery-Asberg Depression Rating Scale* MADRS Davidson et al., 198649 

Multnomah Community Ability Scale MCAS Hendryx et al., 200165 

Positive and Negative Syndrome Scale* PANSS Kay et al., 198751 

Panic Disorder Severity Scale* PDSS Shear et al., 200666 

Young Mania Rating Scale* YMRS Young et al., 197852 

Alcohol Tobacco Caffeine Use Questionnaire ATC Istvan & Matarazzo, 198467 

Broad Autism Phenotype Questionnaire BAPQ-2 Hurley et al., 200668 

Barratt Impulsiveness Scale BIS Patton et al., 199569 

Behavioral Inhibition/Activation Scale BISBAS Carver & White, 199470 

Childhood Trauma Questionnaire CTQ Pennebaker & Susman, 
198871 

Domain Specific Risk Taking DOSPERT Weber et al., 200272 

Fagerstrom Test for Nicotine Dependence FNTD Radzius et al., 200373 

Multidimensional Scale for Perceived Social 
Support 

MSPSS Zimet et al., 198874 

NEO Five-Factor Inventory NEO-FFI Costa & McCrae, 200375 

Quick Inventory of Depressive Symptomatology QIDS Rush et al., 200376 

State-Trait Anxiety Inventory STAIY Spielberger 198377 

Temperament Character Inventory TCI Cloninger 198753 

Session 2 (MRI Assessment) Short Name Reference 

Anxiety Sensitivity Index ASI Reiss et al., 198678 

Depression Anxiety Stress Scale DASS 
Lovibond & Lovibond, 
199550 

Profile of Mood States POMS McNair et al., 198179 

Perceived Stress Scale PSS Cohen et al., 198380 

Shipley Institute of Living Scale Shipley Shipley 196781 

Temporal Experience of Pleasure Scale TEPS Gard et al., 200654 

Stroop task † Stroop Stroop 193512; MacLeod 
199116 

Emotional Faces Task † Emo. Faces Hariri 200210; DeKosky et 
al., 198082 

Session 3 (Online Assessment) Short Name Reference 

Cognitive Emotion Regulation Questionnaire CERQ Garnefski & Kraaij, 200758 
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Cognitive Failures Questionnaire CFQ Broadbent et al., 198259 

Cognitive Reflections Test CRT Frederick, 200560 

Experiences in Close Relationships Inventory ECRR Brennan et al., 199855 

Positive Urgency Measure PUM Cyders et al., 200756 

Ruminative Responses Scale RRS Treynor et al., 200383 

Retrospective Self-Report of Inhibition RSRI Reznick et al., 199184 

Snaith-Hamilton Pleasure Scale SHAPS Snaith et al., 199585 

Test My Brain TMB Passell et al., 20198 

* Indicates that the assessment was administered by a clinician rather than self-reported.  

† Indicates that the assessment occurred within the MRI scanner. 

Not applicable indicated by n/a. 
 

Data Records 
Raw neuroimaging and behavioral data can be accessed via OpenNeuro: 

https://openneuro.org/datasets/ds005237. Additionally, raw and processed data can be 

accessed via the National Institute of Mental Health Data Archive (NDA) data repository  

(https://nda.nih.gov/edit_collection.html?id=3552) upon publication. The dataset is released as 

part of Open Access Permission, has been consented for broad research use, and can be 

accessed by users who are not affiliated with an NIH-recognized research institution. Note that 

5 participants did not grant permission to share their data via openly online-hosted repositories 

and are excluded from this release.  

 

Raw MRI data have undergone DICOM to NifTI conversion using dcm2niix86  and are provided 

in BIDS-compliant87 format. BIDS organizes data into a standardized file, folder and naming 

structure. Imaging data for each participant is stored in folders named according to the assigned 

Global Unique Identifier (GUID), an alphanumeric code created by the NDA GUID Tool. For 

BIDS data uploaded to OpenNeuro, a ‘sub-’ prefix was added to subject folders and filenames. 

Each participant folder contains an  ‘anat’  subfolder containing T1-w and T2-w images, a ‘func’ 

subfolder containing all runs of functional data as well as event files for task runs, and a ‘fmap’ 
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subfolder containing the field maps. Each image and event file has a corresponding .json file 

that contains relevant meta-data. All anatomical images were defaced prior to uploading on the 

NDA using the face_removal_mask function from the R library fslr88 (R package version: 2.52.2, 

R version: 4.3.0), which is a wrapper library of FSL89 (version 6.0.5.1). The face_removal_mask 

function is an R implementation of the Python package pydeface90. The demographic and 

behavioral data are available as .csv files, with a separate file for each scale and a 

corresponding NDA-conformant dictionary delineating available data fields. 

 

To facilitate the use of the TCP data, in addition to raw BIDS formatted data, we provide both 

raw data and processed derivatives according to the HCP processing pipelines (version 4.7.0, 

see Human Connectome Project minimal processing below for details) on the NDA, including 

anatomical surfaces, as well as minimally processed and denoised functional timeseries in both 

densely sampled surface space and standard volumetric space. A full list of HCP-related 

derivatives can be found at: https://www.humanconnectome.org/study/hcp-young-

adult/document/1200-subjects-data-release. We additionally provide analysis-ready functional 

connectivity matrices using cortical, subcortical, and cerebellar regions. The processing and 

denoising pipeline, and quality control procedures are described below in Technical Validation. 

 

Technical Validation 

In this section, we first describe the processing and denoising pipeline used for the MRI data. 

Next, we benchmark this process by examining 1) the residual relationship between in-scanner 

movement and functional connectivity before and after denoising, 2) the effect of region-to-

region distance on this residual relationship, and 3) the number of statistically significant 

associations between head motion and functional connectivity. Subsequently, we explore the 

presence of group-level canonical functional network structures and assess the similarity of 
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these structures across different fMRI runs. Additionally, we report commonly computed network 

diagnostics91 given by graph theory, canonical task-based fMRI activation contrasts, and 

behavioral outcomes from in-scanner tasks. Finally, we examine correlation patterns across 

behavioral scales and subscales for diagnosed and non-diagnosed individuals and investigate 

latent behavioral structures using dimensionality reduction. All processing and analyses 

reported below, except differences in behavioral measures reported in Fig. 7 and Fig. 8, are 

conducted on the entire sample and do not differentiate between those with and without a 

diagnosis. 

 

Human Connectome Project minimal processing  

MRI data were minimally processed and denoised via the Human Connectome Project (HCP) 

pipelines92, version 4.7.0 (https://github.com/Washington-University/HCPpipelines). Broadly, this 

includes: 1) FreeSurfer structural MRI processing, 2) functional MRI volume processing, 3) 

functional MRI surface processing, 4) denoising via ICA-FIX, 5) “multimodal surface matching” 

registration (MSMAll93), and 6) de-drifting, resampling, and applying the MSMAll registration. 

Tools implemented by HCP pipelines are mainly adapted from the FMRIB Software Library 

(FSL) and FreeSurfer94, to improve the spatiotemporal accuracy of MRI data, particularly with 

acquisition advancements such as multiband acceleration92,95,96.  

 

In brief, anatomical T1w/T2w images were used to create MNI-aligned structural volumes in 

each participant’s native space. These images were corrected for gradient nonlinearities and 

magnetic field inhomogeneities and reconstructed into segmented brain structures. Folding-

based surface registration to the standard FreeSurfer atlas (i.e., fsaverage) and to the high-

resolution Conte69 atlas97 was followed by downsampling to various spatial resolutions (2 mm 

used herein). fMRI volume processing steps further corrected for spatial distortions and 

implemented motion correction, bias field correction, and normalization. Motion correction was 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.18.24309054doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309054
http://creativecommons.org/licenses/by-nd/4.0/


 17

## NUS Confidential ##

implemented via FLIRT registration of individual frames to a single-band reference image. In 

HCP-style, we provide motion parameters in separate files to characterize x/y/z translation, 

rotation, and their derivatives, as well as demeaned and detrended versions of each (24 

parameters total), which may be used for nuisance regression (see fMRI denoising). Echo 

planar distortions were corrected by FSL’s “topup”98,99 using spin echo field maps that were 

acquired in the opposite phase encoding directions of each scan. 

 

fMRI surface processing steps transformed 4D volumetric timeseries into 2D surface-based 

timeseries that were registered to a standard set of grayordinates across all participants. This 

involved HCP’s “partial volume weighted ribbon-constrained volume-to-surface mapping 

algorithm”92, which uses non-resampled images in each participant’s native space to align 

surfaces along tissue contours. Surfaces were smoothed using the “geodesic Gaussian surface 

smoothing algorithm”92 and additional 2 mm FWHM smoothing that enhances subcortical 

regularization. Following denoising (see fMRI denoising for full details), surface-based functional 

timeseries were aligned with MSMAll93. MSMAll improves inter-participant alignment by using 

areal features from multiple sources in the reference pipeline developed by Glasser et al.93, 

including cortical folding, sulcal depth, T1w/T2w myelin maps, resting-state network maps, and 

visuotopic maps. The HCP minimal processing pipelines are optimized for surface-based 

processing of high-resolution anatomical and functional MRI images. Thus, we used the 

resulting grayordinate timeseries from each of the seven functional runs to perform the quality 

assurance and preliminary analyses reported herein. This included cortical, subcortical, and 

cerebellar vertices (i.e., 91,282 “whole-brain” gray ordinates) that were regionally mapped 

according to their corresponding atlas schemes (see Parcellating timeseries into brain regions 

and functional connectivity). 

 

fMRI denoising  
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To remove sources of noise such as movement, scanner drift, and physiological artifacts, we 

implemented the data-driven MELODIC independent component analysis-FMRIB ICA-based 

Xnoiseifier (ICA-FIX; 100,101). ICA-FIX is a denoising approach performed on each functional 

timeseries for each participant. Given that we closely followed the HCP’s acquisition protocols 

and minimal processing pipelines, we applied FIX classifiers pre-trained on HCP data (using the 

HCP pipeline default, “HCP_hp2000”). To provide flexibility for the varied research questions 

addressable with the TCP dataset, we separately performed both “single-run” and “multi-run” 

ICA-FIX. Single-run ICA-FIX, which was used for benchmarking and quality control herein (see 

Figure S1 for example quality control scenes provided by the HCP pipelines), was performed on 

each functional run independently, and multi-run ICA-FIX was performed on: 1) concatenated 

the four resting-state runs, and 2) three task runs functional timeseries. Consistent with the HCP 

processing pipeline, we used a high-pass temporal filter of 2000s FWHM during single-run ICA-

FIX. While spatial ICA likely provides components with better signal-to-noise separation via 

multi-run FIX (given longer timeseries data), single-run FIX is likely optimal for research 

questions (or benchmarking) requiring statistical independence across functional runs.  

 

We performed global signal regression (GSR) to further control for noise sources in fMRI 

timeseries data102-105. GSR has been shown to remove global sources of noise106-108 and 

improve behavioral prediction models109. However, it has also been shown that the global signal 

can carry behaviorally-relevant information109-111. Given this ongoing debate surrounding the use 

of GSR104,105, we provide denoised derivative timeseries with and without GSR and evaluate the 

impact of GSR on fMRI data in the Technical Validation sections below. We performed GSR for 

each participant and each functional run by regressing the mean timeseries across all vertices 

from each vertex112. 

 

Parcellating timeseries into brain regions and functional connectivity  
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We parcellated the dense (i.e., 91,282 vertices) CIFTI timeseries into 434 brain regions that 

covered the cortex, subcortex, and cerebellum, by averaging the functional timeseries of the 

vertices belonging to a given region together. We used a previously validated surface-based 

functional atlas to parcellate the cortex into 400 regions113. This “homotopic” cortical atlas is a 

recent update to the widely-used Schaefer atlas114 that improves upon hemispheric lateralization 

in brain systems known to be asymmetric, such as language processing regions. This atlas is 

openly available via website links in Schaefer et al.114. Subcortical vertices were parcellated into 

16 bilateral brain regions (32 total) that are part of the medial temporal lobe, the thalamus, and 

the striatum (including the pallidum)115. These 32 regions were yielded by the “scale II” 

resolution provided by Tian and colleagues, which we implemented based on the finding that 

anatomical boundaries are well-captured at this resolution while also providing functional 

subdivisions. This atlas is openly available via website links in Tian et al. 115. Lastly, we 

parcellated the cerebellum into one region per hemisphere (2 total) using the atlas provided by 

Buckner et al.116. Following the best practices provided by Buckner and colleagues, we 

regressed neighboring (6 mm) cortical signals from cerebellar vertices before parcellation to 

account for potential spatial autocorrelation between these brain segments. 

 

Functional connectivity matrices were derived for each participant and each functional scan at 

three different stages of the pipeline: after minimal processing (see Human Connectome Project 

minimal processing pipeline), after ICA-FIX denoising, and after GSR was applied to denoised 

data (see Functional MRI denoising). The pairwise product-moment correlation between 

regional timeseries was computed, resulting in a 434 by 434 functional connectivity matrix for 

each participant and fMRI run. 

 

Functional connectivity quality control and benchmarking 
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Estimates of brain function derived from fMRI, such as functional connectivity,  are sensitive to 

artifacts from multiple sources, including in-scanner head movement, respiratory motion, and 

scanner effects117. To assess the success of denoising procedures, residual relationships 

between functional connectivity and in-scanner head motion can be examined and compared at 

different stages of the processing pipeline107,118,119. Head motion during each fMRI scan was 

estimated using framewise displacement (FD), a summary measure of head movement from 

one volume to the next107. For each scan, FD was calculated according to the method described 

by Jenkinson et al.120 and the resulting FD trace was band-stop filtered and down-sampled to 

account for the high sampling rate of the multiband fMRI acquisition121. Distributions of mean FD 

for each participant and each fMRI run are provided in Figure S2.  

 

FD-FC correlations. 

For each rs-fMRI run, we computed the cross-participant Spearman correlation between FD and 

functional connectivity at each pair of regions after denoising (Fig. 3A-B). Similar to previous 

work107,119, before denoising (i.e., after minimal processing), we find widespread positive 

associations between functional connectivity and FD with a moderate effect size across most 

connections in all four runs (Fig. 3A, upper triangles), indicating a strong and wide-spread effect 

of in-scanner head motion on functional connectivity estimates. The mean correlation over the 

brain ranges across each run from ρ = .12 - .16 (Fig. 3B). ICA-based denoising consistently 

reduced these positive associations (ρ = .04 - .08; Fig. 3B) and adding GSR brings the mean 

correlation to ρ = .00 - .02 (Fig. 3A, lower triangles; Fig. 3B). However, in some cases (Rest 1 

AP and Rest 1 PA), both ICA-based denoising and GSR induced negative associations between 

FD and functional connectivity. Overall, denoising procedures substantially reduced FD-FC 

associations across the brain. A broadly similar pattern of results was evident across the three 

task-based fMRI runs (Fig. 4A-B), with mean correlations across each run ranging from ρ = .07 - 
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.14 before denoising, from ρ = .00 - .04 after denoising and ρ = .00 - .02 after GSR, albeit with 

GSR having a less pronounced effect on reducing FD-FC correlations.   

When examining the proportion of connections significantly correlated with FD, we find that 

before denoising, across rs-fMRI runs, 35% to 56% of connections met the threshold for 

significance (pFDR<.05; Fig. 3D). After ICA-based denoising, there was a substantial drop in 

motion-affected connections, reflecting 1% to 19% of connections, depending on the fMRI run 

(Fig. 3D). In all runs except Rest 1 PA, GSR further reduces the number of motion-affected 

connections. A similar pattern of results was seen for the task-fMRI run, except that GSR 

consistently increased the number of motion-affected connections across all three runs 

compared to ICA-based denoising alone (Fig. 4D). 

 

FD-FC distance dependance.  

For each rs-fMRI run, we examined how the FD-FC relationship varies as a function of the 

pairwise Euclidean distance between the centroid of regions, as head motion generally has a 

more pronounced effect on the FD-FC correlation for short-range connectivity117,118,122. 

Specifically, the presence of head motion can artifactually increase correlations between 

regions that are closer and decrease correlations between areas that are further apart. This 

pattern of distance-dependence motion contamination was present across all rs-fMRI runs 

before denoising and was substantially reduced after ICA-based denoising (Fig. 3C). The 

addition of GSR did not have a notable impact. Similar results were found for task-fMRI runs 

(Fig. 4C).  
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Figure 3. Functional connectivity and head motion association across processing stages for 
resting-state fMRI runs. (a) Inter-participant correlation between functional connectivity (FC) and mean 
framewise displacement (FD) at each of 93,961 connections for each resting-state fMRI run before 
denoising, i.e., after minimal processing (minProc; upper triangles) and after ICA-based denoising (FIX) 
and Global Signal Regression (GSR; lower triangles). (b) Distributions of FD-FC correlations for each run 
resting-state fMRI at three different processing stages: minProc, FIX, and GSR. (c) Percentage of 
connections significantly (p<0.05, gray; p<0.05FDR, light blue) correlated with FD for each resting-state 
fMRI at each of the three processing stages. (d) Associations and density between FD-FC values and 
pairwise Euclidean distance between 432 regions for each resting-state fMRI run and processing stage. 
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Figure 4. Functional connectivity and head motion association across processing stages for task-
based fMRI runs. (a) Inter-participant correlation between functional connectivity (FC) and mean 
framewise displacement (FD) at each of 93,961 connections for each task-based fMRI run before 
denoising, i.e., after minimal processing (minProc; upper triangles) and after ICA-based denoising (FIX) 
and Global Signal Regression (GSR; lower triangles). (b) Distributions of FD-FC correlations for each run 
task-based fMRI at three different processing stages: minProc, FIX, and GSR. (c) The percentage of 
connections significantly (p<0.05, gray; p<0.05FDR, light blue) correlated with FD for each task-based fMRI 
at the three processing stages. (d) Associations and density between FD-FC values and pairwise 
Euclidean distance between 432 regions for each task-based fMRI run and processing stage. 

 

Functional network structure.  
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The regions in the cortical and subcortical atlases used are each provided with corresponding 

network assignments. We used the 17-network solution for cortical regions123 and a 3-network 

anatomical solution for subcortical regions comprising the medial temporal lobe, striatum, and 

thalamus115. Lastly, we considered the two cerebellar regions as part of their own network, 

altogether resulting in 21 functional networks (Fig. 5A-B).  

 

Functional connectivity estimated from rest and task fMRI typically exhibits a reliable and robust 

set of brain networks that encompass spatially discontinuous regions with temporally correlated 

activity. The topology and connectivity strengths of these networks are heritable124 and linked 

with behavioral outcomes in both health125 and illness126. To examine whether the expected 

functional network structure was present across each of the fMRI runs, functional connectivity 

matrices were Fisher z-transformed, averaged across participants, and then the group-average 

matrix was transformed back into product-moment correlations (Fig. 5C, visualizing FC 

estimated from data with denoising and GSR). The columns and rows of each group average 

connectivity matrix were reordered according to the previously established 21-network scheme 

(Fig. 5A-B), revealing the expected pattern of pronounced within-network connectivity (Fig. 5C, 

diagonal blocks), compared to reduced between-network connectivity (Fig. 5C, off-diagonal 

blocks). We report group average functional connectivity matrices with and without ICA-based 

denoising and with and without GSR in Figure S3.  

 

Across the network neuroscience literature, there is strong evidence that functional network 

organization is highly similar across neurocognitive states, particularly across rest- and task-

state connectivity estimates127-130. Rest-to-task changes in network connectivity patterns are 

typically limited in magnitude, small in extent (i.e., only a subset of regional pairs change), and 

tend to be decreases in connectivity131. It is worth noting, however, that prior work suggests 

these relatively subtle task-evoked changes likely carry important information for behavioral 
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and/or cognitive functioning130,132. In the present work, we report the similarity of connectivity 

patterns for each pair of functional runs (Fig. 5D), estimated with the nonparametric Mantel 

test133. As expected, stronger similarity patterns were generally observed across similar states, 

i.e., resting states (runs 1 AP/PA and 2 AP/PA), Stroop (AP/PA), and emotional faces task 

states.  

 

 
Figure 5. Average functional network structure and similarity across each fMRI run. (a) Whole-brain 
regional parcellation (black borders, 432 regions113,115,116) and network partition (filled in colors, 21 
networks) across the cortex (a) and non-cortex (b) (see Parcellating timeseries into brain regions and 
functional connectivity for full details). TPN: temporal parietal network, DN: default network, FPN: 
frontoparietal network (sometimes referred to as cognitive control network), LN: limbic network, VAN: 
salience/ventral attention network, DAN: dorsal attention network, SMN: somatomotor network, VIS: 
visual network. The medial temporal network contains hippocampal and amygdalar regions; the striatal 
network contains caudate, nucleus accumbens, putamen, and globus pallidus regions. The thalamic and 
cerebellar networks contain only thalamus and cerebellum, respectively. (c) Functional connectivity (FC) 
estimates for 6 neurocognitive states (across-participant averages). Thick and thin black borders 
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delineate within- and between-network borders, respectively. (d) Similarity of functional connectivity 
patterns for each pair of neurocognitive states using the nonparametric Mantel test. 
 

Benchmarking functional network properties with graph-theoretic metrics 

A common approach in network neuroscience is to leverage graph theoretic tools to 

characterize the properties underlying brain connectivity patterns via neurobiologically relevant 

and computationally tractable metrics91,134-140, sometimes referred to as network diagnostics141. 

Given that the neuroimaging acquisition and processing protocols of the TCP dataset were 

optimized for functional network analysis, we aimed to demonstrate that well-established 

network properties are discoverable in TCP connectomes. To this end, we implemented the 

following network analyses: 1) clustering coefficient, 2) degree strength, and 3) betweenness 

centrality (Fig. 6). We used the Brain Connectivity Toolbox91 (http://www.brain-connectivity-

toolbox.net) adapted to Python (i.e., bctpy), which is openly available here: 

https://pypi.org/project/bctpy/. Each metric was applied to both pairwise regional functional 

connectivity estimates (i.e., “region level”) and subsequently averaged based on network 

assignment (i.e., “network level”). Given that we used product-moment correlation to estimate 

functional connectivity (see Parcellating timeseries into brain regions and functional connectivity 

and Functional connectivity quality control and benchmarking), we used the “weighted and 

undirected” variant91,142 of these metrics. We used min-max normalization to average network 

metric scores across participants and scaled all results between 0 and 1. Min-max normalization 

was used to maintain the relative distribution of scores across participants while scaling possible 

values to a fixed, comparable range. However, we encourage future investigations to consider 

normalization techniques that account for potential extremes if appropriate for the research 

question and network metric.   

 

The clustering coefficient is a metric for quantifying the extent that local connectivity patterns are 

segregated and is based on the average “intensity” or “abundance” of triangles that are present 
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around a given region142-144. Triangles refer to connectivity estimates adjacent to the given 

region, and their intensity is given by the relative extent (i.e., fraction) that those regions are also 

connected. Clustering can be thought of as the relative magnitude that a neighborhood of 

connections is “established” or “complete”. Therefore, a relatively large region-level score 

indicates clustered connectivity surrounding that region, and a large network-level score 

indicates that regions in that functional system tend to cluster together. A common inference for 

such clustering is that it supports local efficiency of information processing and community 

structure145. Across participants, we observed non-random clustering patterns across brain 

regions and functional networks (Fig. 6A),  which is broadly consistent with prior work 

demonstrating that functional brain networks exhibit clustering and expected properties such as 

small worldness145. In resting-state connectivity matrices, high clustering was observed in all 

dorsal attention, somatomotor, temporoparietal, cerebellar, and visual network regions, as well 

as ventral attention A, frontoparietal B, and default A and B network regions. This resting-state 

pattern was slightly modified during Stroop and Emotional Faces task states. Stroop 

connectivity patterns exhibited reduced clustering within somatomotor, visual, cerebellar, and 

temporoparietal network regions. Emotional Faces connectivity patterns exhibited an overall 

similar pattern to resting-state, just reduced in magnitude. 

 

The degree strength of a given brain region is a straightforward and commonly applied network 

metric that quantifies the relative magnitude of connectivity estimates for a given region91. This 

is similar to the degree – the number of connections for a given region – but more appropriate 

for fully connected networks. Regions with relatively large degree strength are thought to be 

more important in a given network, and the network-level degree strength is often interpreted as 

the wiring cost or density of that brain system91,146. This is an important consideration for 

research questions that are sensitive to heterogeneous metabolic demands across different 

brain systems, different participant groups, or both, given the association between the efficiency 
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of energy consumption and degree of connectivity patterns147. Here (Fig. 6B), resting-state 

functional connectivity patterns exhibited relatively higher degree strength in temporoparietal 

and somatomotor network regions, as well as ventral attention A, dorsal attention B, and default 

C network regions. This pattern was consistent but with reduced overall magnitude in all task 

states, suggesting that the network-level degree strength is a relatively stable metric across 

neurocognitive states. An interesting exception was the relative reduction of degree strength 

exhibited by default A and B network regions in Stroop task states, which is broadly consistent 

with the traditional view of the default network being less prominent during task engagement148 

(although see Spreng149). 

 

Betweenness centrality is a metric that estimates the extent to which a given region interacts 

with other regions150,151. Such central areas are sometimes called “hubs” and are integral for 

integrated information flow across brain systems91,152,153. Multiple network metrics quantify 

different hub properties; however, betweenness centrality quantifies the fraction of shortest 

connectivity paths that contain the given region91. Therefore, a high betweenness centrality 

score indicates that the region participates in a relatively large number of short paths in the 

brain network and can be conceptualized as bridges in the system. Across all resting-state 

connectomes, regions in the frontoparietal, dorsal attention, visual, and cerebellar networks 

exhibited high betweenness centrality, as well as regions in the default A/B, and ventral 

attention B networks (Fig. 6C). This pattern was similar across Stroop task-state connectivity 

patterns, but with a relatively more pronounced centrality in frontoparietal B network regions, 

and relatively reduced centrality in visual and cerebellar network regions, which is broadly 

consistent with the theory that frontoparietal network interactions support cognitive control 

processes154,155. During the Emotional Faces task, connectivity patterns exhibited relatively 

more centrality in visual A and dorsal attention A network regions, which is expected given that 

this task requires participants to make judgements about the context of visual stimuli. 
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Figure 6. Network properties for each fMRI run. (a) The across-participant average (i.e., group-level) 
clustering coefficient scores at the region level (top: projected onto surface-based cortical brain 
schematics with black outlines delineating cortical regions given by Yan et al.113; showing the lateral view 
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of the right hemisphere only for ease of visualization) and at the network-level (bottom: polar plots 
organized by network assignment, which follows label colors in panel d, and the maximum value is listed 
on the top right of each plot). Before averaging, scores were normalized across the entire dataset using 
min-max feature scaling (between the values of 0 and 1). (b) The same as panel a, but for the metric of 
degree strength. (c) The same as panels a and b, but for the betweenness centrality metric. (d) Legend of 
colors used to indicate functional network assignment in polar plots, corresponding to Fig. 5. 
 

Inter-scale correlations and latent structure across measures of behavior  

To assess associations between 110 scales and subscale scores across participants (see Table 

S1 for distributions and descriptive metrics), after z-scoring each scale, we computed product-

moment correlations between each pair of measures using pairwise complete observations. 

This was done separately for individuals with (Fig. 7A, lower triangle) and without a diagnosis 

(Fig. 7A, upper triangle), with both groups showing a highly similar inter-scale correlation 

structure (r = .74).  

 

When examining select individual scales for consistency with previous findings (Fig. 7B), 

individuals with a mental health diagnosis, on average, had higher scores on measures of 

abuse on the Childhood Trauma Questionnaire71 and neuroticism on the NEO Five-Factor 

Inventory75. These individuals also showed higher scores on measures of catastrophizing, 

blame, and rumination, as indexed by the Cognitive Emotional Regulation questionnaire58, and 

worse performance across a range of computerized measures of cognitive performance8 from 

the Test My Brain battery.    

 

In recent years, there has been a growing interest in exploring novel data-driven approaches to 

understanding psychopathological nosology by examining covariation among symptoms and 

maladaptive behaviors156. To examine latent dimensions of behavior that may be captured by 

the range of scales and subscale scores, we used Principal Component Analysis (PCA). 

Standard PCA cannot account for missing data and is biased by highly non-gaussian 

distributions, such as zero-inflated distributions often seen in clinical measures. Therefore, we 
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imputed missing data using a simulation-based multi-algorithm comparison framework 

(missCompare157).  

 

Following best practice, prior to imputation, the number of participants and measures was 

reduced to minimize missingness157. An optimal threshold for removing participants and scales 

was found by visualizing the proportion of missing data as a function of removing an increasing 

number of participants and measures and finding inflection points. This led to removing 

participants with >20% and variables with >25% missing data. This resulted in 191 participants 

and 104 measures being entered into the imputation process. Following the missCompare 

framework, 50 simulated datasets matching multivariate characteristics of the original data were 

generated, and then missingness patterns from the original data were added to the simulated 

data. Then, the missing data in each simulated dataset were imputed using a curated list of 16 

algorithms157, and finally, the computation time and imputation accuracy of each algorithm were 

assessed by calculating Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and 

Kolmogorov-Smirnov (KS) values between the imputed and the simulated data points (see 

Figure S4). These metrics were compared under three conditions: Missing Completely At 

Random (MCAR),  Missing At Random (MAR), and Missing Not At Random or Non-Ignorable 

(MNAR). The missForest algorithm158, an iterative imputation method based on a random 

forest,  consistently performed the best compared to all other algorithms across all metrics 

evaluated and was therefore used to impute the missing values in the observed data. Finally, 

post-imputation diagnostics, including visual examination of data distributions and stability of 

correlation coefficients between measures, before and after imputation, were examined, with 

both checks showing minimal impact of imputation. Non-gaussian measures were transformed 

using an optimal normalizing transformations framework (bestNormalize159), where 

normalization efficacy is evaluated and compared across a suite of possible transformations and 
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evaluated for normality on goodness of fit statistics. Highly non-gaussian measures, such as 

those with zero inflation, were binarized. 

 

The PCA analysis of the imputed and transformed behavioral data revealed that the first 

component, which accounted for 21% of the variance, represented a general functioning and 

well-being factor (Fig. 7C-D). This component exhibited high absolute loadings on a broad array 

of measures, and higher scores were associated with lower anxiety and depressive symptoms, 

neuroticism, impulsivity, stress, forgetfulness, fatigue, avoidance, and higher conscientiousness 

and self-directedness (Fig. 7D). The second, third, and fourth components were linked to 

internalizing, externalizing, and cognitive functioning, explaining 9%, 8%, and 6% of the 

variance, respectively (Fig. 7C). Higher scores on the second component were associated with 

lower childhood emotional and physical trauma, depressive traits and symptoms, general 

clinical functioning, perceived social support, neuroticism, suicidal ideation, stress, and tension 

(Fig. 7D). Elevated scores on the third component were related to higher extraversion, fun, 

novelty and pleasure-seeking, impulsiveness, social and recreational risk-taking, openness to 

experience and reward dependence, and lower harm avoidance, and autism traits, including 

rigidity and aloofness (Fig. 7D). Higher scores on the fourth component were associated with 

slower reaction times on multiple cognitive tasks, slower processing speed, worse abstract 

reasoning, memory and vocabulary, and higher concerns related to health, ethics, and 

recreation. 
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Figure 7. Behavioral data associations and latent structure. (a) Inter-participant correlation matrix 
between 110 scales and subscales for individuals with (top-triangle) and without (bottom-triangle) a 
diagnosis, with the rows and columns ordered using hierarchical clustering. (b) Radar plots showing scale 
scores differences between individuals with (pink) and without (green) a diagnosis across select 
measures (c) Screeplot and pie chart of the variance explained by the first 25 components from a PCA 
conducted on imputed and transformed behavioral data across all participants. (d) Top 30 absolute 
positive (red) and negative (blue) loadings on the first four principal components. 
 

Task-based fMRI activation and behavioral outcomes 
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Here, we report the performance data and brain activity estimates for the Stroop and Emotional 

Faces task fMRI paradigms to validate them against known effects in the literature. The Stroop 

task is a well-replicated assessment of inhibitory cognitive control12. In the Stroop task, 

participants must identify colors of printed words that are congruent or incongruent with the 

given text (see Task fMRI paradigms for further details). Thus, congruent trials are lower conflict 

and easier to identify, and incongruent trials are higher conflict and more difficult to identify. As 

expected, participants performed significantly better on congruent than incongruent trials both in 

terms of accuracy (t(225) = 7.59, p = 4.3 x 10-13) and reaction time (t(225) = -29.32, p = 4.3 x 10-

79) (Fig. 8A-B). While these “Stroop effects” were statistically significant in both the diagnosis 

and no diagnosis groups, participants with psychiatric diagnoses exhibited less differentiated 

accuracy between congruent and incongruent trials (diagnoses: t(134) = 4.94, p = 1.2 x 10-6; no 

diagnoses: t(90) = 6.14, p = 1.1 x 10-8), but more differentiated reaction times between 

congruent and incongruent trials (diagnoses: t(134) = -23.5, p = 1.1 x 10-49; no diagnoses: t(90) 

= -17.79, p = 1.6 x 10-31). This suggests that participants with diagnoses required more time 

than those without diagnoses to exert inhibitory cognitive control during incongruent trials (with 

reference to performance on congruent trials).  

 

Next, we performed task GLMs on the functional neuroimaging data acquired during these task 

states (Fig. 8C). For the Stroop GLM, we used the congruent and incongruent conditions as 

regressors, and for the Emotional Faces GLM, we used face and shape conditions as 

regressors. For each participant, task events were time-locked to the onset of each trial and 

convolved with a canonical hemodynamic response function (HRF160), as well as a parameter 

for the first temporal derivative of the HRF. In addition, 8 parameters accounting for potential 

low-frequency signals (i.e., drift; with a cutoff of 0.01 Hz) that used a discrete cosine transform 

were added, as well as a constant parameter. We examined correct trials only and specifically 

contrasted the aforementioned conditions of interest (e.g., incongruent > congruent) for each 
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vertex across the whole brain. The resulting individual-level statistical maps were compared 

using one-sample t-testing (versus 0) across participants to obtain group-level statistical maps 

(shown in Fig. 8). We used false discovery rate (FDR) correction for multiple comparisons161 

with a family-wise error rate of alpha=0.05. Vertices that passed FDR correction are outlined in 

black borders in Fig. 8.   

 

As shown in prior work, brain regions in the cingulate gyrus and lateral prefrontal cortex were 

significantly more responsive to incongruent versus congruent trials during the Stroop task162,163. 

Additionally, regions distributed across functional systems were more responsive to incongruent 

trials, including the frontoparietal, dorsal/ventral attention, somatomotor, and visual networks. In 

the Emotional Faces task, subcortical vertices in the amygdala exhibited a robust and selective 

responsiveness to emotional faces versus shapes. This is consistent with the literature which 

reports that the Emotional Faces task reliably activates the amygdala in response to affective 

images of human faces10,164. These results validate that the Stroop and Emotional Faces task 

fMRI paradigms activate brain regions and systems previously shown to be involved with 

cognitive control and emotional reactivity, respectively. We performed these analyses across all 

participants, but we encourage future research with the TCP dataset to examine the extent to 

which brain activity and network interactions may be differentiable with diagnostic status.  
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Figure 8. Functional task-activation and behavioral data from Stroop and Emotional Faces tasks. 
(a) Stroop task performance quantified via percentage of correct responses. Left: across-participant 
distribution of accuracy scores for all trials and runs, trials in each AP and PA functional run, and trials in 
each of the congruent and incongruent conditions. Lines inside boxplots indicate median performance, 
and dots indicate individual participant scores. For each figure, participants with diagnoses are coded with 
pink, and without diagnoses coded with turquoise, as applicable. Middle: Paired t-test of congruent versus 
incongruent accuracies across all participants. Right: The same as the middle panel, but for the diagnosis 
and no diagnosis groups. SEM: standard error of the mean. (b) Same as panel a, but for the performance 
metric of reaction time (seconds). (c) GLM-based planned contrasts for functional neuroimaging data for 
the Stroop (left: AP; middle: PA) and Emotional Faces (right) tasks. Cool and warm color scales show 
complementary contrasts, overlaid together on one brain schematic. For example, for the two Stroop 
runs, brain activity that was greater for congruent versus incongruent trials in cool color scale, and 
incongruent greater than congruent trials in warm color scale. Results for cortical vertices are projected 
onto a surface-based brain schematic (black borders surround vertices whose contrasts passed FDR 
correction). Subcortical results are projected onto a standard MNI (2 mm) volume-based brain schematic, 
showing average contrast statistics for each of the 32 regions provided by Tian et al.115. Three slices are 
shown following the visualizations in Tian et al.115, plus an additional slice to highlight the amygdala (x=-
27, y=-4, z=-20). The group-level statistical activation maps are shown in all projections.  
 

Usage Notes  

Transdiagnostic neuroimaging datasets with a broad range of behavioral measures are 

necessary to address complex questions regarding the relation between brain and behavior in 

psychiatry. The TCP release provided a curated collection of neuroimaging, behavioral, 

cognitive, and personality data from 241 individuals meeting diagnostic criteria for a broad range 

of disorders, as well as individuals who do not meet these diagnostic thresholds (i.e., healthy 

controls). The data collection provides both processed and analysis-ready neuroimaging data 

using HCP-validated processing pipelines, as well as raw and anonymized BIDS-formatted data 

to allow researchers to implement alternate processing. Raw neuroimaging data and all 

behavioral measures can be accessed via OpenNeuro 

(https://openneuro.org/datasets/ds005237). Raw and processed neuroimaging data, as well as 

all behavioral measures, can be openly accessed via the NDA 

(https://nda.nih.gov/edit_collection.html?id=3552) upon publication.  

Code Availability 

The HCP processing pipelines are openly available here: https://github.com/Washington-

University/HCPpipelines. All network metric code is available here: 
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https://github.com/aestrivex/bctpy (Python) and here: https://sites.google.com/site/bctnet/ 

(MATLAB).  All other code used for post-processing, FC estimation, and quality assurance 

analyses are available here: https://github.com/HolmesLab/TransdiagnosticConnectomeProject.  
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Supplementary information  
Table S1. Summary metrics for scales and subscales. 
Variable Missing (%) Median Mean Min Max 

ASC 58.70 251.00 434.01 0.00 2,050.00 
ASI 10.12 15.50 17.53 0.00 59.00 
ATC 9.72 10.00 9.96 3.00 24.00 
BAPQ-Aloof 14.57 2.75 2.83 1.17 5.92 
BAPQ-PragLang 14.57 2.67 2.76 1.17 4.17 
BAPQ-Rigid 14.57 3.00 3.02 1.42 4.75 
BAS-Drive 9.31 11.00 10.83 4.00 16.00 
BAS-FS 9.31 11.00 11.27 5.00 16.00 
BAS-RR 9.31 17.00 16.93 8.00 20.00 
BIS-1 16.19 9.00 9.82 5.00 20.00 
BIS-11 9.31 21.00 20.74 7.00 28.00 
BIS-2 16.19 13.00 13.94 7.00 25.00 
BIS-3 16.19 11.00 11.61 6.00 21.00 
BIS-4 16.19 10.00 10.41 5.00 17.00 
BIS-5 16.19 7.00 7.37 4.00 14.00 
BIS-6 16.19 5.00 5.80 3.00 11.00 
BIS-AI 16.19 22.00 22.01 12.00 35.00 
BIS-MI 16.19 21.00 21.31 13.00 34.00 
BIS-NP 16.19 15.00 15.62 8.00 30.00 
CERQ-Acceptance 9.31 8.00 7.25 2.00 10.00 
CERQ-Catastrophe 9.31 5.00 5.02 2.00 10.00 
CERQ-OtherBlame 9.31 4.00 4.12 2.00 9.00 
CERQ-Perspective 9.31 7.00 6.69 2.00 10.00 
CERQ-PosAppraise 9.31 8.00 7.63 2.00 10.00 
CERQ-PosRefocus 9.31 5.00 5.14 2.00 10.00 
CERQ-RefocusPlan 9.31 8.00 7.65 2.00 10.00 
CERQ-Ruminate 9.31 7.00 6.64 2.00 10.00 
CERQ-SelfBlame 9.31 7.00 6.47 2.00 10.00 
CFQ-Distract 8.10 13.00 12.86 0.00 30.00 
CFQ-Faltrig 8.10 9.00 9.73 0.00 27.00 
CFQ-Forget 8.10 13.00 14.21 0.00 31.00 
CGI 7.29 1.00 1.13 0.50 3.50 
CRT 5.26 1.00 1.26 0.00 3.00 
CSSRS-I 4.05 0.00 5.98 0.00 24.00 
CTQ-EA 20.65 8.88 9.95 5.00 25.00 
CTQ-EN 20.65 10.00 10.70 5.00 25.00 
CTQ-PA 20.65 5.00 7.07 5.00 23.00 
CTQ-PN 20.65 6.00 7.43 5.00 20.00 
CTQ-SA 20.65 5.00 7.04 5.00 25.00 
CTQ-VA 20.65 0.00 0.40 0.00 3.00 
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DASS-Anxiety 6.48 3.00 5.36 0.00 32.00 
DASS-Depression 6.48 3.00 7.97 0.00 40.00 
DASS-Stress 6.48 6.00 8.75 0.00 39.00 
ECRR-Anxiety 9.72 3.82 3.83 2.61 5.12 
ECRR-Avoidance 9.72 3.83 3.87 1.67 5.78 
FTND 6.07 0.00 0.25 0.00 7.00 
HammerFaces-RT 9.72 828.27 837.08 520.35 1,619.70 
HammerShapes-RT 9.72 733.32 748.47 458.36 1,468.65 
LIFE-RIFT 14.98 6.00 6.99 4.00 19.00 
MADRS 6.07 3.00 7.15 0.00 39.00 
MCAS 7.69 84.00 81.96 59.00 89.00 
MSPSS-Fam 12.15 5.50 5.22 1.00 7.00 
MSPSS-Fri 12.15 6.00 5.61 1.00 7.00 
MSPSS-SO 12.15 6.00 5.44 1.00 7.00 
NEO-AG 17.00 35.00 34.18 17.00 48.00 
NEO-CO 17.00 33.00 32.80 6.00 48.00 
NEO-EX 17.00 27.00 27.40 3.00 45.00 
NEO-NE 18.22 22.00 22.62 1.00 45.00 
NEO-OP 17.00 32.00 30.87 12.00 45.00 
PANSS-G 7.29 19.00 21.10 16.00 47.00 
PANSS-N 6.88 7.00 9.22 7.00 28.00 
PANSS-P 7.29 7.00 8.21 7.00 30.00 
PDSS 12.15 0.00 0.23 0.00 6.00 
POMS-Confusion 10.12 40.00 41.52 33.00 67.00 
POMS-Depression 10.12 38.00 39.79 32.00 67.00 
POMS-Fatigue 10.12 41.00 45.21 30.00 76.00 
POMS-Tension 10.12 36.00 38.33 30.00 61.00 
POMS-Vigor 10.12 52.00 53.17 36.00 80.00 
PSS 5.67 15.00 15.86 0.00 37.00 
PUM 10.53 19.00 22.14 14.00 56.00 
QIDS 19.03 4.00 5.32 0.00 22.00 
RP-Ethical 24.70 37.00 36.66 18.00 56.00 
RP-Financial 24.70 39.00 38.58 8.00 56.00 
RP-Health 24.70 39.00 38.98 13.00 56.00 
RP-Recreational 24.70 35.50 35.01 8.00 53.00 
RP-Social 24.70 23.00 23.68 8.00 53.00 
RRS 9.72 46.00 47.45 22.00 86.00 
RSRI-FearIllness 8.91 1.83 1.95 1.00 3.67 
RSRI-SchoolSocial 8.91 2.50 2.44 1.08 4.42 
RT-Ethical 24.70 18.00 18.58 8.00 37.00 
RT-Financial 24.70 18.00 18.58 8.00 37.00 
RT-Health 24.70 22.00 23.15 8.00 51.00 
RT-Recreational 24.70 27.00 27.63 8.00 56.00 
RT-Social 24.70 39.00 38.06 14.00 56.00 
SHAPS 12.55 0.00 1.27 0.00 12.00 
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STAIY-State 7.69 38.00 39.68 20.00 73.00 
STAIY-State1 7.69 38.00 39.68 20.00 73.00 
ShipleyVocab 4.45 57.00 55.97 30.00 71.00 
StroopInc-Accuracy 25.91 46.00 44.10 18.00 48.00 
StroopInc-RT 25.91 901.59 913.59 500.32 1,524.47 
TCI-C 24.29 81.00 79.67 44.00 98.00 
TCI-HA 24.29 57.00 57.51 24.00 95.00 
TCI-NS 24.29 53.00 53.90 30.00 86.00 
TCI-P 24.29 72.00 71.24 25.00 96.00 
TCI-RD 24.29 69.00 69.14 41.00 96.00 
TCI-SD 24.29 76.00 74.58 46.00 98.00 
TCI-ST 24.29 39.00 39.96 17.00 75.00 
TEPS-Anticipatory 6.88 44.00 43.29 11.00 59.00 
TEPS-Consume 6.88 39.00 38.10 8.00 48.00 
TMB-Choice 12.15 11.63 11.94 3.50 47.60 
TMB-ContPerform 9.72 71.87 68.20 6.25 96.87 
TMB-DigitSymbol 12.55 49.00 49.02 17.00 147.00 
TMB-FastRT 12.15 33.16 33.00 18.45 49.45 
TMB-MatrixReason 11.74 24.00 22.26 4.00 34.00 
TMB-ReadingMind 12.96 25.00 24.07 8.00 34.00 
TMB-WordAssoc 12.96 48.00 57.69 13.00 100.00 
YMRS 7.29 0.00 1.12 0.00 34.00 
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Figure S1. Example quality assurance of ICA-FIX. (a) Example connectome workbench scenes 
provided by the HCP processing step “PostFix”, which allows researchers to perform quality checks on 
the classification given by ICA-FIX denoising. This panel shows one example participant who exhibited 
relatively high FD across resting-state run 1 AP TRs. Left panel: example noise component; right panel: 
example signal component. In each of these panels the top left and right show montages of this 
component on the surface and across various axial volume slices, respectively. The bottom left is the 
component across the timeseries, and the bottom right is the corresponding power spectrum. (b) The 
same as panel a, but for a participant who exhibited relatively low FD across resting-state run 1 AP. (c) 
and (d) are the same as panels a and b, respectively, but for the Emotional Faces fMRI task. In each 
case, signal components show prototypical timeseries with power spectrum mainly exhibited in low 
frequencies, while noise components either contain “spikes'' with respect to the timeseries (as in panel a, 
left), or exhibit waveforms with classical random “noisiness” (as in panel d, left). The noise components 
for panels a and c are also clearly evident on the surface via unusual banding patterns across select 
portions of cortex, whereas signal components appear to map onto functional systems more smoothly.  
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Figure S2.  Mean-filtered and down-sampled framewise displacement (FD) for each fMRI run. (a) 
Left: boxplots of the FD (in mm) indicate across-region and across-run averages exhibited by each 
participant (black dots). Right: FD traces across the entire functional timeseries (in TRs) for each run. 
Black lines indicate across-participant averages; shaded gray portions indicate across-participant 
confidence intervals (95%). Panel a shows all TCP participants. (b) Same as panel a but grouping TCP 
participants by those with a psychiatric diagnosis (magenta) and those without a psychiatric diagnosis 
(turquoise). Asterisks on the left-most boxplots indicate that those with diagnoses exhibited significantly 
higher FD than those without diagnoses for that functional run, as given by Welch’s t-test for independent 
samples with unequal variances. The statistics for all comparisons were as follows: (1) rest AP, run 1: 
t(223.16) = 2.89, p = 0.002; (2) rest AP, run 2: t(227.74) = 2.32, p = 0.011; (3) rest PA, run 1: t(236.69) = 
1.92, p = 0.028; (4) rest PA, run 2: t(230.6) = 2.05, p = 0.021; (5) task 1, Stroop AP: t(222.65) = 2.12, p = 
0.018; (6) task 3, Stroop PA: t(143.09) = 1.47, p = 0.072; (7) task 3, Emotional Faces AP: t(217.59) = 1.2, 
p = 0.116. While the impact of motion was well-controlled for all participants, those exhibiting the largest 
FD were participants with diagnoses (refer to outlier dots on the left and t-test results, as well as relatively 
more magenta “spikes” on right FD traces), consistent with the literature. All panels show FD of timeseries 
data that was denoised with ICA-FIX and had GSR applied. 
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Figure S3. Group-average functional connectivity matrices at different stages of processing. (a) 
The same connectomes shown in Fig. 5; timeseries data was denoised with ICA-FIX and GSR was 
applied. (b) Timeseries data was denoised, but no GSR was applied. Note the global consistency in 
network structure to panel a, but a shifted range for connectivity estimates. As shown in prior work, GSR 
improved the separation of within-network versus between-network connectivity patterns. (c) Timeseries 
data were minimally processed with the HCP pipelines, but denoising steps were not performed. Here, 
GSR was applied. (d) Timeseries did not have denoising nor GSR applied. Note that while the gross 
network structure was still apparent, the absence of denoising (panels c and d) introduced mini-clusters of 
connectivity patterns dispersed throughout the network; these are likely spurious. (e) The same network 
similarity (given by Mantel r) results shown in Fig. 5, but for all four processing variants in panels a 
through d. The pattern of network similarity results was consistent for the approaches with denoising, with 
and without GSR. However, the absence of denoising (two right-most heatmaps) yielded some 
inconsistencies. Resting-state 2 AP exhibited increased similarity with the Emotional Faces task and 
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Resting-state 2 PA exhibited increased similarity with the Stroop AP task; these increases are also likely
spurious. Taken together, we recommend use of functional connectivity estimates with denoising, and
with or without GSR depending on the research question (i.e., panel a or b).  
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Figure S4. Imputation pipeline for behavioral data prior to dimensionality reduction. 1) Optimal 
thresholds for removing participants and variables with excessive missing data prior to imputation were 
computed based on inflection points that retained the most data across total data points, participants, and 
variables, while reducing overall missingness. 2) This resulted removing participants with >20% and 
variables with >25% missing data. This resulted in 191 participants and 104 measures entering the 
imputation process. 3) Using the missCompare package, we compared the performance of 16 different 
imputation pipelines on 50 simulated version of the observed data under three conditions: Missing 
Completely At Random (MCAR),  Missing At Random (MAR) and Missing Not At Random or Non-
Ignorable (MNAR). 4) The missForrest pipeline showed the best performance and was used to impute 
data in the reduced observed dataset. Distributions and correlations between scales were compared 
before and after imputation to ensure imputation quality. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2024. ; https://doi.org/10.1101/2024.06.18.24309054doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309054
http://creativecommons.org/licenses/by-nd/4.0/

