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 24 

Abstract 25 

The COVID-19 pandemic exposed challenges of balancing public health and economic goals of 26 

infection control in essential industries like food production. To enhance decision-making during 27 

future outbreaks, we developed a customizable agent-based model (FInd CoV Control) that 28 

predicts and counterfactually compares COVID-19 transmission in a food production operation 29 

under various interventions. The model tracks the number of infections as well as economic 30 

outcomes (e.g., number of unavailable workers, direct expenses, production losses). The results 31 

revealed strong trade-offs between public health and economic impacts of interventions. 32 

Temperature screening and virus testing protect public health but have substantial economic 33 

downsides. Vaccination, while inexpensive, is too slow as a reactive strategy. Intensive physical 34 

distancing and biosafety interventions prove cost-effective. The variability and bimodality in 35 

predicted impacts of interventions caution against relying on single-operation real-world data for 36 

decision-making. These findings underscore the need for a proactive infrastructure capable of 37 

rapidly developing integrated infection-economic mechanistic models to guide infection control, 38 

policy-making, and socially acceptable decisions.  39 

 40 

Teaser 41 

COVID-19 model helps navigate trade-offs between public health and economic impacts 42 

of infection control interventions in essential industries.  43 

  44 
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MAIN TEXT 45 

 46 

Introduction 47 

The United States (US) food industry, known for its labor-intensive nature (1), was 48 

significantly affected by the Coronavirus disease 2019 (COVID-19) pandemic, alongside other 49 

essential industry sectors (2). During the early phases of the pandemic, food facilities/operations 50 

abroad and in the US were forced to close or reduce production due to labor shortages (2, 3). US 51 

livestock processing, including poultry, pig, and cattle slaughter, was reduced by up to 45%, 52 

resulting in job losses, financial impacts, retail shortages and loss of animals (4, 5). During the 53 

COVID-19 pandemic in 2020, the combined value of production for beef, pork, broilers, turkeys, 54 

eggs and milk was reduced down by $12.8 billion in the US, to 9% below the pre-pandemic 55 

forecast for 2020, based on price and production quantity projections (6). Dairy supply chain 56 

disruptions caused increased milk dumping in the US, where 2.5% of all federally regulated milk 57 

was dumped compared to 0.2-0.5% dumping recorded in the normal course of production (7). By 58 

September 2021, nearly 100,000 workers in US meatpacking facilities, food processing facilities, 59 

and farms were reported positive for COVID-19, most of which were from meatpacking facilities 60 

(65%) and other food processing facilities (21%) (8); importantly, these statistics are likely 61 

underestimates (9). These outbreaks drove infection rates in rural communities, as individuals 62 

infected at work transmitted their infection to others outside of work (10). By the end of 2020, 63 

COVID-19 cases attributable to meatpacking facilities were reported to be the source of an 64 

estimated 334,000 infections in the US, with associated mortality and morbidity costs totaling 65 

more than US$11.2 billion (11). These impacts affected the functioning of the national food 66 

supply chain.   67 

Several mitigation strategies have been considered, encouraged, or enforced to control the 68 

spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the US food 69 

industry (12, 13). These control strategies include vaccination, practicing physical distancing, use 70 

of face coverings, screening for infection, practicing personal hygiene (e.g., hand washing), 71 

cleaning and disinfection of the working environments, ventilation improvements, and 72 

minimizing community spread. Produce (i.e., fruit and vegetable) farms and food processing 73 

facilities, while having certain features in common, vary greatly in size, physical characteristics, 74 

and organizational structure (14). Thereafter, for brevity, we use ‘operation’ when referring to any 75 

individual produce farm operation or food processing facility. Food operation’s varying locations, 76 

policies, and workforce demographics have resulted in significant differences in worker histories 77 

with respect to vaccination, boosting, and past infection (15, 16). The diversity of operations and 78 

mitigations have led to strong interest from industry stakeholders in modeling tools tailored to the 79 

particular characteristics of their individual operations (17) to aid them in making predictions, 80 

such as regarding the expected outbreak dynamics and impacts of possible interventions, and 81 

decisions, such as what level of investments to make in biosafety measures or when to start or 82 

stop an intervention (personal communication with the Industry Advisory Council for the study). 83 

Importantly, the evaluation of COVID-19 mitigation strategies should be based not only on public 84 

health metrics but also on economic metrics that account for the production losses in the operation 85 

due to worker shortages or strict infection control strategies, as well as considerations of negative 86 

societal impacts of food supply chain disruptions and possible food shortages.  87 

Several mathematical models (18-30) have been developed to evaluate and compare 88 

COVID-19 mitigation strategies and assess their effectiveness across different levels of 89 

compliance. These models are primarily designed for national scale assessments (21, 25-27) but 90 

also include more localized communities, encompassing cities (24, 28, 30), closed societies with 91 

shared environments (19, 29), and even smaller communities in universities (22), companies (20, 92 

23), and office spaces (18). Some of the evaluated interventions include physical distancing, mask 93 

use, vaccination, asymptomatic/symptomatic testing, contact tracing, quarantine, restrictions on 94 
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travel, isolation, and school closures (18, 19, 26-28). While most of the modeling studies 95 

concentrate on health outcomes in the general population, only a handful have considered the 96 

health of individuals within workplace settings. These settings include a generalized company 97 

building (20), an oil and gas facility (23), a meatpacking plant (29), and a university building 98 

(22). These studies have accounted for the complex process of disease transmission between 99 

individuals by using agent-based models (ABMs), which can simulate employees' decisions based 100 

on their social and physical profiles. A few studies have also utilized ABMs to simulate the 101 

economic impacts of COVID-19 (24, 25, 30, 31). Nevertheless, there remains a need for models 102 

that explore COVID-19 spread as well as the health and economic impacts of mitigation strategies 103 

in individual food operations to help prevent similar impacts in future infection outbreaks. 104 

Here, we provide Food Industry CoVid-19 Control Tool (FInd CoV Control), a 105 

customizable tool based on an ABM developed to simulate COVID-19 transmission dynamics in 106 

the food industry work environment. We integrated the ABM with an economic model to predict 107 

the direct and (certain) indirect costs of interventions. Using COVID-19 in the food industry 108 

workforce as a model system, our objective was to develop a tool that helps policymakers and 109 

individual operations navigate tradeoffs between public health and economic impacts of infection 110 

control interventions in an essential industry.  111 

 112 

 113 

 114 

Results  115 

Model setup  116 

FInd CoV Control consists of three modules: Employee population, Work environment, 117 

and Disease transmission (Figure 1A; definitions in Text S1, further details in Texts S2-S4 and 118 

Tables S1-S13). The Employee population includes all employees (agents) in a modeled 119 

operation, each of which is characterized by a set of attributes (Table 1). The Work environment 120 

module defines the characteristics of the work environment in terms of a produce farm or 121 

processing facility setting (thereafter referred to as ‘farm’ and ‘facility’ for brevity), shift schedule 122 

(Figure 1B.i), and agent hierarchy and contact network (Figures 1B.ii, 1B.iii, and S1). The 123 

Disease transmission module tracks COVID-19 infection spread in a population representing 124 

employees of a operation, using an elaborated variant of a "Susceptible-Exposed-Infectious-125 

Recovered-Susceptible" (SEIRS) model (Figure 1C). FInd CoV Control is customized to the 126 

population and work environment of a particular operation based on the user-set parameters 127 

(Table 2), which are also used to calculate the number of agents with various immunity 128 

trajectories and histories (Table 3). We used FInd CoV Control to make predictions about 129 

COVID-19 transmission dynamics following the arrival at work of an index case infected outside 130 

the workplace, both under a no-intervention “baseline” and under various interventions. The 131 

evaluated interventions included: a temperature screening intervention, three virus testing 132 

interventions, a total of five primary vaccination and/or boosting-promoting interventions, and 133 

three direct basic reproduction number (R0)-reduction (physical distancing and/or biosafety) 134 

interventions (Figure 1A). The baseline and interventions were simulated in a way that allows 135 

counterfactual comparisons. Interventions were evaluated using two groups of metrics: (i) Public 136 

health: the number of employees with symptomatic and asymptomatic infection (and total 137 

infected); and the initial effective reproductive number (Reff.) and (ii) Economic: the number of 138 

employees unavailable to work; the fraction of shifts with employee shortage; and total direct 139 

expenses, production losses, and total costs associated with an intervention (expressed in US$) 140 

(Figure 1C). While economic effects are often interrelated and ripple over multiple dimensions, 141 

in FInd Cov Control, the economic analysis is limited to the costs directly borne by operations 142 
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(Text S5) and is meant to serve as a reference, together with the infection model, for employers’ 143 

decision-making.  144 

 145 

Model validation 146 

FInd CoV Control was validated with publicly available data on outbreaks from early in 147 

the pandemic when few, if any, interventions would have been implemented. Specifically, for 148 

produce farm operations, FInd CoV Control was validated using two outbreaks, one on a farm 149 

with shared (i.e., employer-provided dormitory style) housing and one with a mix of shared and 150 

individual housing. For processing facilities, FInd CoV Control was validated using three 151 

outbreaks in facilities with individual housing, one in each of the dairy, pork, and produce 152 

processing facilities. These outbreaks and validation results are described in Text S6. The results 153 

of the validation analysis indicated a reasonable fit between the reported data and model 154 

predictions.  155 

 156 

Main results 157 

We begin by presenting a representative set of results over a 90-day simulation, for a 158 

facility with 103 employees, shared housing, and otherwise default parameters (see Tables 2 and 159 

4), in Figures 2, 3, and 4. Results for the farm model with similar parameters are qualitatively 160 

comparable, and outcome estimates for a larger facility with 1,003 employees (Figures S2, S3 161 

and S4) are generally similar with the main differences being later-peaking outbreaks (due to 162 

greater incidence growth required to saturate the larger population), and an associated modest 163 

increase in the effectiveness of some interventions. There is also a modest reduction in noisiness, 164 

which leads to a reduction in the probability of experiencing labor shortages in individual runs, 165 

given that the average outcome is not to experience a shortage in either case. Differences 166 

associated with shared versus individual housing are covered in the “Scenario analysis” section 167 

(and Text S7).  168 

Results pertaining to the number of symptomatic infections, our primary public-health 169 

outcome, are presented in Figure 2. There is little qualitative difference between the curves 170 

depicting the mean incidence (Figure 2A) and mean prevalence (Figure 2B) of symptomatic 171 

infection over time, although there is a difference in scale and a slight difference in location (with 172 

peak incidence occurring slightly prior to peak prevalence) and noisiness (with more visual noise 173 

in the incidence vs prevalence curves). This result is expected, so to avoid redundancy, we focus 174 

on (cumulative) incidence in the remaining panels. 175 

 176 

Bimodality and variability in symptomatic infections  177 

For all interventions (including the no-intervention baseline), over 40% of all runs result 178 

in no symptomatic infections at all (Figure 2C), and as a result, the number of symptomatic 179 

infections for a given intervention is strongly bimodal at baseline and for all interventions except 180 

for moderate viral testing (p = 0.3, i.e., 30% of scheduled workers tested each shift, amounting to 181 

testing every worker 1.5 times per week), high-intensity viral testing (p = 1, i.e., every worker 182 

scheduled for testing each shift), and “high-effectiveness (-80% R0) Physical 183 

distancing/Biosafety” (Figure 2D). This reflects that, in the absence of repeated reintroduction 184 

from the broader community, a major source of variance is the possibility of early stochastic die-185 

off, even at an initial Reff. well above 1 (e.g., Reff. = 2.52 at baseline for this scenario), which 186 

effectively partitions the vast majority of outcomes (for interventions for which Reff. remains 187 

appreciably above 1) into two modal regions (groups) with respect to the outbreak size: (i) small 188 

or non-existent outbreaks and (ii) large outbreaks. At baseline, over the 90 days since the 189 

introduction of an index case, group (i) has 0-12 (median 0, mean 0.60) total infections, not 190 

including the index case, and 0-4 symptomatic infections (median 0, mean 0.16), with no infected 191 

individuals left by the end of simulation, while group (ii) has 51-97 total infections (median 82, 192 
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mean 81.9), not including the index case, and 17-49 (median 34, mean 33.1) symptomatic 193 

infections. There are also 5 runs (out of 1000) that fell between these two groups, with 21-42 total 194 

infections (median 39, mean 35.8) and 5-14 symptomatic infections (median 11, mean 10.6). 195 

 196 

Bimodality and variability in counterfactual effects of interventions  197 

We can refine and expand observations detailed in the previous section by taking 198 

advantage of the steps we have taken to make counterfactual comparisons as precise as possible 199 

(see “Interventions” section); specifically, the i-th run of the model with any intervention 200 

corresponds in a meaningful way to the i-th run of the model at baseline, with the difference 201 

between the two being attributable solely the intervention. Consequently, it is meaningful to 202 

examine the pairwise differences, with respect to a particular outcome, between corresponding 203 

runs with and without a given intervention. The distributions of these pairwise differences, for 204 

runs that have at least one symptomatic infection at baseline, are presented in Figure 2E. There, 205 

we can see that there is not only a great deal of variance in outcomes within an intervention (or 206 

within the baseline), but also a substantial variance in the counterfactual effects of an 207 

intervention. This is meaningful, considering that the individual ABM runs reflect the real-world 208 

variation in epidemiologic outcomes, and the model provides a view into the counterfactual 209 

comparisons within individual runs that cannot be observed in the real world. To illustrate this 210 

phenomenon, a single intervention can be examined in detail (Figure 2E). The “moderate-211 

effectiveness (-40% R0) Physical distancing/Biosafety” intervention is modestly beneficial on 212 

average (mean reduction in number of symptomatic infections = 10.4) and in its typical 213 

performance (median reduction = 6). Nevertheless, it can be extremely effective in individual runs 214 

(maximum reduction of 45, close to the maximum across all interventions of 48). On the other 215 

hand, it can prove entirely ineffective or even counterfactually counterproductive in other 216 

individual runs (61 runs with no reduction in number of symptomatic infections, and 68 runs with 217 

an increase of 1-20. This is due to the timing and chance effects as explained in Text S8, where 218 

results for additional interventions (temperature screening and viral testing) are also illustrated. 219 

We can also note that most of these distributions of pairwise differences are themselves bimodal, 220 

reflecting two different ways that an intervention can counterfactually affect a run that produces 221 

large outbreak in the no-intervention scenario. In these counterfactual comparisons, on the one 222 

hand, an intervention may prevent a large outbreak altogether, producing a data point in the high-223 

effectiveness modal region in Figure 2E (and contributing to the difference in the number of 224 

large outbreaks between the intervention and no-intervention scenarios in Figure 2D). 225 

Alternatively, it may produce a smaller difference in the outbreak size (or none at all), producing 226 

a data point in the low-effectiveness modal region (and still contributing a large outbreak to both 227 

the intervention and no-intervention scenarios in Figure 2D). Depending on the intervention, one 228 

of these modal regions may be extremely small, or they may both be substantial.  229 

We can further refine these observations by considering the change in number of 230 

symptomatic infections as a fraction of the baseline number of symptomatic infections (Figure 231 

2F; Figure S2F for a large facility). In particular, for those interventions with a significant 232 

fraction of runs in the high-effectiveness modal region, the primary way that they shift runs from 233 

having large outbreaks in the no-intervention scenario, to not having large outbreaks in the 234 

presence of the intervention is, by causing them to have no symptomatic infections at all; the 235 

apparently symmetrical lower modes seen in Figure 2E are primarily produced by variation in the 236 

number of infections (in a large outbreak) at baseline, not by variation in the number of infections 237 

(in a small or (effectively) non-existent outbreak) under the intervention. 238 

 239 

“All good things in moderation” may backfire in viral testing  240 

Based on the different patterns of effects in Figure 2F, the most effective reductions in 241 

symptomatic infections are seen for moderate- and high-intensity viral testing. Figure 4 (Figure 242 
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S4 for a large facility) shows that viral testing at a fairly high rate is also generally more costly. In 243 

the case of high-intensity viral testing, this cost is overwhelmingly due to direct intervention 244 

expenses (primarily the cost of test kits), and this result is robust across a variety of scenarios (not 245 

shown). This is also true in most runs for moderate-intensity viral testing, but in some runs, 246 

moderate-intensity viral testing can result in significant costs due to both direct intervention 247 

expenses and production losses. The latter reflects the ability of testing at a “moderate” rate 248 

(p=0.3/working day) to generate a “worst of both worlds” scenario. This scenario generates large 249 

numbers of employees who are isolated at the same time, resulting in large numbers of worker-250 

shifts missed due to isolation, yet, infected employees are not identified and isolated fast enough 251 

to prevent a large outbreak from occurring. A more frequent version of this (rarely producing > 252 

15% absences on a production shift, which is considered to cause shortages and, thus, production 253 

losses) can be seen for low-intensity viral testing (p = 0.05/work day) where mean and median 254 

increases in unavailability are both greatest (Figures 3E and 3F; Figures S3E and S3F for a large 255 

facility). This observed pattern reinforces and extends the result from prior research that existent 256 

but inadequate larger-scale (city-level) non-pharmaceutical interventions can result in what the 257 

authors describe as a “dual blow of increased deaths and unemployment,” which fall 258 

disproportionately on low-income workers (30). 259 

 260 

Health benefits of physical distancing/biosafety interventions at low cost 261 

Finally, the next-most effective intervention in preventing symptomatic infections, after 262 

the moderate- and high-intensity viral testing interventions is the “high-effectiveness (-80% R0) 263 

Physical distancing/Biosafety” intervention (Figure 2F), for illustration purposes represented by a 264 

combination of masking, face shield use, and ventilation improvements. We found this to be 265 

much more effective than the “moderate-effectiveness (-40% R0) Physical distancing/Biosafety” 266 

intervention (represented by masking and face shield use, without ventilation improvements), but 267 

only modestly more costly (and substantially less costly than the more effective viral testing 268 

interventions) (Figure 4). 269 

 270 

 271 

Scenario analysis 272 

For our scenario analysis, we first defined several elements whose effects and interactions 273 

with intervention effects we wished to examine (Figure 5). These scenario elements were 274 

“setting” (“farm” vs. “facility”), “housing” (“individual” vs. “shared”), “vaccinated” (“high” 275 

(based on US national levels in early 2022 (32,33)) vs. “none”), and “recovered” (“high” US 276 

national levels (32, 34, 35) vs. “none”) (details in section Text S7 and Table S12). We then 277 

conducted a full factorial analysis for all 16 combinations of these four factors (and for all 13 278 

intervention scenarios) in the default facility size of 103 workers over 90-day-long simulation 279 

runs. Many combinations of these scenarios are intended to represent limiting cases, rather than 280 

realistic scenarios, e.g., a scenario with both “vaccinated” = “high” and “recovered” = “none” 281 

represents a limiting case of relatively high vaccination and no history of infection. Results of this 282 

analysis, evaluated using regression trees for each of the three primary outcomes (symptomatic 283 

infections, worker-shifts unavailable, and total cost) and the two separate contributors to total cost 284 

(production losses and intervention expenses), indicated that, for outcomes other than production 285 

losses, the effects of “setting” were relatively limited, and mostly pertained to which other effects 286 

were strong enough to be included in the pruned partition trees. Because transmission in the two 287 

settings is defined by the user-settable value of R0 (Table 2), which was kept the same between 288 

the two settings, the observed differences between settings can be attributed to differences in the 289 

work environment (Figures 1B and S1). In general, the evaluated outcomes were slightly higher 290 

for the “facility” setting than for the “farm” setting. Because of this, and to omit explanations of 291 

the different equations used to set default production-per-week in the two different settings, we 292 
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chose to describe results from the facility model here. Because total cost is simply a sum of 293 

intervention expenses and production losses, and because various factors affect each of those 294 

components differently, we will focus our discussion on each cost individually (results presented 295 

in Figure 5).  296 

 297 

Health and economic outcomes are driven by the interaction between the worker infection 298 

history and intervention intensity  299 

For almost all evaluated outcomes, the two biggest factors driving outcomes are intensity 300 

of virus testing intervention and “recovered” (i.e., whether the employee population has a 301 

significant history of natural infection) (Figure 5); the only exception is intervention expenses 302 

(Figure 5C), for which intensity of virus testing was the strongest factor, but “recovered” did not 303 

produce a sufficient impact to appear in the regression tree. While “recovered” being “high” 304 

(rather than “none”) had a desirable impact (i.e., produced lower symptomatic infections, 305 

unavailability, and intervention expenses) on all outcomes for which it was relevant, the effects of 306 

virus testing were more variable. Symptomatic infections are minimized by viral testing at a rate 307 

high enough to reliably control an outbreak before it can get large (testing every worker every 308 

shift or roughly every 3 shifts (p = 1 or 0.3/ work day, respectively)) (Figure 5A). Unavailability 309 

(Figure 5B), on the other hand, is lowest when either testing is non-existent (and so no workers 310 

are isolated as a result of testing, but only as a result of hospitalization) or testing is extremely 311 

intensive (and so the outbreak(s) is/are rapidly contained; p = 1/work day); however, even such 312 

intense testing may be insufficient to achieve a reasonable level of control in the face of a 313 

population with insufficient natural and hybrid immunity (“recovered” = “none”) and constant 314 

reintroduction (housing = “individual”). Conversely, unavailability is highest when the testing 315 

rate is intermediate (p = 0.05 or, even more so, p = 0.3/work day), resulting in enough 316 

asymptomatic and mildly symptomatic cases being detected to increase unavailability, but not 317 

enough to rapidly contain the outbreak(s). Similarly, production losses (which are driven by 318 

unavailability of ≥ 15% on a production shift) are highest when p = 0.3/work day, to the point that 319 

recursive partitioning with default parameters results in further division only of the node with p = 320 

0.3; all scenario-intervention combinations with either a lower (p = 0, p = 0.05) or a higher (p = 1) 321 

rate of virus testing are combined in a single node (Figure 5D). Intervention expenses, on the 322 

other hand, move in an opposite pattern to symptomatic infections, and are highest when the rate 323 

of viral testing per work day is highest (p = 1), and lowest when it is low (p = 0.05) or non-324 

existent (p = 0) (Figure 5C). 325 

 326 

Strongest outcome drivers are viral testing intensity and history of natural infection  327 

While “recovered” is consistently more important than “vaccinated” (i.e., splits defined by 328 

it occur closer to the root of each tree, where either occurs at all), and both share a uniformly 329 

desirable effect (where they show any effect at all), the interaction of the two is more complex: 330 

For production losses, there is only a split defined by “vaccinated” in a branch in which 331 

“recovered” is set to “none,” but for symptomatic infections, the reverse is true – the only split 332 

defined by “vaccinated” occurs in a branch in which “recovered” is set to “high.” In more 333 

conceptual terms, this amounts to saying that, at the population level, immunity resulting from 334 

recovery from natural infection plays a stronger role in determining a wide range of simulation 335 

outcomes than immunity resulting from vaccination - perhaps an unsurprising result late in a 336 

pandemic; whether the interaction of these two is sub-additive or super-additive depends on 337 

which outcome one is considering. In particular, with respect to symptomatic infections, there 338 

may be a synergistic effect of vaccination and recovery from natural infection, likely reflecting 339 

the strong protective effect of modeled hybrid immunity. For production losses, on the other hand, 340 

vaccination is less influential in the presence of moderate-to-high levels of natural recovery 341 

within the past year. This likely reflects the threshold effect in our model of production losses (of 342 
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15%) – in the presence of sufficient protection from natural recovery, the probability of suffering 343 

production losses at all may be low enough, even in the absence of vaccination, to reduce the 344 

importance of vaccination in predicting or determining that outcome. 345 

The only panel from which the “recovered” factor is absent, or even not one of the two 346 

strongest factors, is Figure 5C Intervention Expenses; the “vaccinated” factor is absent from this 347 

panel as well (although the cost of giving workers time off for vaccination is accounted for). This 348 

is unsurprising, given that intervention expenses are driven far more - at least, for the relatively 349 

simple interventions that we consider in this analysis - by what interventions one decides to 350 

implement than by transmission dynamics; as a result, no scenario parameters appear in it. The 351 

only split that does, other than the virus testing splits, is a split by whether there is a Physical 352 

distancing/Biosafety (“R0 reduction”) intervention, which raises costs (mean cost = US$7,171 vs. 353 

US$1,108; Text S5) over the alternative (a weighted average of no-intervention baseline, 354 

temperature screening, and vaccination and/or boosting interventions), in line with what we 355 

would expect. Temperature screening, being similar in certain respects to virus testing, but 356 

substantially cheaper and generally substantially less effective, appears only in the tree for 357 

unavailability (Figure 5B), where its use increases unavailability, more than a maximal rate (p = 358 

1) of viral testing (117 vs. 85=(26+164)/2). 359 

 360 

Intervention effectiveness is highly sensitive to the degree of community transmission 361 

Housing affects both unavailability (Figure 5B) and number of symptomatic infections 362 

(Figure 5A); both are higher when housing is “individual”. This is not to say that “shared” 363 

dormitory housing is a poorer environment for transmission than individual housing; rather, it 364 

reflects the role of community transmission in creating opportunities for reintroduction of 365 

infection from outside the employee population. This result is confirmed and elaborated by tests 366 

in Text S7, where we treat presence or absence of community transmission and presence or 367 

absence of dormitory transmission as separate factors. In line with this, additional analyses (Text 368 

S7) further indicate that our predictions about intervention effectiveness can be highly sensitive to 369 

the degree of community transmission.  370 

 371 

“R0 reduction” strategies are cost-effective  372 

Physical distancing/Biosafety interventions (“R0 reduction”) can reduce the number of 373 

symptomatic infections (when sufficiently effective) with minor increase in intervention expenses 374 

(Figures 5A and 5C, respectively). This suggests that highly effective R0 reduction strategies are 375 

cost-effective and, hence, should be prioritized for implementation.  376 

 377 

 378 

Sensitivity analysis  379 

To test the sensitivity of our model to a variety of parameters that are not user-settable, we 380 

visually and numerically examined the results when each of these parameters was varied, using a 381 

One Factor at a Time (OFAT) approach, with all other parameters (both user-settable and 382 

otherwise) at their default values, except that we examined a facility with “individual” housing. In 383 

this analysis, we focused on our three primary outcomes -- total symptomatic infections, total 384 

number of worker-shifts missed, and total cost over the simulation length -- and, additionally, on 385 

the employee-to-employee (contribution to the) effective reproduction number (Reff.) at the start of 386 

simulation. In Figure 6, we present results for 5 representative intervention scenarios, for the 5 387 

parameters that showed the greatest sensitivity across all evaluated parameter-outcome 388 

combinations. For each of these parameters, we present the mean value for each outcome when 389 

the parameter is halved, when it is left (along with all other parameters) at its default value (Table 390 

S14), and when it is doubled. Symptomatic infections are most strongly affected by parameters 391 

defining the mean duration (μIM) of mild symptomatic infection and relative per-contact 392 
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probability of transmission (βIM) during this stage), followed by a parameter (φ) governing the 393 

protection from developing symptomatic disease provided by Recovered and Hybrid immunity 394 

(Text S8B). Worker-shifts missed are most strongly affected by the relative frequency of severe 395 

infection, given any symptomatic infection (ψ), followed by the mean duration of severe infection 396 

(μIS), while the effects of these 5 parameters on Reff. and total cost were generally smaller (Text 397 

S8C). 398 

 399 

 400 

 401 

Discussion  402 

This study presents an ABM for tracking COVID-19 transmission and control in the food 403 

industry workforce to serve as a decision-support tool that can be used to mitigate the impacts of 404 

infectious disease outbreaks on essential worker populations and the food supply chain. The 405 

model can be customized to produce farm or processing facility settings, the type of employee 406 

housing predominantly used, as well as the vaccination and infection history and age 407 

characteristics of the workforce. Additionally, the model allows testing of a number of 408 

interventions and evaluating them counterfactually with regard to several public health and 409 

economic outcomes, and interpretation of predictions at the population and individual operation 410 

levels. The two strongest themes in our results are bimodality and trade-offs. Finally, the model 411 

also provides insights about effectiveness of different possible interventions and areas requiring 412 

further research. The developed model is expected to facilitate the food industry’s resilience and 413 

responsiveness to COVID-19 and similar future outbreaks, as well as to help navigate tradeoffs 414 

between public health and economic impacts of infection control interventions in essential 415 

industries.  416 

 417 

 418 

Bimodality and variability in outcomes and intervention effectiveness 419 

The simulation runs of FInd CoV Control can be interpreted to represent a population of 420 

operations with similar workforces and work environments. The simulation predicts how an 421 

outbreak would unfold in each operation (i.e., run) following infection introduction, and in 422 

counterfactual versions of the same operation that implemented different interventions. This 423 

allows us to interpret the predictions at the population level, answering questions such as: “What 424 

fraction of operations would experience certain health and economic outcomes?” Not only are 425 

most outcome distributions bimodal, but the counterfactual effects of most potential interventions 426 

are bimodal as well. Relatively ineffective (on average) interventions (e.g., temperature 427 

screening) not only sometimes appear to produce good outcomes, but also genuinely produce 428 

strong positive effects in a counterfactual sense, albeit with low probability. This is a particular 429 

consequence of a broader phenomenon: Much of the positive effect (when there is one, and 430 

especially when there is a strong one) of effective and ineffective interventions alike comes from 431 

their potential to control an outbreak at a very early stage, often before there is a single 432 

symptomatic infection. This presents a further challenge for “reactive” interventions (i.e., those 433 

implemented after the detection of a first infected case), above and beyond the issue of how 434 

quickly they can be deployed; by the time that operation managers (or policy-makers) are aware 435 

of an outbreak, the best opportunity to control it has already passed. This further supports the 436 

value of tools like FInd CoV Control that can be used as planning/forecasting tools, perhaps 437 

quarterly or on a rolling 90-day basis, to proactively prepare for the potential disease introduction.  438 

Conversely, even fairly effective (on average) interventions can result in little or no effect 439 

in individual outbreaks. Some may even be capable, albeit with low probability, of producing 440 

counterfactually worse outcomes. This can largely be attributed to matters of timing of infection, 441 
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for individuals who are infected at some point in either case; this can have an impact both through 442 

chance occurrence of opportunities for secondary transmission at particular points in time, and 443 

through the increase in probability of symptomatic infection that comes with increased time since 444 

last immunity event (i.e., last vaccination or last recovery from natural infection). Together, these 445 

possibilities, reflected in the bimodality in outcomes, further increase the (already substantial) 446 

real-world probability of misleading conclusions from anecdotal observations in individual 447 

operations, and thereby reinforce the importance of mechanistic, predictive models such as FInd 448 

Cov Control. As an alternative, data-driven evidence-based recommendations would require 449 

large-scale data collection, including time-series information on the infection spread and control 450 

(e.g., incidence of symptomatic and asymptomatic infections, results of diagnostics tests, 451 

vaccination history, infection, and isolation-related absence from work). Importantly, the data 452 

collected would need to include detailed metadata that explain the context of infection spread and 453 

control in individual work environments, because the characteristics of the work environment 454 

may serve as effect modifiers on the infection dynamics and intervention effectiveness. There are 455 

limited examples of studies of COVID-19 epidemiology in the food industry work environments 456 

(36, 37). These studies highlight the potential for rapid transmission of SARS-CoV-2 in the food 457 

industry’s work settings, which they attributed to the close arrangement of workstations and 458 

extended contact among employees. The data made available by the food operations where the 459 

investigations took place played a crucial role in enabling these studies. Our findings emphasize 460 

the need for much larger-scale data collection. However, given the cost, technical, and 461 

confidentiality-related obstacles to collecting such data, the prospect of purely data-driven 462 

decision-support models is dim. Collecting confidential data on infection spread in a food 463 

operation for the operation’s private decision-making is of course encouraged. However, it should 464 

be noted that in isolation from data on infection transmission in other comparable operations, such 465 

data will have a limited value even for the operations’ private use since the data will represent just 466 

one of many possible ways an outbreak (with or without an intervention) has unfolded as 467 

demonstrated by the model simulations. This underscores the need to proactively develop 468 

infrastructure capable of rapidly building and analysis of mechanistic or hybrid (e.g., combining 469 

ABM and machine learning (38)) models to guide infection control and policymaking under 470 

urgency and sparse data conditions.  471 

 472 

 473 

Tradeoffs between health and economic impacts of interventions  474 

One of the biggest trade-offs we see in our results is that of cost vs. effectiveness, 475 

particularly with respect to viral testing. Sufficiently intensive testing is highly effective at 476 

controlling transmission, but viral testing can be quite expensive, whether from the cost of test 477 

kits themselves, the cost of increased unavailability due to isolation of individuals who test 478 

positive, or both. Importantly, the intuitive solution of trying to find a moderate level of testing 479 

that optimizes this tradeoff is not necessarily a productive approach—testing, but at an 480 

insufficient frequency to achieve reliable control can actually be more expensive than either more 481 

frequent testing or not testing at all. The level of testing at which this economic “worst of both 482 

worlds” occurs is one of multiple aspects of intervention effects that is heavily dependent on the 483 

level of community transmission (modeled as individual housing that provided opportunity for 484 

acquiring infection within the community), further complicating the effort to select an optimal 485 

approach. It is helpful to realize the multiscale nature of infection control in work environments 486 

deemed essential to society, where the interest is to control the infection and its effects at the 487 

worker individual level (to protect the individual employee’s health) and at the worker population 488 

level (to reduce infection spread and cost of control, and increase labor availability). These scale-489 

related trade-offs spill over into the trade-off between costs of control (borne primarily by the 490 

company) and effectiveness (borne by both the company and individuals), leading to 491 
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inefficiencies commonly faced in the private provision of public goods (39). Designing public 492 

health policies that align operation incentives with desired public health outcomes is therefore 493 

critical to ensure the optimal provision of infection control interventions by operations. This 494 

trade-off spills over into a broader challenge around both protecting essential workers and 495 

supplying the country with food. Thus, there is a need for more discussion around essential 496 

categories of industry and appropriate metrics for evaluating "costs of control". 497 

 498 

 499 

Cost-effectiveness of counterfactual interventions 500 

At an individual operation level, FInd CoV Control can be used preemptively to ask 501 

questions such as: “Given the characteristics of the workforce and work environment in my 502 

operation, if an infected worker enters my facility in the near future, how likely it is that we will 503 

experience an outbreak?” “If we have an outbreak, how likely (in terms of the measures of central 504 

tendency and variation) are health and economic impacts under different intervention scenarios?” 505 

FInd CoV Control evaluates cost-effectiveness of 12 intervention scenarios and a no-intervention 506 

scenario. As seen in Figure 2 and Figure 3, even intensification of vaccination in an already 507 

moderately vaccinated population can yield modest but meaningful benefits. For proactive control 508 

of COVID-19 in the food industry, maintaining a vaccinated and boosted workforce to be 509 

prepared for a new outbreak remains a cost-effective intervention (albeit not sufficient to make 510 

other interventions unnecessary). Vaccination uptake can be increased by removing convenience 511 

and confidence barriers and leveraging workers’ motivation to protect self, family, and 512 

community (40). Our model findings seem to resonate with perceptions of the food industry’s 513 

leadership. Certain companies, particularly those in the labor-intensive meatpacking sector, took 514 

proactive measures by mandating vaccinations for their workforce (41-43) and prevented risk of 515 

infection among employees and potential plant closures that were prevalent at the beginning of 516 

the pandemic (44). In situations where vaccine mandates were not in place, other strategies such 517 

as physical distancing requirements and quarantines were implemented; however, these 518 

interventions were reported to lead to high worker absenteeism and hindered the efficient 519 

operation of processing plants (1). Strategies like screenings for disease were valuable in 520 

controlling workplace transmission, but also had serious limitations regarding reliability of the 521 

results and posed challenges due to being labor-intensive and costly compared to simpler 522 

strategies like use of face coverings and practicing personal hygiene (45). These observations in 523 

the food industry match the findings in our model about the effectiveness of screening, testing and 524 

physical distancing/biosafety strategies in preventing symptomatic cases, albeit with high 525 

expenses and production losses associated with testing strategies. Effectiveness can also trade off 526 

against “costs” that are not strictly monetary. For example, even very intensive physical 527 

distancing and biosafety measures may be cost-effective, but some aspects of such measures (e.g., 528 

masking and face shields) can be highly unpopular in the long run (and even limit productivity in 529 

harsh work environments, such as extreme cold, hot and wet/damp), especially given the previous 530 

observation of the limitations of reactive interventions (46). A comparison between the effects of 531 

highly and moderately effective interventions in this category supports the idea that, if one is 532 

going to implement masking and face shields, the addition of ventilation improvements is likely 533 

to be cost-effective. Our model revealed that predictions about intervention effectiveness are 534 

highly sensitive to the degree of community transmission. This emphasizes the importance of 535 

interpreting effectiveness of work-based interventions in the light of the epidemiology of the 536 

disease in the community. This also emphasizes the importance of mitigating disease spread 537 

outside of work; however, this is particularly challenging for agricultural worker populations that 538 

are not stationary and typically share housing and transportation, allowing for easy employment-539 

related transmission of the virus (47, 48).  540 

 541 
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 542 

Limitations and future directions 543 

The empirical support for model parameter values varies, and this is of particular concern 544 

for parameters identified as influential in the Sensitivity analysis (Figure 6). One area of 545 

particular concern, given a combination of high sensitivity, moderate support (i.e., a good amount 546 

of data, but somewhat coarse-grained, and with significant potential for confounding), and a 547 

history of changing strains, is the magnitude of long-lasting immunity provided by boosting (e.g., 548 

parameter φ), revealing that this is a critical knowledge gap requiring further research. Some more 549 

structural limitations to our model include our relatively simple model of change in infectiousness 550 

over the course of infection, our assumption that voluntary self-isolation is rare enough in 551 

essential workers to be omitted from the model, our relatively simple model of vaccination and 552 

boosting interventions (exponential decay of the eligible but unvaccinated/unboosted), and a 553 

simplified binary notion of housing for a given operation as being either shared or individual. 554 

There are numerous possible refinements of this model, many of which are facilitated to a greater 555 

or lesser extent by its modular structure. Three areas seem particularly likely to be fruitful: (i) 556 

Replacement of the current discrete-staged model of infectiousness over time with continuous 557 

infectiousness curves, analogous to the continuous curves that make up aspects of our continuous 558 

immunity trajectories; (ii) Continued improvement of our model of immune effects, immune 559 

boosting, and immune waning, as well as accounting for the changes in vaccination guidelines; 560 

and (iii) Incorporating multiple simultaneous interventions (starting at different times) and 561 

incorporating mixed individual and shared employee housing. More broadly, we hope to further 562 

increase the modularity, flexibility, and ease-of-use of the model, to facilitate easy modification to 563 

address other respiratory pathogens and/or other critical infrastructure sectors to enhance 564 

resilience and responsiveness to similar future outbreak events. Towards these goals, we created a 565 

user-friendly web interface for an early version of FInd CoV Control described in this article, 566 

which allows the user to customize it to the characteristics of their workforce and generate a clear 567 

and easily interpretable confidential result (49).  568 

 569 

 570 

 571 

Materials and Methods 572 

Employee population module 573 

We model a heterogeneous population of agents (employees) with a variety of attributes 574 

reflecting both their current state and certain aspects of their personal history. Agent attributes set 575 

at the simulation start are summarized in Table 1. Attributes that represent past events and current 576 

state include age, (directly) immunity-related attributes, vaccination history, and the current state 577 

of infection, if any.  578 

 579 

Age 580 

Agents are randomly assigned an age category, with probabilities that are derived from 581 

industry-wide data about the age of agricultural workers (50). This age category is then used to 582 

determine their probabilities, in the absence of immunity, of experiencing symptoms or dying 583 

(Table S1).  584 

 585 

Immunity-related attributes 586 

In this model, all of an agent's attributes that are directly relevant to that agent's immunity, 587 

and that are not a consequence of their age, represent acquired immunity (whether complete or 588 

partial) to SARS-CoV-2 infection and COVID-19 disease. These attributes are associated with 589 

specific past events that created or boosted that agent's immunity; for ease of reference, we refer 590 
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to these simply as immunity events (Table S2). Thus, all agents had, conceptually speaking, an 591 

immune status of fully Susceptible (S) and a vaccination status of Not Vaccinated (NV, also 592 

referred to as unvaccinated) at the start of the COVID-19 pandemic, but some may have different 593 

values for one or both of these attributes at the start of the simulation. 594 

Immunity-related attributes include the time (tlast, i) of the most recent immunity event, the 595 

time (tR, i) of the most recent recovery from natural infection (if any), an “immunity trajectory” 596 

(Ci, representing a trajectory defined by a combination of vaccination status and whether the 597 

agent has previously recovered from natural infection), and what the agent’s level of immunity 598 

was immediately prior to their most recent immunity event (Plast, E, i, Plast, IP, i, and/or Plast, IS, i) 599 

(Table 1). Together, these determine an agent's Protection against Any Infection (PE, i), Protection 600 

against Symptomatic Infection given Any Infection (PIP | E, i), and Protection against Severe 601 

Infection given Symptomatic Infection (PIS | IP, i) at the present time (Table 1 and Text S3B). Each 602 

immunity trajectory includes curves for PE, i, PIP | E, i, and PIS | IP, i. These may include an initial 603 

increase in immunity, referred to as “ramp-up”; an initial period of total immunity; and/or 604 

immune waning. During both ramp-up and immune waning, tlast, i is relevant; during complete 605 

immunity (for immunity trajectories R, HV1, HV2, and HB only), tR, i is relevant (specifically, in 606 

determining that there is complete immunity); and during ramp-up, Plast, E, i, Plast, IP, i, and/or 607 

Plast, IS, i are also relevant. These attributes are discussed further in the section “Immune dynamics” 608 

and in Text S3B and Tables S4-S7. 609 

 610 

Vaccination History 611 

We assume for the sake of simplicity that all vaccination and boosting uses the 612 

monovalent Pfizer vaccine. Therefore, vaccination history includes the number of doses of 613 

vaccine the agent has received (i.e., whether they are unvaccinated (NV), partially vaccinated 614 

(V1), fully (primarily) vaccinated (V2), or boosted (B)), and when they received each of their 615 

previous doses, if any (Figure 1B.iv). Generally, only the time of their most recent dose is 616 

relevant to the model dynamics (Table S4). The current version does not account for repeated 617 

boosting in the vaccination history. 618 

 619 

State of Infection 620 

An agent's current infection status can be: Not Infected (NI), infected, but not yet 621 

infectious (E, for “Exposed”), Asymptomatically Infectious (IA), Presymptomatically Infectious 622 

(IP), Mildly symptomatic (IM), Severely symptomatic (IS), Critically symptomatic (IC), or Dead 623 

(D) (Figure 1B.iv). Additionally, if that state is anything other than Not Infected, we record how 624 

long they have been in that state; together with their precalculated duration (see below) for that 625 

state, this determines how much longer they will remain in it before progressing, recovering, or 626 

dying.  627 

 628 

Initial setting of agent infection and vaccination history 629 

Agents' history of immunity events prior to the start of simulation is important for 630 

immunity (and immune ramp-up and waning), and their history of vaccination events specifically 631 

is important for their eligibility for future vaccination (both primary and boosting). Therefore, 632 

user input (Table 2), is used to determine what fraction of the population has and has not 633 

experienced various immunity events and when. We then randomly generate exact times in a 634 

simple fashion. This aspect of run initialization involves (i) current infection status initialization, 635 

(ii) infection history initialization, and (iii) vaccination history initialization. These aspects do not 636 

directly interact with each other, although infection history and vaccination history interact in 637 

their effects on immunity. The initial settings are described in Text S2. 638 

 639 

 640 
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Disease transmission module 641 

Course of infection  642 

The main aspects of the course(s) of infection are summarized in Figure 1B.iv. Agents are 643 

categorized as Not Infected (NI); Exposed (E); Infectious (I); or Dead (D). Infectious agents are 644 

further divided by whether they currently have clinical disease (IA and IP vs. IM, IS, and IC), 645 

whether they will subsequently develop clinical disease (IA vs. IP), and/or how severe their 646 

symptoms are (IM vs. IS vs. IC). They are further categorized by their immunity trajectory – fully 647 

Susceptible (S); one of the Vaccinated trajectories (V1, V2, or B); Recovered (R); or one of the 648 

Hybrid (H) immunity trajectories (HV1, HV2, or HB) – and (for all immunity trajectories other 649 

than S) the times since their last immunity event (their entry or reentry into that immunity 650 

trajectory) and their last recovery, if any (see “Immune dynamics” section). 651 

Infectible agents (i.e., agents whose infection status is NI, and whose susceptibility to 652 

infection (see “Transmission model” section) is greater than 0) can acquire infection with SARS-653 

CoV-2 from a potentially infectious contact with an Infectious agent (i.e., IA, IP, IM, IS, or IC). 654 

The probability of such a contact resulting in an infection depends on the susceptibility to 655 

infection of the infectible agent (1 – PE, i) and the infectiousness of the infectious agent (βIA, βIP, 656 

or βIM). How contacts are made is described in the “Work environment module” section.  657 

Upon infection, the formerly infectible agent enters the Exposed state (E), and after a 658 

period of time (DE, i), the Exposed agent becomes infectious (I). At this time, they enter one of 659 

two states, both of which are continuously infectious, but without clinical disease: either IA or IP, 660 

the latter of which is the first stage of the symptomatic path. The distinction between IP and IA 661 

reflects a substantial difference in per-contact transmission rates between the two (51).  662 

All IA agents are assumed to recover following a period of time (DIA, i). Agents taking the 663 

symptomatic path progress through up to four stages: IP, IM, IS, and/or IC. All IP agents progress 664 

to the IM state after a period of time (DIP, i), but agents who are in IM, IS, or IC may, after the 665 

corresponding period of time (DIM, i, DIS, i, or DIC, i, respectively), either continue their disease 666 

progression to the next state on the symptomatic path or recover.  667 

When an agent recovers, regardless of which infectious state they recovered from, their 668 

last immunity event time (tlast, i) and Recovered immunity event time (tR, i) are both set equal to the 669 

current time, their infection status is set to NI, and their immune status is set to Recovered (R) if 670 

they have never been vaccinated (NV), or to the appropriate Hybrid state (HV1, HV2, or HB) 671 

otherwise. For agents in IC that do not recover, the next step is Death (D). 672 

We do not explicitly model individual symptoms such as fever, cough, etc. However, for 673 

the temperature testing intervention, we do tacitly assume that fever is only present if the 674 

individual is symptomatically infected (IM, IS, or IC). We define “Severe” symptoms as those 675 

requiring hospitalization; consequently, we assume that only agents with an infection status of IA, 676 

IP or IM can transmit to their fellow employees, because agents with Severe or Critical symptoms 677 

are so sick that they require hospitalization. Relative transmissibility (per contact) is set based on 678 

the infection stage (Table S3). Absolute transmissibility has no effect in the model, as we set the 679 

average expected contact rate in order to achieve a specified basic reproduction number (R0), and 680 

our assumptions about contacts per day (Text S3A) make the distinction between twice as high 681 

transmissibility per contact and twice as many expected contacts mathematically irrelevant. 682 

 683 

For agents in any of the infected states, disease progression is based on the duration of each state 684 

(Table 4), age-dependent baseline probabilities of entering each disease state during disease 685 

progression (Table S1), and immunity-dependent modification of those baseline probabilities. 686 

 687 

Transmission model  688 

Agents who are infectible (i.e., agents whose infection status is NI, and whose 689 

susceptibility to infection is greater than 0) can be infected by contacts with either infectious 690 
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coworkers or infectious people outside of work, in the broader community (if housing is 691 

“individual”). Contact structures of the agents while at work were determined by the place of 692 

agents in the hierarchical structure of the farm or facility and their work schedule. To be more 693 

precise, for each shift type (e.g., weekday Production Shift 1, weekend Cleaning Shift, etc.), we 694 

have a matrix of expected contact rates between pairs of agents. For some combinations of a pair 695 

of agents and a shift type, a non-zero contact rate may represent contacts made at work; for 696 

others, it may represent contacts made in shared housing. Further details are in Text S3A. 697 

 698 

Immune dynamics 699 

We distinguish between 8 basic states (immunity trajectories) with respect to immunity: 700 

fully Susceptible (S), partially vaccinated (i.e., with one dose of a two-dose primary series) (V1), 701 

Fully Vaccinated (for the purpose of this study defined as a 2-dose primary series; V2), Boosted 702 

(B), Recovered (R), and Hybrid immunity (H) with partial vaccination (HV1), with full 703 

vaccination (HV2), or with full vaccination and a Booster (HB). Non-hybrid vaccinated 704 

trajectories (V1, V2, and B) feature a smooth ramp-up from their individual’s previous level of 705 

immunity, that lasts for TV1→V2 = 21 days, Tramp, V2 = 14 days, or Tramp, B, 1 + Tramp, B, 2 = 14 days, 706 

respectively, counting from the time since the individual’s last immunity event (i.e., first vaccine 707 

dose, second vaccine dose, or booster shot, respectively). The non-hybrid Recovered trajectory 708 

(R) features an initial Ttotal, R = two months (61 days) period of total immunity, counting from the 709 

time of their (most recent) recovery.  The Hybrid immunity trajectories (HV1, HV2, and HB) 710 

have characteristics of both vaccinated and recovered trajectories, and can be entered either by 711 

recovery following vaccination or by vaccination following recovery. Consequently, a particular 712 

individual’s experience of one of these trajectories may include either or both of total immunity 713 

and ramp-up. The transitions between these immunity trajectories are summarized in Table S2, 714 

and the equations for the protection that they offer are given in Table S7. As evidence has 715 

mounted that waning immunity, both from natural infection and from vaccination, plays an 716 

important role in the dynamics of transmission during the pandemic, we included this in our 717 

model. To take full advantage of the agent-based nature of our model, we assigned each agent 718 

three variables indicating the major factors influencing their level of susceptibility to both 719 

infection and progression: (i) the immune state that they entered at the time of their last immunity 720 

event, (ii) the time at which that event occurred (and hence, at any given subsequent point in time, 721 

how long it has been since that event), and (iii) the time of their last recovery from natural 722 

infection. The exceptions are agents whose immune state is fully Susceptible (S), whose time of 723 

last event is not defined, and agents whose immune state is either fully Susceptible (S) or one of 724 

the non-hybrid Vaccinated states (V1, V2, and B), whose time of last recovery is not defined. We 725 

then created functions (Table S7) giving, for any valid combination of state, time since entry, and 726 

time since recovery (and previous immunity, if they are currently in a ramp-up period), their level 727 

of relative protection from each of infection, symptomatic infection conditional on any infection, 728 

and severe infection conditional on symptomatic infection. We used exponential or exponential-729 

mixture waning for long-term behavior of V2 and B (fitted from data in (52)), and logistic waning 730 

for long-term behavior of R, HV1, HV2, and HB (with parameters inferred from the tables in 731 

(53)), with some special case behavior at the start of states other than S (ramp-up and/or a period 732 

of complete immunity), in order to account for the delay in reaching full protection following 733 

vaccination, and to prevent unrealistic cycles of extremely rapid reinfection. This is further 734 

explained in Text S3B. 735 

 736 

General model of vaccination 737 

Agents’ vaccination status can be unvaccinated (NV), partially vaccinated (V1), fully 738 

vaccinated (V2), or boosted (B). This vaccination status directly corresponds to their immune 739 

status (with NV corresponding to fully Susceptible (S)) if they have never recovered from a 740 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309041doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309041
http://creativecommons.org/licenses/by-nc/4.0/


16 

 

natural infection; if they have, then their immune status is either Recovered (R), if they have 741 

never been vaccinated, or one of the Hybrid immunity trajectories (HV1, HV2, and HB).  742 

 743 

Vaccination trajectories 744 

Partially vaccinated agents become eligible to receive a second shot TV1 -> V2 = 21 days 745 

after receiving their first one, and fully vaccinated agents become eligible to receive a booster 746 

shot TV2→B = 5 months (treated as a deterministic 152 days) after their second shot (54). We 747 

assume that all V1 agents enter V2 states as soon as they are eligible, but that only a fraction of 748 

V2 agents enters the B state as soon as they are eligible. We further assume that agents who are 749 

eligible to become V1/B at simulation start, but have not yet done so, will not become V1/B 750 

(respectively) during the simulation, in the absence of an intervention to promote primary 751 

vaccination/boosting, respectively. 752 

 753 

 754 

Work environment module 755 

In both farm and facility models, each week consists of 5 work days and 2 non-working 756 

days (i.e., a typical "work week" and weekend in the US). Each calendar day is modeled as 757 

consisting of 3 eight-hour periods we call "shifts." Each agent spends two shifts awake, and one 758 

asleep. For simplicity, we tie the agent's sleep cycle to their work cycle, so that each agent spends 759 

their first shift awake at work if it's a work day. This structure is illustrated for a sample agent 760 

(one scheduled to work on the first shift of the calendar day) in Figure 1B.i and shown in greater 761 

detail in Table S8. 762 

In the facility model, each working day consists of Production Shift 1, Production Shift 2 763 

(which may actually be a non-working shift, if the facility in question only has one production 764 

shift per day), and a Cleaning Shift. In the farm model, all agents are scheduled to work on the 765 

same shift, which, by analogy with the facility model, we refer to as Production Shift 1. (Hence, 766 

by the same analogy, all agents are awake, but not working, during Production Shift 2, and asleep 767 

during the shift that would be the “Cleaning Shift” in the facility model.) 768 

We distinguish between available and unavailable agents for the purposes of SARS-CoV-769 

2 transmission between agents. Available agents are available to work their scheduled shifts – 770 

meaning that they can do work (relevant in the economic analyses), and can also potentially 771 

infect, or be infected by, other agents. Agents are available by default, but may become 772 

unavailable to work (and, subsequently, may become available again).  773 

In the baseline (no intervention) model, unavailable agents are limited to those who are 774 

either hospitalized (i.e., those who have an infection status of IS or IC) or dead (those who have 775 

an infection state of D). Hospitalized agents become available again upon recovery. Under certain 776 

interventions, agents who are not hospitalized may become diagnosed and isolated; these remain 777 

unavailable until they are deisolated (Text S3C). 778 

We model a facility or farm with a hierarchical organization, although the details of this 779 

hierarchy differ somewhat between the facility model and the farm model. This hierarchy is 780 

assumed to be fixed over the time horizon of the model, as is the associated work schedule. The 781 

expected number of contacts between pairs of workers who are both "available" (i.e., not isolated, 782 

hospitalized, or dead) is likewise held constant (i.e., we do not reassign workers between work 783 

crews or production lines based on other workers' absences). To make the interface more 784 

manageable, we assume that the structure of the operation is "regular" in the sense that if there are 785 

two or more of the same sub-structure (e.g., two production shifts, two or more teams of work 786 

crews, two or more work crews within a team, or two or more production lines), then each of 787 

those sub-structures has the same structural characteristics (e.g., if one work crew consists of 10 788 

workers and a foreman, than all work crews consist of 10 workers and a foreman). 789 
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Features specific to the farm and facility models are described in Text S4A and S4B. 790 

Briefly, we assume the following: 791 

• All workers live in the same type of housing (i.e., either individual or employer-provided 792 

shared housing).  793 

• All workers work a regular 40-hour, 5-day work week (8-hour shifts) and 2-day weekend, 794 

with the model simulation starting on a random day of the week, except for a small number of 795 

floating workers (e.g., quality assurance technician, mechanic) in the facility model, for whom 796 

the work shift(s) on a given day is/are randomly selected.  797 

• There are many more contacts within the hierarchical structure than outside it (e.g., more 798 

contacts between workers on the same crew/production line than between workers on 799 

different crews/production lines, more contacts between foremen and supervisors than 800 

between other workers and supervisors, etc.), but that contacts are possible between any two 801 

agents who are both present on the same shift. 802 

• All contact between workers occurs either (a) while traveling to, at, or traveling home from 803 

work, or (b) in shared, employer-provided housing, i.e., that workers in individual housing do 804 

not socialize with each other outside of work. 805 

• There is homogeneous mixing within employer-provided housing.  806 

• Worker contacts on the way to and from work follow the same basic patterns as worker 807 

contacts at work (e.g., we tacitly assume that shared transportation is substantially more likely 808 

to group together workers who are on the same crew than workers who are on different 809 

crews). 810 

 811 

 812 

Interventions 813 

Apart from the baseline (non-) intervention, we modeled 12 interventions falling into four 814 

groups (described in detail in Text S3C):  815 

• “Temperature screening” (1 scenario) denotes temperature screening and isolation where 816 

all employees arriving for their shift are tested prior to admitting employees to work for 817 

that shift. The temperature threshold is set at 38°C. 818 

• “Virus test” (3 scenarios) denotes low-, moderate-, and high-intensity of viral testing and 819 

isolation, respectively modeled with the probability p = 5, 30, or 100% of each employee 820 

being tested each shift upon arrival at the workplace. 821 

• “Vaccine” (5 scenarios) denotes primary “vaccination” of unvaccinated workers with 2 822 

doses at a daily probability of p = 2 or 4%; “boosting” of boosting-eligible but unboosted 823 

workers at p =2 or 4% per day; or a combination of both primary and boosting vaccination 824 

interventions (“vax+boosting”) at p = 2% per day. 825 

• “Physical distancing/Biosafety” (3 scenarios) where physical distancing and/or biosafety 826 

interventions are modeled as generating a 20, 40, or 80% reduction in R0 at work (i.e., -20, 827 

-40 or -80% R0), such as through the application of masks, face shields, physical barriers, 828 

and/or ventilation. The exact approach necessary to achieve these desired effects on R0 829 

will vary across work environments. However, to illustrate how higher-effectiveness 830 

interventions may be built by “stacking” multiple lower-effectiveness strategies and to be 831 

able to quantify their net cost in the subsequent economic analysis, in absence of required 832 

data we assumed: (i) For a low-effectiveness (-20% R0) intervention, the use of KN95 833 

masks, one per employee per shift; (ii) For a moderate-effectiveness (-40% R0) 834 

intervention, a low-effectiveness intervention combined with the use of face shields, one 835 

per employee per 30 days; (iii) For a high-effectiveness (-80% R0) intervention, a 836 

moderate-effectiveness intervention combined with ventilation improvement, such as with 837 

the use of (a) portable air cleaner(s). 838 
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We performed counterfactual comparisons of the no-intervention baseline and 12 839 

interventions (Figure 1A). To make these comparisons more precise, on a run-by-run basis, we 840 

(a) reseed the pseudorandom number generator (pRNG) with the same value before processing 841 

each intervention and (b) make use of the pRNG in such a way as to ensure that two runs that start 842 

with the same pRNG state and that differ only in the factors that we allow to vary between 843 

possible interventions under a given scenario, will have the same pRNG state at all analogous 844 

points thereafter. 845 

 846 

 847 

Model running 848 

For each run, the model is first initialized. Then, at each time step, the following processes 849 

occur: 850 

• Agents eligible for deisolation (Text S3C) are deisolated. 851 

• If any testing is being performed (Text S3C), agents who are scheduled to work and 852 

(potentially) available are tested. 853 

o If the testing probability per shift is 1, then all (potentially) available agents are tested. 854 

o If the testing probability per shift is < 1, then the number of tests to be performed is 855 

determined, and these are performed on the (potentially) available agents in order from 856 

least to most recently tested, randomizing ties. 857 

o If any agents test positive, they are isolated, and their isolation time is set to the 858 

present time. 859 

• Agents to be vaccinated are randomly selected (meaning that they are not infected and 860 

either they have just become eligible for a booster and are boosting on time, or they are 861 

eligible to receive some form of vaccine, and there is a vaccination-promoting 862 

intervention), and their immunity event times, immunity trajectories, and vaccination 863 

statuses are updated accordingly. 864 

• Transmission (potentially) occurs, with probabilities as described in Text S3A. 865 

• Infected agents who are eligible to leave their current state of infection (i.e., the sum of 866 

their time of entering that state and their precalculated duration for that state is less than 867 

the time at which the current time step ends) do so, randomly selecting which new 868 

infection state to enter, if necessary, as described above. 869 

o This step is repeated as necessary, i.e., an agent may in principle progress twice in a 870 

single time step if the duration of one of their infection states is sufficiently small. 871 

o If an agent recovers, their last recovery and last immunity event times (tR, i and tlast, i) 872 

are set to the present time, and their immunity trajectory is updated. 873 

• Outcomes are recorded for use in subsequent analysis. 874 

The ABM model and all analyses were implemented in R software (version 4.0.4) (58). 875 

 876 

 877 

Model outcomes 878 

Our outcomes of interest can be broadly grouped into those which pertain primarily to 879 

public health, and those which pertain primarily to business disruptions and economic impact. We 880 

compare these outcomes both across (potential) interventions within a setting scenario and across 881 

different scenarios. 882 

 883 

Public health outcomes 884 

Our primary public health outcome of interest is the total number of symptomatic SARS-885 

CoV-2 infections that occur across the course of a run. We define this as the number of occasions 886 

of an agent transitioning from the IP to IM state between the start of simulation (t = 0) and the end 887 
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of simulation (t = T). This includes transitions into IM of agents who were in the E state at 888 

simulation start, if they transition from E to IP (and, subsequently, to IM) rather than to IA, but 889 

does not include the transitions into IM before t = 0 for agents that were in IM at simulation start. 890 

It also does not include the transitions into IM after t = T of any agents who are in E or IP at 891 

simulation end. If the simulation length and transmission dynamics are such as to result in some 892 

agents transitioning into IM more than once during the simulation, then we count each such 893 

transition separately; hence, it may be possible, depending on user-set parameters, to have a 894 

number of symptomatic infections that exceeds the number of agents. An additional outcome of 895 

interest is the number of total SARS-CoV-2 infections (i.e., including asymptomatic infections) 896 

that occur across the course of a run. We present public health outcomes, for each intervention, as 897 

a curve of the mean over time, as well as violin plots summarizing the cumulative distribution 898 

over a defined planning horizon, to allow both comparison of expectations and understanding of 899 

the variance. 900 

 901 

Economics outcomes 902 

The main dimensions considered for economic analysis are: (i) direct costs of performing 903 

an intervention, and (ii) the productivity costs or benefits of the intervention. To assess (i), we add 904 

certain details to our hypothetical interventions, based on how interventions are implemented in 905 

real life. Relative to a "no-intervention" baseline of doing nothing, the direct costs of interventions 906 

can be expected to always be greater than or equal to zero. Each intervention is compared to the 907 

baseline to estimate direct costs of performing each intervention. Calculations of the costs of 908 

interventions are described in Text S5. To answer (ii), we estimate the productivity loss based on 909 

the worker absences from the infection model with a Cobb-Douglass production model. The 910 

Cobb-Douglass production function takes the general form 911 

𝑄 =  A𝐿𝛽𝐾𝛼 912 

where operations use labor L and capital K to produce output Q, and A is some constant. The 913 

output elasticities of labor and physical capital are β and α, respectively. In choosing output level 914 

Q, operations face the following cost function (abstracting from fixed costs): 915 

𝐶 =  𝑤𝐿 +  𝑟𝐾 916 

where w is the wage rate and r is the rental rate for capital. Profit-maximizing operations operate 917 

at the efficient production frontier in equilibrium.  918 

Based on a previous survey of producers (17), one important assumption made in the 919 

model is that the facility can maintain full production (𝑄𝑓) with up to 15% of absenteeism without 920 

incurring appreciably higher production costs. If a operation can reduce its “full output” labor 921 

input allocation Lf to a short-staffed model where 𝐿𝑠  =  0.85𝐿𝑓 without reducing full output 922 

(𝑄𝑠  =  𝑄𝑓) in a costless way, the operation must be able to substitute enough additional capital 923 

above the current “full output” allocation in the short run, such that the cost of increased capital is 924 

completely offset by reduced labor costs. To capture this short-run flexibility, we therefore 925 

assume that the current equilibrium is not unique, but instead one in a set of cost-minimizing 926 

equilibria where  0.85𝐿𝑓 ≤ 𝐿 ≤ 𝐿𝑓.  927 

If labor absenteeism exceeds 15%, however, we assume that the capital allocation now 928 

remains fixed at the (higher) 15% absenteeism point, and the production paradigm takes the 929 

previously described Cobb-Douglass form. Under that framework, since operations cannot 930 

substitute capital for labor, they will have to reduce output based on these labor shortages. In an 931 

empirical work application of productivity analysis in the food and agricultural sector in the US, 932 

Ahmad (59) estimates a Bayesian stochastic Cobb-Douglas production function using US state-933 

level agricultural data from 1960-2004 (n=2,160). He estimates α = 0.316 [0.271, 0.362] and β = 934 

0.437 [0.392, 0.483]. Thus, production is 935 
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𝑄(𝐿) = {

𝑄(𝐿𝑓)                           ,
𝐿

𝐿𝑓
≥ 0.85

𝑄(𝐿𝑓) (
𝐿

0.85𝐿𝑓
)

0.437
,

𝐿

𝐿𝑓
< 0.85

 936 

 937 

Full production quantity is provided by the users, and estimated production loss is simply 938 

𝑄(𝐿𝑓) − 𝑄(𝐿) =

{
 
 

 
 0                                ,

𝐿

𝐿𝑓
≥ 0.85

𝑄(𝐿𝑓) (1−(
𝐿

0.85𝐿𝑓
)

0.437

)

⬚

,
𝐿

𝐿𝑓
< 0.85

 939 

 940 

The results of the above analyses are summarized by the following economic outcomes: the mean 941 

number of employees unavailable to work production shifts over time; violin plots summarizing 942 

the distribution of the cumulative number of production worker-shifts missed; fraction of shifts 943 

short; and total direct expenses, production losses, and total costs associated with an intervention 944 

(US$). 945 

 946 

 947 

Scenario analysis 948 

We tested scenarios corresponding to factors: “setting” (“farm” vs. “facility”), “housing” 949 

(“individual” vs. “shared”), “vaccinated” (“high” vs. “none”), and “recovered” (“high” vs. 950 

“nothing”). In a full factorial analysis approach, we tested all 16 combinations of these four 951 

factors and for each scenario we ran the no-intervention baseline and all 12 interventions. We 952 

then constructed regression trees, using the R package rpart (version 4.1.19; using default values 953 

for all control parameters) for each of our three primary outcomes (symptomatic infections, 954 

worker-shifts unavailable, and total cost) and the two separate contributors to total cost 955 

(production losses and intervention expenses) vs. the four scenario parameters and the 5 956 

intervention parameters defining our 12 interventions (Table S13). In the main text of this paper, 957 

we only present a subset of results for which setting is “facility,” for reasons discussed in the 958 

“Scenario analysis” subsection of the Results section. 959 

 960 

 961 

Sensitivity analysis 962 

We evaluated the parameter sensitivity for four outcomes using the OFAT approach. Three 963 

outcomes were the total symptomatic infections, total number of worker-shifts missed and total 964 

cost over the simulation length. The fourth outcome was the effective reproduction number (Reff.) 965 

at the start of simulation. Because of the large number of parameters to be examined, under 966 

(initially) a variety of scenarios, we averaged results over batches of 100 runs each, rather than 967 

the 1000 runs that we use in most other contexts. In general, for a given parameter whose value in 968 

our model was x, we examined results when that parameter was set to 1/2 x, x, and 2x (Table 969 

S14). For 2 parameters (TV2→B and T1st V2 -> 0), one of these values was impossible, given a 970 

requirement that it be possible for some individuals to be eligible for boosting at simulation start. 971 

For these parameters, we set the relevant value to the most extreme possible value in the same 972 

direction (i.e., 212.5 days for (increased) TV2→B and 305 days for (reduced) T1st V2 -> 0). 973 

In order to estimate Reff. at the start of simulation (other outcomes were measured without 974 

this modification), we modified the model so that, when an employee was infected, instead of 975 

their infection status being changed from Not Infected to Exposed, their immunity was set to 976 

Recovered, and their tlast, i was reset to the current time. Conceptually, this amounts to their 977 

“skipping over” any infected states, and going directly from infection to recovery. This ensured 978 

that all employee-to-employee transmissions would necessarily be from employees who were 979 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309041doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309041
http://creativecommons.org/licenses/by-nc/4.0/


21 

 

infected at the start of simulation. We then ran the model starting with a single Exposed employee 980 

(as is the default), and observed the number of employee-to-employee transmissions that 981 

occurred. The average of that number across multiple runs was then used as an empirical estimate 982 

of Reff. In scenarios with “individual” housing, the community-acquired infection was allowed to 983 

occur (likewise transferring infected employees directly into a Recovered state, meaning that they 984 

were not immediately infectible by the index case), but was not included in the count of 985 

employee-to-employee transmissions measured by Reff. 986 

We initially examined the results of sensitivity analysis, using default user-settable 987 

parameters, except as noted, across the same range of settings as we initially considered for 988 

scenario analysis. We found that, for most parameters, sensitivity was higher in “high” settings 989 

(i.e., with a history of both vaccination and recovery from natural infection) than in historical or 990 

pseudo-historical settings, higher in facility settings than in farm settings, and higher in settings 991 

with shared housing than in settings with individual housing. For this reason, we focused our 992 

further examination on a setting of a facility, with all parameters default except for housing, 993 

which was “shared” instead of “individual” (with physical distancing in shared housing at the 994 

default level). Looking back at scenario analysis, this is equivalent to the scenario in which both 995 

“vaccination” and “recovered” were “high.” 996 

For each parameter-intervention-outcome combination, we obtained three mean outcome 997 

values, as described above. We divided the largest of those three values by the smallest to obtain a 998 

simple measure ω of the sensitivity that could address both monotonic and non-monotonic effects. 999 

For each parameter, we then chose the largest such measure (ωmax) across all intervention-1000 

outcome combinations. We then selected for depiction and discussion in the Results section those 1001 

parameters for which ωmax ≥ 2 (all results are shown in Figures S5-S8). As the only exception to 1002 

this process, we omitted the baseline no-intervention scenario in the Total Cost outcome, as the 1003 

sensitivity measure for this outcome-intervention was generally undefined or (rarely, and 1004 

seemingly at random) infinite, due to the extreme rarity of non-zero Total Cost at baseline. 1005 

 1006 

 1007 
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Figures and Tables 1267 

 1268 

 1269 
 1270 

Figure 1. Overview of the FInd CoV Control tool. (A) Three modules of the tool: Employee 1271 

population, Work environment and Disease transmission. (B) Module building blocks: B.i 1272 

Example of a shift schedule, B.ii Agent hierarchy in a food processing facility, B.iii 1273 

Heatmap showing a contact network among agents in a food processing facility and 1274 

relative rates of contacts, and B.iv Infection states in the COVID-19 disease transmission 1275 

module. (C) List of outcomes recorded for each iteration of a simulation with the FInd 1276 

CoV Control Tool.   1277 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309041doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309041
http://creativecommons.org/licenses/by-nc/4.0/


28 

 

 1278 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.18.24309041doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.18.24309041
http://creativecommons.org/licenses/by-nc/4.0/


29 

 

Figure 2. Illustration of public health outcomes for baseline (no intervention) and each of 1279 

the interventions in absolute terms as well as relative to the baseline. Results for 1280 

number of symptomatic infections in a processing facility with 103 employees over the 90 1281 

days of the simulation run are shown (results for total infections are similar, apart from 1282 

scale). (A and B) The mean across all runs of the incidence (A) and prevalence (B) of 1283 

symptomatic infection, at each time point; these illustrate the dynamics over time, but also 1284 

conceal the high level of variation between runs. (C) The fraction of runs for which the 1285 

total number of symptomatic infections is greater than zero.  (D) Violin plots representing 1286 

the distribution, between runs, of the total number of symptomatic infections; these violin 1287 

plots illustrate the bimodal nature of most distributions. (E) Violin plots representing the 1288 

distribution of counterfactual effects of the various interventions, i.e., the distribution of 1289 

pairwise differences between corresponding runs with and without that intervention (the 1290 

number at that intervention, 𝑁𝐼, minus the number at baseline, 𝑁𝐵; 𝑁𝐼 −𝑁𝐵), for runs that 1291 

do have one or more symptomatic infections at baseline. (F) Violin plots representing the 1292 

distribution of pairwise fractional differences (i.e., (𝑁𝐼 − 𝑁𝐵)/𝑁𝐵), for runs with a non-1293 

zero number of symptomatic infections at baseline. For three of the interventions, there is 1294 

a single positive outlier (i.e., 1 iteration out of 1,000 runs per intervention) that is cut off 1295 

by the axis limits to avoid excessively compressing the depiction of the other 11,997 1296 

points.  1297 
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Figure 3. Illustration of unavailability for baseline (no intervention) and each of the 1300 

interventions in absolute terms as well as relative to the baseline. Unavailability (i.e., 1301 

worker-shifts missed) depends not only on how many employees are infected, and how 1302 

many of those are symptomatic, but also on how likely an infected employee (whether 1303 

symptomatic or asymptomatic) is to be removed from the workforce (due to 1304 

hospitalization, or to detection and isolation). All results are for 90-day long simulation 1305 

runs. (A) The mean across all runs of the number of employees unavailable to work their 1306 

scheduled production shift, for each day of the simulation; this illustrates the dynamics 1307 

over time, but also conceals the substantial level of variation between runs. (B) Violin 1308 

plots representing the distribution, between runs, of the sum of the number of workers 1309 

unavailable to work their scheduled production shift, over all such shifts; this violin plot 1310 

illustrates the varying shapes of these distributions. (C) The fraction of runs for which the 1311 

total number of worker-shifts missed is greater than zero. (D and E) Violin plots 1312 

representing the distribution of counterfactual effects of the various interventions, i.e., the 1313 

distribution of pairwise differences between corresponding runs with and without that 1314 

intervention (the number at that intervention, 𝑁𝐼, minus the number at baseline, 𝑁𝐵; 𝑁𝐼 −1315 

𝑁𝐵), for runs with zero (panel D) and non-zero (panel E) worker-shifts missed at baseline. 1316 

(F) Violin plots representing the distribution of pairwise fractional differences (i.e., (𝑁𝐼 −1317 

𝑁𝐵)/𝑁𝐵), for runs with non-zero worker-shifts missed at baseline.  1318 

 1319 

 1320 
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 1322 
Figure 4. Illustration of costs for baseline (no intervention) and each of the interventions. All 1323 

panels consist of violin plots (although in some cases, these may be sufficiently 1324 

horizontally compressed that this is not obvious) representing the distribution (across runs 1325 

within an intervention) of an outcome. All results are for 90-day long simulation runs. (A) 1326 

Distribution of direct intervention expenses (supplies purchased and/or additional wages 1327 

paid for tasks performed outside of an individual's normal scheduled working hours); 1328 

these are generally relatively constant for an intervention, and are always US$0 by 1329 

definition for the baseline. (B) Distribution of production losses due to worker absences; 1330 

as a result of unavailability (occurring only on days when >15% of workers miss their 1331 

shift) this is almost always US$0 in the absence of a testing intervention. Here, we can see 1332 

that low to moderate levels of routine viral testing may be insufficient to interrupt 1333 

transmission, but sufficient to remove significant numbers of employees through detection 1334 

and isolation, and thus causing significant production losses. (C) Distribution of total costs 1335 

(in US$), which we define to be the sum of intervention expenses and production losses. 1336 

(D) Fraction of production shifts (within a single run) that are "short", i.e., more than 15% 1337 

of workers absent ("0%" means that in a particular run none of the shifts were "short").   1338 
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 1339 
Figure 5. Regression Trees. For all panels, the labels on the branches descending from a node 1340 

represent values of the parameter listed in the node itself. Where there are only two values 1341 

for a parameter, the value is sometimes only listed explicitly on the left branch, to save 1342 

space; the right branch simply has the value of that parameter that the left branch does not. 1343 

In all cases, branches are ordered by making the left branch the one with the lower average 1344 

value for the outcome represented in that panel. (This does not, however, result in all 1345 

leaves being ordered from lowest to highest, because the branches are not allowed to 1346 

cross.) The value at each leaf indicates the mean value of the outcome across relevant 1347 

scenarios x interventions x runs over the 90 days of the simulation run, and n indicates the 1348 
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number of runs represented by the leaf (out of 104,000 runs). (A) Total number 1349 

(Cumulative Incidence) of Symptomatic Infections, (B) Total number of Worker-Shifts 1350 

Unavailable, (C) Cumulative intervention expenses (in US$), (D) Cumulative production 1351 

losses (in US$). 1352 
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 1354 
Figure 6. Dependence of the mean value of four major outcomes (columns), summed over 1355 

the course of a 90-day simulation, on 5 selected non–user-settable parameters (rows), 1356 

and on select interventions (colors). The outcomes, columns from left to right, are total 1357 

number of symptomatic infections, total number of production worker-shifts missed, 1358 

effective reproduction number, and total cost in US$. The parameters examined, rows top 1359 

to bottom, are ψ (“SEVERE_MULTIPLIER” denoting a parameter scaling the fraction of 1360 

symptomatic infections that become severe); μIM, and μIS (mean duration of mild 1361 

(“duration_IM_mean”) and severe (“duration_IS_mean”) infection, respectively); βIM 1362 
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(“p_trans_IM” denoting relative probability of transmission, per potentially infectious 1363 

contact, during mild infection); and φ (“fraction_ssp_symptomatic” denoting a parameter 1364 

that pertains to how much protection from developing symptomatic disease Recovered and 1365 

Hybrid immunity provide to infected individuals). The interventions examined were 1366 

Baseline (black), Temperature Screening (dark blue), Virus Test at p = 0.3 / working day 1367 

(red), Physical distancing/Biosafety at -40% R₀ (dark green), and Vax + Boosting at p = 1368 

0.02/day (yellow). These colors are the same as those in Figures 2, 3, and 4, although the 1369 

line type may vary. The x-axis of each plot represents the multiplier applied to the 1370 

parameter in question (i.e., 0.5, 1, or 1.5 for all of the parameters depicted here). 1371 
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Table 1. Summary of agent attributes. *‘Ramp-up’ refers to an initial increase in immunity 1373 

following a vaccination event. Additional information for Plast, IP, i and Plast, IS, i is in Table S2. 1374 

Distributions for infection stage durations are in Table 4. Table S12 is a version of this table with 1375 

additional notes and information on how attributes are set at simulation start and/or during the 1376 

simulation. 1377 

Symbol Description Directly affect(s) 

Ai Age Transition probabilities (see Table S1) 

pstage, i Transition probabilities at full 

susceptibility 

Asymptomatic vs. Symptomatic infection; recovery 

from each stage on the symptomatic path vs. further 

progression/ death 

Dstage, i Infection stage durations Timing of recovery/ progression/ death 

tevent_type, i 

(tV1, i, tV2, i, 

tB, i, and tR, i) 

Immunity event times Protection against Any Infection (PE, i) and either 

overall Protection against Symptomatic Infection 

(PIP, i) or overall Protection against Severe Infection 

(PIS, i) 

tinfection status, i 

(tE, i, tIA, i, tIP, i, 

tIM, i, tIS, i, and 

tIC, i) 

Infection and infection progression times Timing of recovery/ progression/ death 

Ci Immunity trajectories Protection against Any Infection (PE, i) and either 

overall Protection against Symptomatic Infection 

(PIP, i) or overall Protection against Severe Infection 

(PIS, i) 

tlast, i Time of last immunity event Immunity components (for certain immunity 

trajectories) 

Plast, E, i “Previous” (at the time of the last 

immunity event) level of Protection 

against Any Infection (PE, i) 

Current level of Protection against Any Infection, 

during ramp-up phases only 

Plast, IP, i “Previous” (at the time of the last 

immunity event) level of overall 

Protection against Symptomatic 

Infection (PIP, i) 

Current overall Protection against Symptomatic 

Infection, during ramp-up phases only 

Plast, IS, i “Previous” (at the time of the last 

immunity event) level of overall 

Protection against Severe Infection 

(PIS, i) 

Current overall Protection against Severe Infection, 

during ramp-up phases only 

PE, i Protection against Any Infection Relative susceptibility to infection (i.e., to 

transitioning from Not Infected to Exposed) 

PIP | E, i Protection against Symptomatic 

Infection given Any Infection 

Relative probability of transitioning from Exposed to 

Presymptomatically Infected (rather than to 

Asymptomatically Infected) 

PIS | IP, i Protection against Severe Infection given 

Symptomatic Infection 

Relative probability of transitioning from Mildly 

Infected to Severely Infected (rather than recovering) 

Bon time, i Boosting on time Whether the agent has received/will receive a booster 

shot TV2→B = 5 months after the second shot of their 

primary series (if any) 

Vi Vaccination status Eligibility for future shots 

Ii Infection status Transmissibility; hospitalization; progression, death, 

and recovery 

ttested, i Most recent time tested, if any Priority for future testing 

tQ, i Time isolated Eligibility for deisolation 

Qi Isolation status Eligibility for deisolation, presence or absence at 

work and, if applicable, shared housing (and hence, 

potential to transmit) 
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Table 2. User-settable model parameters.  1379 

Symbol Definition (unit) Possible 

values 

Default 

value 

References and 

Notes 

N Total number of agents (employee) Farm: ≥4 

Facility: ≥7 

103 From user input 

(Table S11) 

NE Initial number of agents who are in the Exposed 

state (E) (employee) 

1–N 1 Assumed 

NIM Initial number of agents with Mild COVID-19 

symptoms (employee) 

0–(N - NE(0)) 0 Assumed 

fR Initial proportion of agents who have recovered 

from COVID-19 infection within the past TRQ = 1 

year (including those who were not symptomatic) 

(unitless) 

0%–100% 69% (32, 34, 35) 

(Derivation in 

Text S10) 

fV2 Initial proportion of agents who are fully 

vaccinated as part of the primary series of a 

COVID-19 vaccine (e.g., 2 shots of Pfizer) 

(unitless) 

0%–100% 71% (32, 33) 

(Derivation in 

Text S10) 

fV2, recent Initial proportion of agents who have become fully 

vaccinated within the past TV2→B = 5 months 

(unitless) 

0%–fV2% 9% (32, 33) 

(Derivation in 

Text S10) 

fB Of agents who are eligible to receive a booster 

shot (i.e., have completed their primary series of 

COVID-19 vaccination at least TV2→B ago), initial 

proportion who have received a booster shot 

(unitless) 

0%–100% 45% (32, 33) 

(Derivation in 

Text S10) 

fB, recent Of agents who are eligible to receive a booster 

shot, fraction who have received a booster shot 

within the past TV2→B (unitless) 

0%–fB% 45% (32, 33)  

(Derivation in 

Text S10) 

T Number of days to simulate (day) 30–150 90  

H Employee housing type (categorical) “Shared” or 

“Individual” 

Farm: 

“Shared” 

Facility: 

“Individual”  

 

R0,housing Contribution of (expected) transmissions in shared 

housing to R0 for a given level of physical 

distancing (High”, “Intermediate”, or “Low”) 

(unitless) 

“High”: 1,  

“Intermediate”

: 2, or 

“Low”: 4 

2  When housing 

is “Shared”  

λ Daily force of infection from sources outside of 

the workforce of the operation modeled for a given 

level of physical distancing (“High”, 

“Intermediate”, or “Low”) (employee-1 day-1) 

“High”: 0.02, 

“Intermediate”

: 0.002 or  

“Low”: 

0.00002 

0.002 When housing 

is “Individual” 

R0,work Contribution of work transmissions to 

(homogeneous) R0 for a given level of physical 

distancing (High”, “Intermediate”, or “Low”) 

(unitless) 

“High”: 4,  

“Intermediate”

: 6, or 

“Low”: 8 

6  Based on 

physical 

distancing to/at 

work 

nw,c Number of field workers per crew (excluding 

foreman) (employee) 

1-100 10 Farm specific 

nc,s Number of crews per supervisor (employee) 1-100 3 Farm specific 

ns Number of supervisors (employee) 1-100 3 Farm specific 

Dweekly Total production value per week (default defined 

by employee number) (US $) 

0-1,000,000 247,612 Farm specific  

W Average hourly wage of a worker (US $) 1-100 13.89 Farm specific 

nw,l Number of workers per production line 

(employee) 

2-100 10 Facility specific  

nl Number of production lines (lines) 1-100 3 Facility specific 

nsh Number of production shifts (employee) 1 or 2 2 Facility specific 

ncs Number of cleaning shift workers (employee) 2-100 10 Facility specific 

nf,sh Number of floating workers in a production shift 1-100 10 Facility specific 
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(e.g., quality assurance technician, mechanic) 

(employee) 

nf,all Number of workers that may be present across 

shifts (including manager) (employee) 

1-100 11 Facility specific 

Dweek Total production value per week (default defined 

by employee number) (US $) 

1-10,000,000 784,346.67  Facility specific 

HW Average hourly wage of a production line worker 

(US $) 

1-100 16.57 Facility specific 

F Indoor facility size (for estimation of the cost of a 

HEPA air cleaner) (sq ft) 

1-100,000  1,000 Facility specific 
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Table 3. Numbers of agents with various immune states and histories derived from user-set 

parameters. Additional details, including the equations for the calculation of N from user-

set parameters, can be found in Text S2 and Table S2. In the rightmost column, equations 

are presented for how past event times (tR, i, tV2, i, and/or tB, i, as applicable and relevant) 

and boosting status or “intention” (Bon time, i) are set for individuals encompassed in each of 

the described counts. As some of these counts are nested within other counts (e.g, NB, recent 

within NB within NV2, older), these attribute distributions are specified at the highest level 

for each they are consistent. For individuals who have received the second dose of their 

two-dose primary vaccination series at least TV2→B ago, Bon time, i indicates whether that 

individual received a booster dose “on time” when they became eligible to receive one 

(i.e., TV2→B after the second dose of their primary series). For individuals who have 

completed their primary series less than TV2→B ago, or who have not completed their 

primary series at all, it indicates whether they will receive a booster dose “on time,” if and 

when they become eligible to receive one. 
Symbol Description Value Associated equation(s), for 

an agent i who is part of 

this count 

N Total number of agents (employee) Farm: ≥4 

Facility: ≥7 

 

NR(0) Number of agents who have recovered from 

natural infection within the last year before 

the simulation start 

round(N * fR) tR, i ~ Uniform(-TRQ, 0) 

NV2(0) Number of agents who have completed a 

course of primary vaccination at simulation 

start 

round(N * fV2)  

NV2, recent(0) Number of agents who have completed a 

course of primary vaccination less than 

TV2→B = 152 days (5 months) prior to the 

start of simulation 

round(N * 

fV2, recent) 

tV2, i ~ Uniform(-TV2→B, 0) 

Bon time, i ~ Bernoulli(fB) 

NV2, older(0) Number of agents who have completed a 

course of primary vaccination more than 

TV2→B prior to the start of simulation 

NV2(0) - 

NV2, recent(0) 

  

NB(0) Number of agents who have received a 

booster dose 

fB * NV2, older Bon time, i = 1 

NB, recent(0) Number of agents who have received a 

booster dose less than TV2→B prior to the start 

of simulation 

fB, recent * NV2, older tV2, i ~ Uniform(-2 * TV2→B, 

-TV2→B) 

tB, i = tV2, i + TV2→B 

NB,older(0) Number of agents who have received a 

booster dose more than TV2→B prior to the 

start of simulation 

NB(0) - 

NB, recent(0) 
tV2, i ~ Uniform(-T1st V2 -> 0, 

-(2 * TV2→B + 1)) 

tB, i = tV2, i + TV2→B 

NV2,older,no booste

r 

Number of agents who have completed a 

course of primary vaccination more than 

TV2→B prior to the start of simulation but 

have not received a booster (despite 

presumably being eligible) 

NV2,older - NB(0) tV2, i ~ Uniform(-T1st V2 -> 0, 

-TV2→B) 

Bon time, i = 0 

Nno V2 Number of agents who have not completed a 

primary course of vaccination 

N - NV2 Bon time, i ~ Bernoulli(fB) 

 1381 

 1382 

 1383 

 1384 

 1385 
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Table 4. Selected sensitivity parameters and derived distributions. Gamma distributions are 1387 

notated Gamma(shape, scale); when the mean is varied in sensitivity analysis, this is done 1388 

by varying the scale parameter, while holding the shape parameter fixed. For more details, 1389 

see Text S9. In the case of βIM, it is the ratios between βIM and the corresponding 1390 

parameters for asymptomatic and presymptomatic infection (βIA and βIP) that are taken 1391 

from Moghadas et al. 2020 (51); the absolute magnitudes are rendered irrelevant by how 1392 

we set contact rates. The derivation of coefficients for logistic decay formulas (including 1393 

the conversion from rates per month to rates per day) is in Text S11. The selected value 1394 

for parameter ψ is towards the high end of a range of estimates, as a precautionary 1395 

measure given significant uncertainty (56). 1396 

Symbol Definition Formula/value Reference 

DIP, i Duration of Presymptomatic Infection Gamma(1.058, 2.174) (51) 

DE+IP, i Incubation Period (time from infection to symptoms; model 

structure implies that this must be >= latent period) 

max(Lognormal(1.65, 

0.0192), DIP, i) 

(51) 

DE, i Duration of Exposed stage (Time from infection to 

infectiousness, i.e., latent period) 

DE+IP, i - DIP, i  

DIA, i Duration of Asymptomatic Infection Gamma(5, 1) (51) 

DIM, i Duration of Mildly symptomatic Infection Gamma(16, 0.5) (55) 

DIS, i Duration of Severely symptomatic Infection Gamma(34.0278, 

0.4114) 

(55) 

DIC, i Duration of Critically symptomatic Infection Gamma(34.0278, 

0.4114) 

(55) 

μIM 
Mean duration (shape * scale) of mildly symptomatic 

infection. 
8 

(55) 

βIM 
Relative per-contact transmissibility during Mild infection 

(unitless) 
0.0253 (51) 

φ 

Parameter controlling the relative magnitude of protection 

from symptomatic disease given infection, and protection 

from severe disease given symptoms, from natural and 

hybrid immunity (details in Text S3B) 

0.5 Assumption 

aR, IS  

Constant coefficient in logistic decay formula for overall 

Protection from Severe Infection granted by natural 

immunity 

1.70512 (53) 

bR, IS  

Time-dependent coefficient (1/days) in logistic decay 

formula for overall Protection from Severe Infection granted 

by natural immunity 

-0.05211/30.5 = 

-0.00170852459  
(53) 

aR, E  
Constant coefficient in logistic decay formula for Protection 

from Any Infection granted by natural immunity 
1.2100 (53) 

bR, E 

Time-dependent coefficient (1/days) in logistic decay 

formula for Protection from Any Infection granted by natural 

immunity 

-0.1937/30.5 = 

-0.00635081967 
(53) 

ψ 

Relative frequency of severe infection, in the absence of any 

immunity, for the (original) Omicron strain relative to 2020 

strains 

1.2 (56) 

Tramp, RH 
Interval from beginning of ramp-up of natural or hybrid 

immunity (if applicable) to achieving maximum protection 
1 month (30.5 days) (53) 

Ttotal, R Interval of complete protection following natural recovery 2 months (61 days) (53) 

TV2→B 
Minimum interval between completion of primary series and 

booster dose 
5 months (152 days) (54) 

T1st V2 -> 0 

Number of days since the first individuals in the US received 

the secondary dose of their primary vaccine series, at the 

start of simulation 

1 year, 61 days (426 

days) 
(54) 

TRQ 

Period for which the user is asked to supply the fraction of 

workers who have recovered from natural infection in the 

past [duration] 

1 year (365 days)  
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