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ABSTRACT 
 
Characterizing longitudinal trajectories of social exposures or health outcomes is a persistent 

challenge, but can be accomplished with sequence analysis, a data-driven approach that can 

differentiate timing, order and duration of events. We present practical guidance on 

implementing sequence analysis for epidemiologists with the goal of providing clear advice on 

decision points and tradeoffs. 

 
We Introduce the three main steps of sequence analysis: (1) coding longitudinal processes as 

trajectories of ordered events for a set of individuals, (2) measuring dissimilarity between 

individual trajectories, and (3) performing cluster analysis to group similar trajectories. Each of 

these steps presents researchers with several decision points, such as data cleaning rules, 
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options for evaluating sequence dissimilarity, and choices of clustering algorithms to group 

trajectories. After outlining each of the sequence analysis steps, we provide an applied example 

of sequence analysis in which we create and group transition-to-retirement trajectories from age 

51-75 for a sample of 9,189 Health and Retirement Study participants using self-reported 

employment information, then estimate the association between transition-to-retirement groups 

and self-rated health.  

 

Our paper seeks to guide epidemiologists through the analytic decisions and implementation 

challenges of sequence analysis as this approach is increasingly implemented and undergoes 

methodological advances.  
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INTRODUCTION 
 

Lifecourse epidemiology, an established subfield of epidemiology, has been important in 

advancing a more nuanced examination of the complex relationship between socio-economic 

position (e.g., education, income, work) and health over time1,2. To-date, a lifecourse focus has 

been particularly useful for documenting early-life physical and social determinants of chronic 

diseases with long latency periods, such as hypertension and diabetes3–5. Research within the 

subfield is increasingly moving beyond exploration of single point-in-time exposures during 

critical or sensitive periods in early-life to considering the cumulative health effects of 

exposures2,6.  
  
Socio-economic factors evolve and interact in complex ways across the life course7. The timing, 

duration, and order of these factors varies considerably across individuals in ways that may 

differentially impact health outcomes. This heterogeneity cannot be adequately captured with 

approaches that restrict exposure operationalization to specific windows of time or average over 

multiple time points. Approaches that describe, as opposed to obscure, this heterogeneity are 

necessary.  

 
Sequence analysis is one such approach facilitating the characterization of lifecourse 

trajectories8. As a data reduction technique, sequence analysis simultaneously considers 

the timing, duration, and order of longitudinal exposures, revealing common patterns in the data 

which can be used to classify individuals into distinct groups9. Originally introduced in biology to 

analyze sequences of proteins and DNA, sequence analysis was first integrated into the social 

sciences by Abbott and Forest in 198610,11. Since then, there have been many applications of 

sequence analysis in social science research, with growing interest in social epidemiology and 

healthcare12–16. 

 
A typical application of sequence analysis involves three steps: (1) creating individual 

trajectories of ordered events, (2) quantifying trajectory dissimilarity, and (3) performing cluster 

analysis to group similar trajectories. Implementing sequence analysis, however, can be 

challenging since each of these steps presents researchers with several analytic choices. For 

example, Step 1 of creating individual trajectories of ordered events can involve intensive data 

cleaning decisions. Step 2 of quantifying trajectory similarity requires informed selection from 

among a variety of existing algorithms, the comparative strengths of which can be unclear. In 
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Step 3, there are also several options for implementing cluster analysis and selecting the final 

number of trajectory groups. That there are several subjective decision points along the way can 

be daunting, particularly for those applying sequence analysis for the first time. 

 
To support epidemiologists in navigating these challenges, we present a systematic guide on 

sequence analysis implementation. Using the publicly available Health and Retirement Study 

data, we provide an applied example wherein we use sequence analysis to identify transition-to-

retirement trajectories then estimate their association with later-life health. We conclude by 

orienting readers to the available packages and options in two types of statistical software (R 

and Stata). Accompanying code is available on the following GitHub page [redacted for peer 

review].  

 
OVERVIEW OF THE STEPS OF SEQUENCE ANALYSIS 

 
Step 1: Creating individual trajectories as sequences of ordered events  
The idea behind sequence analysis as applied to lifecourse data is to represent life course 

processes as “sequences'' (i.e., individual-level trajectories) of ordered “states” (i.e., mutually 

exclusive events) over a defined observation period. That is, for each study participant in a 

given sample, each time point (e.g., year, month, week, day, hour) within the observation period 

is assigned to a mutually exclusive categorical state. As a simplified example, say a researcher 

is interested in empirically characterizing employment sequences. For each study participant in 

the sample (Figure 1, rows), they would assign a mutually exclusive employment state 

(employed, unemployed, retired) to each time point (per 1-month) over the chosen observation 

period (10 months; Figure 1, x-axis).  

 
When analyzing large datasets, this process usually results in a multitude of unique sequences, 

which may differ from each other not just by experienced states, but by the order, duration and 

timing of states as well17. These four aspects, which have been identified as critical for the 

sociological meaning of sequences, are defined as follows: 

 

 
1. Experienced states - the mutually exclusive events, experienced at different time points 

in the sequence 
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2. Order - the sequential arrangement of states over the total observation period 

3. Duration - the number of consecutive time points spent in each state over the total 

observation period 

4. Timing - the particular time point at which each state onsets over the total observation 

period  

 

For example, in Figure 1 (Panel a) ID1 and ID2 experienced the same states (employed and 

unemployed) over the 10-month time period with similar timing (start unemployed state at month 

1) and order (unemployed to employed), but different duration (1 month vs. 4 months of 

unemployed). ID3 experienced different states (employment and retirement) than ID1 with 

different timing, but similar duration (9 months of employment). Finally, ID4 experienced the 

same states (employed and unemployed) as ID1 with similar duration of unemployment (1 

month), but different order (ID1: unemployment, then employment vs. ID4: employment, 

unemployment and then employment again).  

 
Epidemiologic research often involves the use of population-level datasets comprised of 

thousands of individuals followed over hundreds of time points. Creating individual sequences 

for such a large number of participants and long time period is a time-consuming process, as 

real-world longitudinal datasets usually include a proportion of missing information and can have 

inconsistencies18. Generating the trajectories requires defining a set of data cleaning rules, 

which will be illustrated more in detail in the applied example.  

 
Step 2: Quantifying trajectory dissimilarity across participants 
Sequence analysis allows comparing thousands of observed sequences by producing a 

dissimilarity (or distance) measure for all pairs of sequences in a given dataset. There are 

several options for algorithms to quantify pairwise sequence dissimilarity, most of which involve 

some measure of the effort necessary to transform one sequence into another.  

 
Transformation Operations 
Optimal Matching (OM) is the most used method to compare sequences10,11. OM calculates 

dissimilarity as the minimum effort necessary to transform one sequence into another through 

three kinds of transformation operations, each of which is assigned a “cost”: 
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1. Insertion: inserting a state into a sequence 

2. Deletion: deleting a state from a sequence 

3. Substitution: replacing one state with another state 

 
Figure 1 (Panel b) illustrates these transformations, using the sequences first introduced in 

Figure 1. Transformation 1) illustrates the insertion and deletion (“indel”) operations. 

Specifically, ID3 is transformed into ID1 by applying one insertion (employment in month 1, ID3’) 

and one deletion (retirement in month 11, ID3’’). Transformation 2) illustrates the substitution 

transformation. Specifically, ID2 is transformed into ID1 by applying three substitutions 

(replacing unemployment with employment in months 2-4, ID2’).  

 
[Figure 1] 

 
Assigning Costs 
There are several options for selecting costs. For substitution cost selection, the three most 

common options are: 1) constant substitution costs (e.g. all substitutions have a cost of 2); 2) 

variable substitution costs chosen by the researcher, typically motivated by a hierarchy between 

states; and 3) variable data-driven substitution costs based on transition rates between states 

such that more frequent transitions have lower costs. Costs are represented by a substitution 

cost matrix, whose rows and columns correspond to the number of states.  

 
Indel costs are most commonly set equal to ½ the maximum substitution cost but can also be 

customized if desired. Because insertion and deletion transformations cause a time distortion 

through shifting sequences (Figure 1, Panel b), the recommendation is either not to use them, 

or to set them higher (e.g., ⅔ the maximum substitution cost ) when the timing of events is the 

main dimension of interest17,19. 

 
Obtaining Total Costs 
Once costs have been assigned, the OM algorithm selects the minimum total cost (combination 

of indel and substitution operations) necessary to transform each sequence into all the other 

sequences in the data. Applying this algorithm produces a distance (or dissimilarity) matrix, 
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whose number of rows and columns corresponds to the number of individual sequences. Within 

this square, symmetric matrix, higher values indicate more dissimilar sequences. Besides 

Optimal Matching, many other techniques to calculate sequence dissimilarity have been 

developed and are now available17,20. Many of these options are variations of the traditional 

OM21–23. Because the sensitivity of each of these variations to the different sequence 

characteristics (order, duration, and timing of events) changes, the choice of which measure to 

use should be based on the specific research question. Table 1 summarizes the main 

dissimilarity measures recommendations from Studer et al. (2016)17 based on their sensitivity to 

order, duration, and timing of events. For example, if capturing timing is the main interest, the 

top recommendation is to use the Hamming distance24, which calculates sequence dissimilarity 

as the number of total substitutions and does not allow for indel costs (Table 1). However, while 

OM can be used with sequences of different length, Hamming requires all sequences to be the 

same length. 

 
[Table 1] 

 
Step 3: Performing cluster analysis to group similar participant trajectories 
Based on the dissimilarity matrix, cluster analysis is typically utilized to identify groups of similar 

sequences. Several clustering algorithms can be used to conduct cluster analysis. The two 

clustering methods most used in sequence analysis are Ward’s hierarchical agglomerative 

clustering25 and Partitioning Around Medoids (PAM)26.  

 
Hierarchical Agglomerative Clustering 
Hierarchical agglomerative clustering starts by considering each individual trajectory as its own 

cluster. At each iteration, the two least dissimilar groups (or initially trajectories) are grouped 

together, until all the observations form a single cluster. This creates a hierarchy of clusters, 

which can be represented as a tree. One can then choose the final number of clusters by 

“cutting” the tree in correspondence with a specific number of partitions. An advantage of 

hierarchical, agglomerative clustering is its tendency to produce clusters of similar size. 

However, a potential limitation of this method is its lack of flexibility, since the clusters that are 

created at each step can be combined with other clusters, but never split8.  

 

Partitioning around Medoids (PAM) 
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A more flexible approach is the PAM algorithm, an extension of the k-means algorithm. This 

method finds representative sequences within the data set, called medoids, and creates the 

clusters through the association of each sequence to its closest medoid based on the distance 

matrix. The goal is to minimize the sum of the dissimilarities of the observations to their closest 

representative sequence.  

 

Alternative Clustering Methods 
Though less common, other clustering methods have been used to group trajectories in 

particular circumstances. Divisive clustering, a recently introduced and promising approach, 

allows specifying clearly the rules for cluster assignment27,28. Fuzzy clustering, which allows 

cases to belong to more than one cluster in varying degrees, is a promising and more flexible 

approach compared to “crisp” clustering, since it allows classifying sequences as hybrids (i.e., 

mixture between more than one cluster)29.  

 
Selecting the optimal number of clusters 
For any of these methods, the choice of the final number of clusters is made by the researcher. 

Several cluster quality measures can be used to assist in making this choice, with high-quality 

generally indicated by the number of clusters that maximize within-cluster homogeneity and 

between-cluster heterogeneity30. A description of the most used cluster quality measures is 

presented in Table 1. Although these measures can provide useful guidance to select the 

desired number of clusters, they can be integrated with other criteria, such as minimum cluster 

size, interpretability, and association of clusters with other variables that are expected to be 

related to the typologies of trajectories31. 

 
[Table 2] 

 
IMPLEMENTATION AND APPLIED EXAMPLE (TRANSITION TO RETIREMENT) 

 
In this section, we provide guidance on implementation of the three main steps of sequence 

analysis through the identification of transition-to retirement trajectories in the Health and 

Retirement Study, a publicly available dataset of older U.S. Americans. We then use the 

trajectory clusters as exposures in a regression analysis aimed at investigating the association 

between transition-to-retirement trajectories and self-rated health. The R and Stata code for this 

analysis is available at the following GitHub page [redacted for peer review].  
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Step 1: Creating, cleaning and visualizing individual sequences 
To begin characterizing the transition-to-retirement trajectories, we first defined our total 

observation period as the 15 years from when participants were aged 51 to 75, which has been 

shown to capture the relevant range of ages over which most US residents tend to transition to 

retirement32. Although the data were collected biennially in calendar years, we switched the time 

scale to age and used retrospective information, when available, to determine employment 

status during non-survey years. Guided by our research question, any restrictions posed by the 

available data, and practical considerations regarding level of detail for the didactic purposes of 

this paper, we then chose the following 5 mutually exclusive employment states: (1) employed 

full-time, (2) employed part-time, (3) retired, (4) disabled, or (5) out of work. Too few states 

might not capture the heterogeneity of lifecourse trajectories, while too many states (e.g, more 

than 10 states) could result in clusters that are too heterogeneous to be interpretable. We 

created individual trajectories for our sample (N=9,189 participants from HRS entry cohorts 

1992 - 1998) by assigning each year to one of the five mutually exclusive states.  

 
Missingness decisions 
When creating individual-level trajectories, an important consideration is the presence of 

missing data. Three main types of missingness are found in longitudinal sequence data: [1] 

initial missing data, due to individuals entering the sample at different time points; [2] terminal 

missingness, due to loss to follow-up; and [3] intermediate missing gaps, due to data not being 

reported or collected for some of the time periods. There are several options to treat missing 

time points. A first option is to exclude participants with a certain percentage of missing time 

points, though this may induce selection bias33,34. A second option, only applicable to terminal 

missingness, is to retain sequences of different length. A third option is to code missingness as 

an additional state, which can be applied to all three types of missing data and is particularly 

useful when missingness may be informative. Finally, a fourth option is to impute missing gaps. 

A chained multiple imputation procedure specifically developed for longitudinal data can be 

used, which fills missing gaps by using prior and subsequent state as key predictors, plus 

additional predictors35. 
In our applied example, we decided to create an additional state, labeled “unreported”, to 

characterize internal missing gaps, since unreported employment status may be informative 

(e.g., indicative of periods of unemployment or more unstable work). Initial missingness was 

also coded as a separate state (“left missing”), indicating individuals entering the survey older 
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than 51 and not reporting their retrospective employment information. Because we excluded 

respondents who were lost to follow up, there was no terminal missingness. The combination of 

five chosen states and two missing categories produced a total of seven final states. 

 
Additional Data Cleaning Decisions 
In addition to decisions related to missingness, there are usually other data cleaning decisions 

made when creating longitudinal sequences. For example, we can decide to collapse states that 

are rare and may be included in wider categories. In our example, the “out of work” category 

incorporates three states that are infrequently presented in the dataset: homemaker, 

unemployed, and temporary leave (2.87% of total states). Moreover, because participants 

reported information on previous employment every two years, we found some inconsistencies 

between information reported in different years. For inconsistent data between surveys, we 

defined states based on the most frequently reported information (mode) between surveys or, 

when more than one mode was present, on the most recently reported information. Because 

creating individual sequences may require defining several cleaning rules, we recommend 

listing these rules as part of a paper’s supplemental material for transparency and 

reproducibility. 

 
Visualization using index plots  
Once defined, all the individual-level trajectories can be simultaneously visualized using a 

sequence index plot, where each row along the y-axis corresponds to a unique participant and 

each column on the x-axis to each time point over the total observation period (in this case 

years from age 51 - 75), with each color representing a different state (Figure 4). Figure 2 

displays the sequence index plot for the 9,189 participants included in our example, among 

which there were 4,649 unique trajectories. 

 
[Figure 2] 

 
Step 2: Sequence comparison  
First, we set substitution and indel costs based on transition rates. Although some states may 

be qualitatively more similar to each other, we could not establish a hierarchy that would guide 

our arbitrary cost assignment. We therefore exploited the transitions between states in the data, 

setting substitutions of states with high transition rates as less costly. This produced a 

symmetric substitution cost matrix (Table S2), with costs ranging between 2 and 0. 
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Next, we selected our preferred dissimilarity measure. Because we were interested in timing 

(e.g., early vs. later retirement) more than duration or order of events, we selected the Hamming 

distance. Since we categorized missingness as either “unreported” or “left missing” state, all 

trajectories were the same length; therefore, we did not need to use insertion and deletion 

operations to compare sequences. Applying the Hamming distance produced a dissimilarity 

matrix comparing each trajectory to all the other trajectories in the data (Table S4). 

 

Step 3: Clustering 
To select between a hierarchical clustering or PAM approach, we compared a selection of 

cluster quality measures for the “best” partitions identified by the two different algorithms 

(reported in the manuscript’s supplement, Table S3). We chose to employ PAM as it displayed, 

overall, better cluster quality.  

 
To identify the final number of clusters, we then graphically visualized the Average Silhouette 

Width (ASW) and Hubert’s C (HC) measures for a set range of cluster solutions (from 2 to 20 

clusters, Figure 3). According to both indicators, 7 clusters represented the highest quality 

solution. Before choosing 7 clusters as the final solution, we graphically visualized them for 

qualitative evaluation (Figure 4) and looked at clusters’ size as well. The number of participants 

in each of the 7 clusters ranged between 3,316 and 469 individuals, which was considered 

sufficiently large to detect significant associations in our regression analysis. 

 

[Figure 3] 

 
Figure 4 illustrates the sequence index plots for the 7 identified clusters: 1) typical retirement 

(retirement between age 60-65; N=3,316); 2) early retirement (retirement before age 60; 

N=1,360) ; 3) full time employment to late retirement (N=1,701); 4) part-time employment to late 

retirement (N=905); 5) disability (N=648); 6) typical retirement, initial missingness (N=790); 7) 

out of work gaps (out of work gaps towards the end of the trajectory, with unreported initial 

employment history; N=469). 
[Figure 4] 

 

The manuscript’s supplement presents two other visualization plots commonly used in 

sequence analysis to display clusters. The modal state plots (Figure S1) are bar graphs 

showing the most frequent state at each time point for each cluster. The state distribution plots 
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(also known as chronograms, Figure S2) show the proportions of states at each time point for 

each cluster. Although these two representations lead to a loss of individual information 

compared to the sequence index plots, they can be helpful visualization strategies to summarize 

cluster characteristics8. 

 
Step 4: Regression analysis  
We used the identified clusters to evaluate the association between transition-to-retirement 

trajectories (age 51 - 75) and self-rated health (ages 76 or 77) using linear regression analysis. 

Self-rated health ranged from 1 to 5, with higher values indicating poorer health. When 

conducting this kind of analysis, an important consideration regards the choice of covariates. 

Confounders must temporally precede the exposure period (25 years between age 51-75) given 

that adjusting for post-exposure variables may induce bias36. We chose to include birth year, 

gender, race and ethnicity, birth place and school years as potential confounders affecting the 

relationship between transition to retirement trajectories and health.  

 
[Figure 5] 

 

Figure 5 shows the association between transition-to-retirement clusters and self-rated health. 

Compared to the “typical retirement” trajectory (reference), the “early retirement” trajectory was 

associated with slightly worse self-rated health. The two late retirement trajectories were 

associated with better physical health, while the disability trajectory was associated with poorest 

health compared to the reference group. Not reporting employment history before retirement 

was not associated with a difference in self-rated health, while those in the “out of work gaps” 

cluster had slightly worse self-rated health than the reference group. We use these results as a 

didactic example and acknowledge that health experiences before the transition to retirement 

(which were not included in our confounder set) or during the transition to retirement (which 

currently sequence analysis approaches cannot incorporate) may be important confounders to 

consider when interpreting these results.     

 
Available software for sequence analysis 
Sequence and cluster analysis can be implemented both in Stata and R. The main packages for 

sequence analysis are SQ and SADI in Stata37,38, and TraMineR in R39. Although the options 

provided by the different software packages are similar, we chose to use R for the sequence 

and cluster analysis in our didactic paper, as its sequence and cluster analysis packages are 
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more complete and recently updated compared to the ones offered in Stata. For example, the 

Stata packages do not include some of the recently developed dissimilarity measures, and Stata 

does not allow performing PAM clustering using a dissimilarity matrix. In addition, the R 

packages have the advantage of being faster, a desirable feature when dealing with very large 

datasets. In the supplement to the manuscript (Table S5), we illustrate the main available 

software packages and options for each of the steps of sequence analysis. 

 

DISCUSSION 

 
Sequence analysis represents an innovative approach for lifecourse epidemiology research, 

increasingly applied to uncover trajectories of socio-economic determinants of health over long 

periods of time or for understanding health trajectories16,40. In this paper, we introduced 

sequence analysis for epidemiologic research and guided researchers through the different 

steps of this method and its application. First, we defined sequences and described the 

algorithmic approach used to compare pairs of trajectories. Second, we illustrated criteria for 

choosing a dissimilarity measure, used to compare all sequences in the data. Finally, we 

introduced clustering with the goal of grouping similar sequences, presented the main clustering 

algorithms and cluster quality indicators currently used in sequence analysis. Each of these 

steps was applied using a real-world example, aimed at creating transition-to-retirement 

trajectories in the HRS and estimating their association with later-life health. 
  
Sequence analysis has several advantages compared to other methods used to analyze 

longitudinal data. First, it considers trajectories as a whole, and allows for characterization of 

processes that evolve over time. This is particularly promising in the field of lifecourse 

epidemiology, which has as its main goal to understand and document how lifecourse 

processes influence health. Second, as a data reduction technique it facilitates summarizing a 

very large number of individual trajectories and identifying relevant patterns in timing, order, and 

duration of events, while maintaining meaningful heterogeneities. Finally, it is a flexible, non-

parametric approach, easily tailored to the specific research question of interest8. 
  
Despite its potential and advantages, the application of sequence analysis can be challenging, 

particularly for those implementing this approach for the first time. Each of its steps - from data 

cleaning to create individual trajectories, to selecting an approach to calculate sequence 
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dissimilarity, to identifying clustering algorithms and the final number of clusters - involves 

key decisions from myriad existing and emerging options - a time consuming and, at times, 

confusing process. Indeed, sequence analysis has been criticized for the volume of user set 

parameters and resulting risk for arbitrary decision-making8,41. In this manuscript, we present a 

principled approach to each of these decisions, drawing from the most recommended. We are 

aware that sequence analysis is an evolving field, and that more options and extensions of this 

method will be available, which we will incorporate into future work.  

 

CONCLUSION 
 
This paper represents a comprehensive guide to the application of modern sequence analysis 

tools in the field of lifecourse epidemiology. Sequence analysis is a promising tool both for 

evaluating the relationship between life course factors and health, and for summarizing and 

describing healthcare trajectories, which can help identify the most vulnerable patients and 

provide clinical recommendations. We anticipate that sequence analysis will be increasingly 

used in healthcare research, and we hope that our paper will serve as a useful tool to guide 

researchers through its implementation. 
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TABLES 
 
Table 1 – Recommended dissimilarity measures based on sequence characteristics 
 

Characteristic 
of interest 

Dissimilarity 
measure Description 

Sequences of 
different 

length 

Duration 

Optimal Matching 
(OM) 

Traditional Optimal Matching; measures 
the dissimilarity between sequences as the 
minimum cost combining substitution and 
indel operations 

Yes 

Optimal Matching of 
spells (OMspell) with 
high "expansion cost" 

Variation of Optimal Matching 
calculating substitution costs between 
sequences of spells (consecutive time 
periods spent in one state); higher 
expansion costs make the measure more 
sensitive to duration  

No 

Timing 

Hamming (HAM) 

Measures the dissimilarity between 
sequences as number of substitutions 
between non-matching states; does not 
use indel costs and requires sequences to 
be the same length 

Yes 

Optimal Matching 
(OM) with high indel 

costs 

Traditional Optimal Matching; increasing 
indel costs makes their use more rare, 
resulting into a lower distortion of time  

No 

Order 

Optimal Matching of 
transitions (OMtran) 

Variation of Optimal Matching where 
substitution costs are based on transitions 
between states rather than on states 
themselves 

No 

Optimal Matching of 
spells (OMspell) with 
low "expansion cost" 

Variation of Optimal Matching 
calculating substitution costs between 
sequences of spells; lower expansion 
costs make the measure less sensitive to 
sequencing 

Yes 

This table shows the main recommended dissimilarity measures for sequence analysis based on the trajectory 
characteristic of interest (duration, timing or order of events) based on the comparative review by Studer (2016). 
For some of the listed dissimilarity measures, customizable options are available, which can change their sensitivity 
to timing, order and duration of states. For example, for traditional Optimal Matching, higher indel costs increase 
its sensitivity to timing of states. Similarly, OMspell gives the option of setting an “expansion cost” (cost of 
expanding one spell by a unit). Higher expansion costs make the measure more sensitive to duration compared 
to order of states.  
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Table 2 – Cluster quality measures commonly used in sequence analysis 
 

Measure Description Range Min/Max 

Average Silhouette 
Width (ASW) 

Based on the similarity of the assignment of a 
trajectory to a given cluster, the ASW compares the 
average weighted distance of an observation from 

the other members of its group and its average 
weighted distance from the closest group.  

[-1, 1] Max 

Calinski-Harabasz 
index (CH) 

Looks at the sum of squared distances within the 
partitions, and compares it to that in the 

unpartitioned data, taking account of the number of 
clusters and number of cases. 

[0; +∞[ Max 

Duda-Hart cluster-
stopping rule (DH) 

Similar to the Calinski-Harabasz index, but specific 
for hierarchical clustering. Comparing the sum of 

squares in the next pair of clusters to be combined, 
before and after combining. Displays two indices, 

Je(2)/Je(1) and its pseudo-T squared. 

[0; +∞[ 

Je(2)/Je(1): 
Max; 

pseudo-T 
squared: Min 

Hubert's & Levin C 
index (HC) 

Compares the partition obtained with the best 
partition that could be obtained with this number of 

groups and this distance matrix. 
[0, 1] Min 

 
This Table presents four cluster quality measures commonly used in sequence analysis to choose the “optimal” 
number of trajectory clusters. A brief description of the measures and the range of their possible values are displayed 
in columns 2 and 3. Column 4 indicates whether each measure should be minimized (Min) or maximized (Max) to 
identify the best quality cluster solution. AWS and CH are available in Stata and R. DH is only available in Stata, while 
HC is only available in R. 
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FIGURES 
 
Figure 1 – Individual sequences and their transformations 

 
This figure presents a simplified example of four individual employment trajectories (Panel a) and of the basic edit 
operations used in sequence analysis to compare trajectories (Panel b). Employment trajectories are sequences 
of ordered, mutually exclusive categorical states (in our example, we chose three states: employed, unemployed 
and retired) over a 10 months period. The four listed sequences differs based on the experienced states as well 
as their timing, duration and order. Sequence analysis measures sequence dissimilarity by assigning “costs” 
corresponding to edit operations (insertions, deletions or substitutions) to turn each sequence into all the other 
sequences in the data. In Panel b, transformation 1) transforms ID1 into ID3 by first inserting “unemployed” state 
in month 1, and then deleting “retired” state in month 11 (the insertion extended ID3 by one month). 
Transformation 2) transforms ID2 into ID1 by substituting “unemployed” state with “employed” state in months 2, 
3 and 4. While insertion and deletion (indel) operations shift sequences and distort timing of events, substitutions 
preserve timing.    
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Figure 2 – Sequence Index Plot visualizing transition to retirement trajectories 
 

 
This figure represents all the transition-to-retirement trajectories for the Health and Retirement Study 
participants eligible for our didactic example using a sequence index plot. The sequence index plot is the 
most complete graphical representation of sequences and can be helpful to graphically visualize 
heterogeneities. It represents all the individual trajectories (N=9,189, y-axis) over the chosen period (age 
51-75, x-axis). The graphic shows that there are some repeated sequences in our dataset. For example, 
on the bottom of the plot, we can observe a share of participants (represented by dark blue lines) who were 
consistently employed full-time during the observation period. Most of the participants, however, 
experienced at least one transition between employment states. In our dataset of 9,189 participants, there 
were 4,649 unique trajectories. 
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Figure 3 – Standardized cluster quality indicators for a range of cluster solutions 

 
This figure graphically visualizes two cluster quality measures (Average Silhouette Width, ASW and 
Hubert & Levin C index, HC) for a chosen range of partitions (2-20 clusters) obtained using the Partition 
Around Medoids (PAM) clustering algorithm to group transition-to-retirement trajectories. Both measures 
were z-standardize to improve the plot’s readability. When identifying the highest quality cluster solution, 
the goal is to maximize the ASW and minimize HC. Based on this guideline, we selected 7 clusters as the 
final partition use to characterize transition-to-retirement trajectories and examine their association with 
later-life health. 
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Figure 4 – Sequence Index Plots by cluster 
 

 
 
This figure represents sequence index plots for the 7 clusters characterizing transition-to-retirement trajectories 
among 9,189 Health and Retirement Study participants. Clusters were identified with the goal of grouping similar 
transition-to-retirement trajectories based on the dissimilarity measure obtained by applying the Hamming 
distance. Based on this measures, clusters were generated using the Partition Around Medoids (PAM) algorithm. 
Cluster size ranged between 3,316 participants (“Typical Retirement” cluster) and 469 participants (“Out of work 
gaps”). 
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Figure 5 – Association between transition-to-retirement clusters and self-reported 
health 

 
This figure shows coefficient plots for the association between transition-to-retirement clusters (age 51-
75) and self-rated health (age 76 or 77) in the Health and Retirement Study. Self-rated health ranged 
between 1 and 5, with higher values indicating worse health. Associations were estimated using linear 
regression, with typical retirement (the most common trajectory) as the reference group. The regression 
model was adjusted for a set of confounders that preceded the transition-to-retirement trajectories: 
gender, race and ethnicity, birth place and school years. 
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