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Abstract  

Objective: Non-invasive oscillatory brain stimulation techniques target the oscillatory activity of the 
brain and have several potential therapeutic applications in the clinical context. The aim of these 
analyses from clinical routine EEG recordings was to provide normative values of physiological age-
related oscillatory (periodic) and non-rhythmic (aperiodic) activity.  

Methods: We analyzed 532 EEGs of patients between 8 and 92 years of age. EEG segments were 
preprocessed, and the power spectrum was computed using a multitaper method. We decomposed the 
power spectrum into periodic (peak power, frequency, and bandwidth) and aperiodic (intercept and 
exponent) components. Linear regression models were used to investigate age-related changes in these 
parameters. 

Results: We observed significant global age-related changes in the periodic alpha (- 0.015 Hz/year) 
and gamma (+ 0.013 to + 0.031Hz/year) peak frequency as well as in the aperiodic exponent (- 0.003 
to - 0.004 µV2/Hz/year). In the other parameters there were solely regional or no significant age-
related changes.  

Conclusions: Decomposing the power spectrum into periodic and aperiodic components allows for the 
characterization of age-related changes. 

Significance: This study provides the first spectrum-wide normative characterization of age-related 
changes in periodic and aperiodic activity, relevant for non-invasive brain stimulation with alternating 
current targeting ongoing oscillatory activity. 

 

Highlights 

- Alpha peak frequency decreases with age, while gamma peak frequency accelerates.  
- Age-related changes in alpha and theta power result from a flattening of the aperiodic slope, 

not decreased oscillatory activity 
- Decomposing the EEG spectrum into periodic and aperiodic activity is essential when 

characterizing ongoing oscillatory activity 
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1. Introduction  

Electroencephalography (EEG) provides essential insights into the dynamic changes in neural activity 
across various life stages. The nuanced age-related alterations in both periodic and aperiodic EEG 
activity reveal complex patterns of neural development and aging (Donoghue et al., 2020). From early 
childhood to elderly adulthood, the aperiodic activity diminishes (Hill et al., 2022). These alterations 
may arise from a shift in the balance between oscillatory coupling and local population spiking 
(Voytek and Knight, 2015). Likewise, aging alters dynamic network communication, which is 
primarily reflected by changes in the periodic components of the spectrum. A well described 
phenomenon is the slowing of the center frequency in the alpha range, that is integral to attention and 
cognition processes (Cesnaite et al., 2023).  

Recent methodological advancements offer an apt means to decompose the EEG power spectrum into 
rhythmic oscillations (periodic component) and non-rhythmic fluctuations (aperiodic component). It 
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helps to dissect complex neural signals (Leroy et al., 2022), enrich our understanding of brain function 
(Lendner et al., 2020), identify potential biomarkers of disease (Pollak et al., 2024), and assess the 
effectiveness of a therapy (Kundu et al., 2023; Salvatore et al., 2023). The strength of the approach 
particularly stems from its reflection of the EEG signal's two-fold nature, encompassing both its 
mathematical characteristics in signal analysis and its neurophysiological correlates. The underlying 
aperiodic activity, distributed in a 1/f-manner, has been linked to the cortical balance of synaptic 
excitation and inhibition (Wang, 2020). In contrast, the superimposed periodic activity involves an 
interplay of cortical neural networks partly orchestrated by subcortical nodes (Seeber et al., 2019), and 
is estimated by gaussians centered around the oscillatory peaks.  

Non-invasive brain stimulation techniques such as transcranial alternating stimulation (tACS) are 
increasingly used to entrain such oscillatory brain activity in elderly subjects and numerous 
neurological and psychiatric disorders, including but not limited to Parkinson’s disease (Madrid and 
Benninger, 2021), dementia (Manippa et al., 2023) and depression (Lee et al., 2022). The tACS is 
intended to interact with ongoing oscillatory activity, yet the frequency of these oscillations changes in 
the aging brain, resulting in possible mismatches (Fröhlich et al., 2015). When using the same fixed 
frequency in older and young individuals, this fact may limit the efficacy of the induced oscillatory 
electric fields. While the application of tACS using an individual peak frequency seems to be an ideal 
approach (Kasten et al., 2018; Vosskuhl et al., 2018), the identification of individual frequencies can 
be quite laborious and is not always feasible in the clinical setting. Furthermore, recent studies have 
shown that fixed stimulation protocols may even exhibit stronger aftereffects than individualized 
stimulation frequency (Ladenbauer et al., 2023; Stecher et al., 2021). To our opinion, this would 
however require an age-dependent adaptation of the applied oscillatory stimulation. It is currently 
unknown which exact “resonance” frequency should be chosen to interact with oscillations in a patient 
of a given age. 

Therefore, this analysis of clinical data aims to describe the age-related periodic and aperiodic activity 
in 532 physiological resting-state EEG recordings by decomposing the spectrum into its periodic and 
aperiodic components. We derive a comprehensive method to estimate the age-adjusted center 
frequency within a band of interest. With this novel approach, we provide an alternative method to 
peak frequency determination to find the optimal age-adjusted stimulation frequency, that circumvents 
more laborious and impracticable methods to individualize the stimulation frequency. 

2. Methods 

This analysis was conducted with EEG data from a German tertiary care university hospital. This 
study adhered to the regulations of the local ethics committee. The quality standard regarding ethical 
and scientific data collection followed the ICH-GCP guidelines. Formal consent was obtained from the 
data protection board to allow handling and pseudonymization of clinical routine data.  

2.1. Data collection  

The analyzed EEG data was recorded between 2004 and 2014. Along with the EEG recording, a brief 
medical history as well as the interpretation of the neurologist in charge were assessed. The electrodes 
were placed with a common montage following the 10/20-system at the following 19 electrode 
positions: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, O1, O2. The EEG was 
recorded with a commercially available system used in the clinical routine (Galileo.NET, BE Light 
system, EB Neuro S.p.A., Firenze, Italy) with a sampling frequency of 256 Hz. The reference and 
ground electrode were placed at A1 and A2 respectively. Patients were asked to close their eyes during 
the recording, lasting around 20 minutes, interrupted by provocation maneuvers. Only recordings 
interpreted as “physiological EEG recording” were included in this analysis. We intentionally did not 
apply further exclusion criteria like age or medical conditions.  

2.2. EEG Analysis 
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For each patient 20 epochs of 10 seconds free of artifacts or provocation maneuvers were selected. All 
analyses were conducted in MATLAB (MATLAB R2023b, 155 Natick, Massachusetts: The 
MathWorks Inc.; 2023.) with the Chronux toolbox (version 2.12 v03, http://chronux.org/) (Mitra and 
Bokil, 2008). Analyses were performed separately for every single patient, channel, and epoch. 
Preprocessing included trendline removal and bandpass filtering (0 – 45 Hz). The canonical frequency 
bands were defined as following: delta (δ, 1-4 Hz), theta (θ, 4-7 Hz), alpha (α, 7-12 Hz), low beta (β1, 
12-20 Hz), high beta (β2, 20-30 Hz), and gamma (γ, 30-45 Hz).  

A multitaper method was applied to estimate the power spectrum with a moving window length of 2 
seconds, a shift of 0.1 seconds, a time-bandwidth product of 2 and 3 Slepian tapers. We did not 
conduct a normalization of the power spectrum to be able to assess age-related changes. The power 
spectrum was decomposed into its periodic and aperiodic components using the FOOOF toolbox with 
default settings: peak width limit 0.5–12 Hz, infinite maximum number of peaks, minimum peak 
height of 0 μV2, peak threshold of 2 standard deviations and a fixed aperiodic mode without a knee 
parameter (Donoghue et al., 2020).  

We characterized the aperiodic offset and exponent, respectively the intercept and the slope of the 
aperiodic activity. The FOOOF toolbox parametrizes the periodic activity as fitted gaussians over the 
aperiodic slope with the center frequency, the adjusted periodic power, and the bandwidth. Instead of 
defining the power of the alpha peak as the total power within a canonical band, we searched if a 
power peak with a center frequency within the range of interest was fitted and the associated adjusted 
periodic power and bandwidth was assessed (Figure 1). If more than one power peak was comprised 
within the band of interest, the peak with the highest power was selected. Topographic representations 
were performed with the topoplot function in EEGlab (version 2023.1) (Delorme and Makeig, 2004).   

2.3. Statistical Analysis 

All statistical analyses were performed in MATLAB. Electrodes were grouped and averaged into five 
regions: frontal (Fp1, Fp2, Fz, F3, F4, F7, F8), central (Cz, C3, C4), temporal (T7, T8), parietal (Pz, 
P3, P4, P7, P8), and occipital (O1, O2). Linear regressions were fitted for each parameter with the 
fitlm function. We extracted the residual mean standard error (RMSE) – the spread of the empirical 
data around the linear fit –, the coefficient – the change in value each year –, and the intercept – the 
theoretical frequency at 0 years – for each parameter. The linear models were compared to models 
with only a constant to test for significance. Intrasubject variability of the peak center frequency was 
defined as the standard deviation of the center frequency within 20 epochs for each patient within a 
single EEG recording.  

2.4. Calculation of Age-Adjusted Frequency 

We defined the age-adjusted frequency based on the results of the linear regression models. The age-
adjusted frequency can be calculated using with the linear formula:  
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3. Results 

A total of 10.620 EEG epochs from 532 patients were included in this analysis (Table 1 and Figure 
S1).  

 

3.1. Center Frequency  
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An average topographical representation of the center frequency dynamics within all power bands can 
be found in Figure 2. A global age-related change in the center frequency was solely found in the 
alpha and gamma range. In the alpha band, there was a significant decrease of around 0.01 Hz per 
year, while we saw an increase in the gamma peak frequency between 0.01 and 0.03 Hz per year, 
depending on the region. In the other frequency bands, significant changes were regional and had 
smaller orders of magnitude. The RMSE depends on the frequency band and is generally larger in the 
faster oscillatory ranges. A similar dynamic was observed for intrasubject variability (Figure 2, Table 
S1).  

3.2. Adjusted Peak Power  

The age-related changes in the adjusted power of the fitted peaks is shown in Figure 3. Age did not 
show a globally significant effect on the adjusted power within any frequency band. The RMSE, 
coefficients, intercept, and p-values as well as the intrasubject variability of the adjusted power within 
the ranges of interest can be found in the supplementary materials (Figure 3, Table S2). 

3.3. Bandwidth 

Age-related changes in the bandwidth of the fitted oscillatory peaks are depicted in Figure 4. There 
were no global dynamics for this parameter. In the low beta range, we saw a significant age-related 
increase of the peak bandwidth in the frontal, parietal, central and temporal electrodes of 0.01 to 0.02 
Hz per year. The RMSE, coefficients, intercept, and p-values as well as the intrasubject variability of 
the peak bandwidth within the ranges of interest can be found in the supplementary materials (Figure 
4, Table S3). 

3.4. Aperiodic Activity 

The aperiodic exponent showed a global significant decrease with age of around 0.003 µV2/Hz per 
year. We did not see age-dependent significant changes in the aperiodic offset (Table S4).  

3.5. Example 

We used this method to calculate the age-adjusted frequency in a tACS protocol to prevent the 
occurrence of postoperative delirium in elderly patients undergoing general anesthesia for major 
surgery (“https://drks.de/register/de/trial/DRKS00033703,” n.d.). In this tACS protocol applied on 
patients around 75 years of age, the age-adjusted frequency amounted to 9.5 Hz.  

 

4. Discussion 

This analysis provides the first spectrum-wide normative characterization of the age-related changes in 
oscillatory (periodic) and non-rhythmic (aperiodic) activity within physiological resting-state EEGs. 
While these processes have been partially described in some frequency bands or within age-cohorts, a 
parametrization of these dynamics over the life span was lacking. We found age-related changes in 
both periodic and aperiodic EEG parameters. Regarding the periodic activity, especially the center 
frequency of the alpha peak significantly decreased with age, while the gamma peak frequency 
increased. The aperiodic exponent describing the slope of the aperiodic activity decreased with age, 
but no significant changes were observed in the offset.  

4.1. Normative Database of Oscillatory Activity 

Quantitative EEG (qEEG) analysis emerged from digital signal analysis and spread itself quickly, due 
to increasing capacities of commonly used computers (Höller, 2021). In classical, clinical EEG 
analysis, the recordings are inspected visually by trained experts regarding the occurrence of specific 
patterns (Zhang et al., 2023). In contrast, qEEG analysis uses computer-based methods to breakdown 
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EEG signals, allowing for the quantification of signal components both at specific channels and 
between channels (Gavaret et al., 2023). Normative databases of qEEG have been emerging and are 
essential to develop EEG biomarkers of diseases (Ko et al., 2021; Prichep, 2005). Here we present the 
first spectrum-wide normative database of periodic and aperiodic activity from a large cohort.  

4.2. Age-Related Spectral Changes  

We provided a normative characterization of ongoing oscillatory activity in the resting-state EEG in 
six frequency bands by isolating the periodic from the aperiodic components in the power spectrum. In 
line with previous studies, the aperiodic slope showed a ubiquitous decrease with age, significantly 
affecting the total power (Donoghue et al., 2020). Conventional decomposition of EEG spectra into 
canonical frequency bands does neither account for this, nor for frequency shifts across rigid band 
limits (Scally et al., 2018). For instance, we confirmed previous evidence that the major part of age-
related differences in the alpha power can be explained by the flattening of the aperiodic slope and a 
shift towards the theta range, rather than a loss of oscillatory activity (Cesnaite et al., 2023; Merkin et 
al., 2023; Tröndle et al., 2023). Similarly, the loss of theta power associated with increasing age and 
deterioration of cognitive status can be explained from the flattening of the aperiodic slope (Caplan et 
al., 2015; Cesnaite et al., 2023). 

4.3. Estimation of Age-Adjusted Center Frequency 

The observed slowing in the alpha center frequency by approximately 0.01 Hz per year corresponds to 
previous findings and reinforces the notion that the individual alpha frequency (IAF) alters as the brain 
ages and cognition deteriorates (Cesnaite et al., 2023; Merkin et al., 2023). We observed an 
acceleration of the center frequency in the gamma range amounting to 0.01 to 0.03 Hz per year 
depending on the brain region. The acceleration of frequencies in the gamma range has been proposed 
as a compensatory mechanism to counteract for declining nerve conduction velocities (Hong and 
Rebec, 2012). It has been postulated that this mechanism contributes to the flattening of the aperiodic 
slope and is also reflected in the acceleration of the center frequency in the gamma oscillations 
(Voytek et al., 2015). For the other frequency bands, we show that there is no overall age-related trend 
in the center frequency and present normative, age-independent values.  

4.4. Clinical Application  

Recent work showed that tACS in the alpha range modulates the periodic but not the aperiodic 
components of the power spectrum, underlying the importance of this distinction in the context of 
brain stimulation (Kasten et al., 2024). tACS is a growing therapeutic field, yielding promising, yet 
inconsistent results (Herrmann et al., 2013). Neuroanatomical as well as neurophysiological 
variabilities may affect the individual (after-)effects of tACS (Zanto et al., 2021). To account for such 
variations, studies choose stimulation protocols that measure the IAF before the stimulation in the 
alpha range and use it as the frequency parameter of the stimulation. Yet, no consistent effects on 
spectral power modulation arises from stimulating at the IAF rather than a fixed frequency (De 
Koninck et al., 2023).  

A possible reason for such inconclusive results may lie in the intrasubject variability of the alpha peak 
during a single recording, that amounted to 0.5 Hz within one resting-state EEG recording. This 
questions the rationale for a stimulation protocol that uses a specific IAF of each subject, as the 
determined IAF, even when measured immediately before a stimulation may still be inaccurate during 
the stimulation (Gray and Emmanouil, 2020; Haegens et al., 2014). An approach to correct for the 
dynamic changes in the IAF that synchronizes the stimulation to the concurrent EEG-activity may be a 
closed loop setup where the stimulation frequency is driven by the measured frequency in a 
simultaneous EEG recording (Nasr et al., 2022; Zrenner and Ziemann, 2024). However, this method is 
more laborious and limits the applicability in the clinical context.  
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These challenges motivated the here presented method of “individualization” through age group-
dependent frequency adjustment, that provides a practical compromise between the more complex and 
error-prone closed-loop stimulation and the simple determination of stimulation frequency vaguely 
based on canonical frequency bands. It additionally ensures reproducibility across subjects and studies, 
contributing to a more standardized approach to tACS research that is critical to reveal the effects of 
the stimulation.  

4.5. Limitations  

A limitation of this analysis lies in its cross-sectional design, which does not allow for the tracking of 
individual aging processes over time. Consequently, longitudinal studies would offer a more nuanced 
understanding of how EEG parameters evolve with age in the same subjects. The study's 
interpretations of frequency changes, especially in the gamma bands, may also be impacted by 
external variables such as minor physical movements or muscle artifacts, not accounted for during 
EEG recordings. Moreover, the analysis did not implement corrections for multiple testing since the 
primary goal was to describe physiological phenomena, rather than to validate or introduce new 
hypotheses.  

 

5. Conclusions 

The findings from this analysis of clinical routine data highlight the intricate dynamics of age-related 
changes in resting-state EEG signals, which may have crucial implications for the understanding of the 
aging brain and the tailoring of neurotherapeutic interventions. 
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Tables and Figure Legends  

 

Figure 1: Parametrization of oscillatory activity within a frequency range of interest. A: Power spectrum 
decomposition with fitting of the aperiodic (orange) and periodic (blue) components. B: The power within a 
canonical band comprises the periodic and aperiodic components of the power spectrum. C: The FOOOF 
toolbox parametrizes the periodic activity by fitting gaussians of oscillatory activity over the underlying 
aperiodic slope.  

 

Table 1: Patient characteristics 

 Patient cohort 
Sample size  532 
Female (%) 274 (52) 
Age range (years) 8-92 
Age mean (± standard deviation) 50.5 (±17.6) 
 

 

Figure 2: Characterization of peak frequency (Hz) within the frequency bands of interest on the average of 20 
single 10-s epochs per patient. For each frequency band, an averaged topographical representation of the center 
frequency was computed, and the linear regression (thick blue line) as well as the 95% confidence interval 
(dashed blue lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1-4 
Hz), theta (B, 4-8 Hz), alpha (C, 8-12 Hz), low beta (D, 12-20 Hz), high beta (E, 20-30 Hz), and gamma (F, 30-
50 Hz). If the p-value was below the significance level of 0.05, the statistical significance was reported with red 
asterisks (*: p-value 0.05-0.001; **: p-value ≤0.001,).  

 

Figure 3: Characterization of peak power (dB) within the frequency bands of interest on the average of 20 single 
10-s epochs per patient. For each frequency band, an averaged topographical representation of the peak power 
was computed, and the linear regression (thick blue line) as well as the 95% confidence interval (dashed blue 
lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1-4 Hz), theta (B, 
4-8 Hz), alpha (C, 8-12 Hz), low beta (D, 12-20 Hz), high beta (E, 20-30 Hz), and gamma (F, 30-50 Hz). If the 
p-value was below the significance level of 0.05, the statistical significance was reported with red asterisks (*: p-
value 0.05-0.001; **: p-value ≤0.001,).  

 

Figure 4: Characterization of peak bandwidth (Hz) within the frequency bands of interest on the average of 20 
single 10-s epochs per patient. For each frequency band, an averaged topographical representation of the peak 
bandwidth was computed, and the linear regression (thick blue line) as well as the 95% confidence interval 
(dashed blue lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1-4 
Hz), theta (B, 4-8 Hz), alpha (C, 8-12 Hz), low beta (D, 12-20 Hz), high beta (E, 20-30 Hz), and gamma (F, 30-
50 Hz). If the p-value was below the significance level of 0.05, the statistical significance was reported with red 
asterisks (*: p-value 0.05-0.001; **: p-value ≤0.001,).  
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