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 2 

Abstract  27 

Background 28 

Recently, various polygenic risk score (PRS)-based methods were developed to improve 29 

stroke prediction. However, current PRSs (including cross-ancestry PRS) poorly predict 30 

recurrent stroke. Here, we aimed to determine whether the best PRS for Japanese individuals 31 

can also predict stroke recurrence in this population by extensively comparing the methods 32 

and maximizing the predictive performance for stroke onset.  33 

 34 

Methods 35 

We used data from the BioBank Japan (BBJ) 1
st
 cohort (n=179,938) to derive and optimize 36 

the PRSs using a 10-fold cross-validation. We integrated the optimized PRSs for multiple 37 

traits, such as vascular risk factors and stroke subtypes to generate a single PRS using the 38 

meta-scoring approach (metaGRS). We used an independent BBJ 2
nd

 cohort (n=41,929) as a 39 

test sample to evaluate the association of the metaGRS with stroke and recurrent stroke.  40 

 41 

Results 42 

We analyzed recurrent stroke cases (n=174) and non-recurrent stroke controls (n=1,153) 43 

among subjects within the BBJ 2
nd

 cohort. After adjusting for known risk factors, metaGRS 44 

was associated with stroke recurrence (adjusted OR per SD 1.18 [95% CI: 1.00–1.39, 45 

p=0.044]), although no significant correlation was observed with the published PRSs. We 46 

administered three distinct tests to consider the potential index event bias; however, the 47 

outcomes derived from these examinations did not provide any significant indication of the 48 

influence of index event bias. The high metaGRS group without a history of hypertension 49 

had a higher risk of stroke recurrence than that of the low metaGRS group (adjusted OR 2.24 50 

[95% CI: 1.07–4.66, p=0.032]). However, this association was weak in the hypertension 51 
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 3 

group (adjusted OR 1.21 [95% CI: 0.69–2.13, p=0.50]). 52 

 53 

Conclusions 54 

The metaGRS developed in a Japanese cohort predicted stroke recurrence in an independent 55 

cohort of patients. In particular, it predicted an increased risk of recurrence among stroke 56 

patients without hypertension. These findings provide clues for additional genetic risk 57 

stratification and help in developing personalized strategies for stroke recurrence prevention. 58 

 59 

Keywords: recurrent stroke, stroke, polygenic risk score, LDpred2, risk factor, index event 60 

bias, hypertension, metaGRS   61 
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Non-standard abbreviations and acronyms 62 

PRS  polygenic risk score 63 

P+T  pruning and thresholding 64 

BBJ  BioBank Japan 65 

BBJ1  BBJ 1
st
 cohort 66 

BBJ2  BBJ 2
nd

 cohort 67 

ToMMo  Tohoku Medical Megabank 68 

AIS  all ischemic stroke 69 

IPW  inverse probability weighting 70 

LD  linkage disequilibrium 71 

GWAS  genome-wide association study 72 

PC  principal component 73 

IPW  inverse probability weight 74 

AUC  area under the curve 75 

LAS  large artery stroke  76 

SVS  small vessel stroke 77 

CES  cardioembolic stroke 78 

TIS  transient ischemic attack 79 

HWE  Hardy-Weinberg equilibrium 80 

WGS  whole genome sequencing 81 

MI  myocardial infarction 82 

SAP  stable angina pectoris 83 

AP  unstable angina pectoris 84 

AF  atrial fibrillation 85 

DM  diabetes mellitus 86 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.24309034doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.17.24309034
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

SM  smoking 87 

BMI  body mass index 88 

HE  height 89 

SBP  systolic blood pressure 90 

DBP  diastolic blood pressure 91 

TC  total cholesterol 92 

TG  triglyceride 93 

HDL  high-density lipoprotein 94 

LDL  low-density lipoprotein 95 

96 
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 6 

Introduction 97 

 98 

Stroke is a major cause of mortality in Japan, with 56,000 deaths reported in 2020.
1
 The 99 

conventional risk factors for stroke include hypertension, high waist-to-hip ratio, smoking, 100 

cardiac causes, dyslipidemia, and diabetes mellitus.
2
 In Japan, the stroke recurrence rate is up 101 

to 30–50% during 5-10 years of follow-up after the first stroke.
3,4

 Accordingly, it will be 102 

medically beneficial to stratify high-risk groups for recurrent stroke among those who have 103 

experienced a stroke to potentially generate more intensive secondary prevention strategies 104 

than current recommendations. 105 

Genome-wide association studies (GWAS) have identified many disease-susceptibility 106 

variants associated with complex traits.
5
 A polygenic risk score (PRS) is the weighted 107 

summation of the individual genetic effects of these variants. Its weighting strategy varies 108 

depending on the construction method; traditionally, only significant variants are used in 109 

developing this score. The recently developed PRS methods involve non-significant variants 110 

and updated effect weights and consider the linkage disequilibrium (LD) structure. The 111 

development of PRS methods has helped stratify high-risk groups for complex traits,
6–11

 112 

including stroke.
12

  113 

Polygenic risk scores developed using the 32 genome-wide significant (p< 5.0×10
-8

) variants 114 

or 90 marginally associated (p<1.0×10
-5

) variants (PRS90) from the MEGASTROKE study
12

 115 

are associated with stroke onset in subjects of European ancestry.
12,13

 The meta-scoring PRS 116 

approach (metaGRS) includes 3.2 million variants by combining PRSs for stroke subtypes, 117 

risk factors, and comorbidities by adjusting the effect weight via elastic-net logistic 118 

regression; this approach has an improved predictive performance for stroke compared to 119 

that of PRS90.
14

 MetaGRS can predict stroke incidence independent of environmental factors 120 

and could help motivate individuals with high genetic risk to make lifestyle changes for 121 
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stroke prevention (although not yet implemented in clinical practice outside a research 122 

setting).
15

 The PRS shows reduced transferability between populations. Additionally, a PRS 123 

developed using various variants derived from Japanese GWAS successfully predicted stroke 124 

onset in the Japanese population.
16,17

 Most recently, the GIGASTROKE study proposed an 125 

integrated PRS approach among PRSs derived from populations of multiple ancestries using 126 

the metaGRS framework (iPGS), which showed a better predictive ability than the 127 

MEGASTROKE European or East Asian PRS.
18

 However, the PRS did not successfully 128 

predict stroke recurrence; for example, PRS32 and iPGS did not significantly predict stroke 129 

recurrence after adjusting for clinical comorbidities, with notably smaller effect sizes than for 130 

non-recurrent stroke.
12,18

 Furthermore, the potential effect of index event (also known as 131 

“collider”) bias that may distort the association of PRS was suspected.
19,20

  132 

The optimal method to improve the predictive accuracy of PRS depends on the population- 133 

and trait-specific genetic architecture.
21–30

 Therefore, we compared different PRS methods 134 

and determined whether the best PRS can predict the onset of recurrent stroke in a Japanese 135 

population.  136 

 137 

138 
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Methods 139 

The workflow of this study is shown in Figure 1. This article follows the TRIPOD 140 

(Transparent reporting of a multivariable prediction model for individual prognosis or 141 

diagnosis) reporting guidelines. 142 

 143 

Study subjects and quality control  144 

BioBank Japan (BBJ) involves physicians diagnosing all ischemic stroke (AIS) cases at the 145 

collaborating hospitals. BBJ was established in 2003 and recruited 267,000 patients from 12 146 

medical institutions (66 hospitals) in two phases.
31–33

 The recruited patients had at least one 147 

of the 51 primarily multifactorial (common) diseases, which accounted for 440,000 cases. 148 

We used BBJ 1
st
 cohort (BBJ1) data to derive PRSs and available independent BBJ 2

nd
 149 

cohort (BBJ2) data to evaluate the performance of PRSs in predicting AIS and recurrent AIS. 150 

Recurrent AIS information was unavailable for the BBJ1 data. In BBJ2, any AIS cases 151 

(n=1,470), AIS-free controls (n=40,459), recurrent AIS cases (n=174), and non-recurrent AIS 152 

controls (n=1,153) were available. The mean duration from the first episode of AIS onset to 153 

recurrent AIS onset was 4.88 years. Detailed sample characteristics are listed in 154 

Supplementary Methods and Table 1.  155 

This study was approved by the ethics committee of the Institute of Medical Science, the 156 

University of Tokyo, Japan. Quality control, pre-phasing, and genotype imputation were 157 

conducted using PLINK(v2.0),
34–37

 Eagle (v2.4.1), and Minimac4 (v1.0.2), respectively. The 158 

detailed processes are presented in the Supplementary Methods.  159 

 160 

Constructing PRSs for AIS 161 

Unbiased PRSs were obtained by applying a 10-fold cross-validation to select the model and 162 

optimize the parameters.
26,38

 Briefly, BBJ1 samples were randomly split into ten equal-sized 163 
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 9 

subsamples. We retained one subsample for validation and the others for training. We 164 

repeated this process 10 times, with each of the ten subsamples used exactly once for 165 

validation. A GWAS was conducted on the training set in each iteration, adjusted for age, 166 

sex, and the first 10 principal components (PCs) via Firth logistic regression using PLINK 167 

(v.2.0).
34

  168 

We obtained the weights of variants for PRS from the GWAS summary statistics of the 169 

training set using five PRS methods—P+T (PLINK (v.1.9)
35

 for clumping), LDpred2,
39

 170 

Lassosum2,
40

 (LDpred2 and Lassosum2 by bigsnpr package (v.1.7.2) in R (v.3.5.0)), PRS-CS 171 

(v.1.0.0),
41

 and PRS-CSx (v.1.0.0).
42

 The PRS-CSx integrated BBJ1 with the European 172 

stroke GWAS summary statistics (MEGASTROKE; the largest study available at this study 173 

design)
43

 by learning an optimal linear combination. We used combinations of parameters for 174 

P+T (1,224 parameters), LDpred2 (126 parameters), Lassosum2 (200 parameters), PRS-CS 175 

(9 parameters), and PRS-CSx (9 parameters), as described in the Supplementary Methods.  176 

Subsequently, the PRSs for the validation sample were calculated using the weights obtained 177 

from the training samples. The accuracy for predicting AIS cases was evaluated from 178 

Nagelkerke’s R
2 

(simply “R
2
” from this point onwards)

29,44
 after adjusting for age, sex, and 179 

the first 10 PCs. We calculated the mean R
2
 over 10 cross-validation results for each method 180 

with each parameter after a 10-fold cross-validation. We chose the method and parameters 181 

that maximized incremental R
2
 (PRSAIS) among these PRSs. 182 

We further integrated the PRSAIS with PRSs of vascular risk factors, such as stroke subtypes 183 

and comorbid diseases presence, using the elastic net framework to construct a metaGRS 184 

using the glmnet package (v.4.1.3) in R (v.4.1.0). Nine binary traits and eight quantitative 185 

traits of vascular risk factors reported in a previous study
14

 are described in the 186 

Supplementary Methods. Binary traits were determined by conducting GWAS and attempting 187 

to obtain unbiased weights using cross-validations. The effect weights from the derivation 188 
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 10 

sample every 17 traits were calculated using PRS-CS-auto since it did not require an 189 

independent validation sample set for parameter optimization and performed well for various 190 

traits.
21,26,39,41,45

 Subsequently, we used a validation sample to calculate the weight of AIS 191 

and the 17-trait PRSs to predict AIS using elastic-net logistic regression. We conducted a 10-192 

fold cross-validation and used the mean weight for testing.  193 

We used PLINK (v2.0)
34

 to calculate the individual PRS by aggregating the effect estimates 194 

multiplied by each imputed dosage into a single score per person. 195 

 196 

Risk factors  197 

The following seven risk factors that were previously utilized as covariates
12

 were used as 198 

covariates for testing: hypertension (systolic blood pressure>140 mmHg, diastolic blood 199 

pressure>90 mmHg, or hypertension history), hyperlipidemia, diabetes (all types), smoking 200 

(current smoker), vascular disease (myocardial infarction, peripheral artery disease, stable 201 

angina pectoris, and unstable angina pectoris), congestive heart failure, and atrial fibrillation 202 

(including atrial flutter). A sample was considered to have a risk factor status if it had that 203 

status at enrollment or from historical records (Tables 1 and S1). 204 

 205 

Assessment of the association of PRS with AIS and AIS recurrence 206 

We used a single selected method with optimized parameters and calculated the metaGRS in 207 

independent testing sample sets. We used a logistic regression model to assess the association 208 

of the PRS using the two case-control settings for AIS (any-AIS versus AIS-free controls) 209 

and AIS recurrence (recurrent AIS versus non-recurrent AIS). We also applied two other 210 

combinations of case-controls: recurrent AIS versus AIS-free controls and non-recurrent AIS 211 

versus AIS-free controls (Figure 1). Furthermore, we examined additional PRS contributions 212 

of the seven risk factors to predictive accuracy and discriminative performance using the 213 
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values of R
2
 and area under the curve (AUC), according to our previous studies.

14,46
  214 

Additionally, we evaluated the performance of the following PRSs derived from other 215 

milestone studies for stroke prediction: 32 genome-wide significant variants (for any stroke, 216 

ischemic stroke, or ischemic stroke subtypes) from the MEGASTROKE cross-ancestry study 217 

of 524,354 individuals (PRS32),
43

 89 genome-wide significant variants of 1,614,080 multi-218 

population individuals (PRS89), and 6,010,730 variants of the East Asian PRS developed 219 

from 9,809 individuals (iPGSEAS),
18

 both from the GIGASTROKE study. The PRS 220 

calculation process is described in the Supplementary Methods.  221 

 222 

Considering potential index event bias 223 

An index event bias may be induced when the samples are only selected from cases.
47

 We 224 

evaluated the extent to which the index event bias affected our results since we used case-225 

only samples in this study. The association of PRSs with recurrent AIS was evaluated after 226 

adjusting for seven risk factors, in addition to age, sex, and the first 10 PCs. Adjusting for 227 

such confounding bias will not be enough to eliminate bias for a recurrence association 228 

study.
48

 Therefore, we sought to mitigate a potential index event bias by applying three 229 

distinct methodologies.
48,49

 First, we utilized linear and logistic regression models to assess 230 

the relationships between metaGRS and covariates within the any-AIS case (n=1,327) and 231 

AIS-free control groups (n=40,459). Initially, we did not adjust for age, sex, the seven risk 232 

factors, or the first 10 PCs. Subsequently, we observed the distributions of covariate values 233 

across the metaGRS quintiles. We performed statistical tests to detect heterogeneity in the 234 

estimates between the prevalent case and control groups, following the methodology of a 235 

prior study.
19,50

 Second, we refined our analysis by adjusting for associations between 236 

metaGRS and AIS recurrence while considering the differential effects of covariates, 237 

according to a previous method.
19

 Finally, we applied the inverse probability weighted (IPW) 238 
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approach
47

 to comprehensively account for index event bias. Collectively, these analytical 239 

approaches were adopted to enhance the validity of our findings. 240 

 241 

Association of metaGRS and AIS recurrence in patients with/without hypertension 242 

Logistic regression was conducted in subgroups with and without hypertension and metaGRS 243 

tertiles among recurrent AIS cases (with hypertension n=107, without hypertension n=67) 244 

and non-recurrent AIS controls (with hypertension n=731, without hypertension n=422) to 245 

assess the relationship between the PRS and the risk of AIS recurrence. The low metaGRS 246 

tertile was set as the reference group and adjusted for age, sex, and the first 10 PCs. 247 

 248 

Statistical analysis  249 

The mean with standard deviation (SD) or proportion of factors was reported for the baseline 250 

characteristics of testing samples. The incremental value (R
2
 or AUC) was estimated from 251 

the differences between patients with and without PRSs of the fitted values of age, sex, first 252 

10 PCs, and seven risk factors
48,57,58

 and calculated as the 95% confidence interval. The 253 

pROC package (v.1.18.0) in R was used to determine the discriminative ability of the AUC. 254 

The IPW package (v.1.2) in R was used for the IPW approach. R (v. 3.5.0) was used to 255 

perform logistic regression to calculate R
2
, Pearson’s correlation coefficient, and linear 256 

regression. All statistical tests were two-sided. The significance level was set at p = 0.05. 257 

 258 

259 
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Results 260 

  261 

Derivation of effect weight 262 

The imputed genotype data of 17,621 AIS cases and 162,317 controls without an AIS 263 

diagnosis were used for 9,622,629 autosomal variants after implementing quality control of 264 

the BBJ1 dataset (Tables S2-S4).  265 

We conducted a 10-fold cross-validation to adjust the parameters and select the best PRS 266 

associated with AIS. We performed GWAS 10 times on 90% of the randomly selected BBJ1 267 

dataset (training data). We successfully detected previously reported
43,51

 signals in each 268 

dataset (p<5×10
-8

), including SH3PXD2A, CCDC63 (eight times), CUX2, and LINC02356 269 

(every time) (Figure S1, Table S5).  270 

We confirmed some expected characteristics of each PRS method (such as low accuracy) 271 

using only genome-wide significant variants (Tables S6–10 and Supplementary Notes). The 272 

mean incremental R
2
 values of each scoring method with the best-performed parameters 273 

were 0.0038 (95% CI: 0.0030–0.0046), 0.00443 (95% CI: 0.0035–0.0054), 0.0039 (95% CI: 274 

0.0030–0.0048), 0.00441 (95% CI: 0.0036–0.0053), and 0.0037 (95% CI: 0.0031–0.0042) 275 

for P+T, LDpred2, Lassosum2, PRS-CS, and PRS-CSx, respectively (Table 2). We chose 276 

LDpred2 with the parameter set of ρ-value = 0.0056, a heritability-value = 1.0×h
2

LDSC, 277 

where h
2

LDSC is the heritability estimate from the constrained LD score regression
52

, and a 278 

no-sparse model for subsequent analyses, since it showed the best mean incremental R
2
 value 279 

among the five methods.  280 

We observed an average number of nonzero weights for 8.4 traits after computing the 281 

metaGRS via elastic net regularization 10 times (10-fold). The metaGRS weight of AIS was 282 

highest (mean=0.123, SD=0.026), followed by diastolic blood pressure (mean=0.039, 283 

SD=0.039), atrial fibrillation (mean=0.023, SD=0.024), and myocardial infarction 284 
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(mean=0.018, SD=0.025) (Figure S2 and Table S11). Only the triglyceride weights were zero 285 

at all 10 measurements among the 18 traits included in the metaGRS calculation. The number 286 

of variants used for metaGRS was 1,014,026; a total of 1,011,847 variants (99.8%) remained 287 

after matching with the BBJ2 dataset. 288 

 289 

Association of metaGRS with AIS cases and recurrent AIS    290 

We used the imputed genotype data of 1,470 AIS cases and 40,459 controls without a 291 

diagnosis of AIS for 59,387,070 variants from the BBJ2 dataset to test the association of 292 

metaGRS with AIS and AIS recurrence. The AIS case-only sample of the BBJ2 was used to 293 

analyze AIS recurrence. Table 1 presents the characteristics of the test samples.  294 

MetaGRS was associated with AIS diagnosis after adjusting for age, sex, first 10 PCs, and 295 

seven risk factors (adjusted OR, 1.21 [95% CI: 1.15–1.27, p=2.89×10
-12

]), as previously 296 

reported.
14,18

 MetaGRS was also associated with AIS recurrence compared with recurrence-297 

free AIS (adjusted OR 1.18 [95% CI: 1.00–1.39, p=0.044]; Table 3 and Figure S3). MetaGRS 298 

showed stronger association when comparing recurrent AIS with AIS-free controls (adjusted 299 

OR 1.37 [95% CI: 1.18–1.59, p=5.35×10
-5

]; Table S12). 300 

The contribution of the metaGRS and traditional risk factors showed an AIS prediction 301 

accuracy with an R
2
 value of 0.06 and an AUC of 0.689 after constructing the baseline model 302 

using age, sex, the first 10 PCs, and seven risk factors. The incremental AUCs were 0.0087 303 

and 0.0123 for AIS and AIS recurrence, respectively when metaGRS was added to the 304 

baseline model (Table 3). In our dataset, clinical risk factors (including hypertension) were 305 

related to AIS diagnosis but were insignificantly associated with AIS recurrence (Table S1).  306 

We assessed the prediction performance of previously developed PRSs for AIS and AIS 307 

recurrence in our dataset. After matching with the BBJ2 dataset (Supplementary Methods), 308 

27, 84, and 5,756,652 variants remained in PRS32, PRS89, and iPGS, respectively. We 309 
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confirmed their association with AIS diagnosis; adjusted ORs were 1.11 [95% CI: 1.06–1.17, 310 

p=4.23×10
-5

], 1.08 [95% CI: 1.03–1.14, p=2.96×10
-3

], and 1.26 [95% CI: 1.20–1.33, 311 

p=1.24×10
-17

] for PRS32, PRS89, and iPGS, respectively (Table 3, Figure S3); however, a 312 

significant association was not observed between PRSs and AIS recurrence (p-values of 0.41, 313 

0.054, and 0.37, respectively; Table 3 and Figure S3). Our Japanese optimized metaGRS was 314 

the only PRS significantly associated with AIS recurrence in this study. 315 

 316 

Analyzing for potential index event bias 317 

We observed the values of covariates at the AIS-free control group and any-AIS case group 318 

in each quintile. We did not find any significant heterogeneous relationships between the 319 

covariates and the metaGRS in terms of regression estimates in the prevalent case and 320 

control samples (p>0.05, Table S13).  321 

We used three different variable models—i) age and sex; ii) age, sex, and seven risk factors; 322 

and iii) age, sex, the first 10 PCs, and seven risk factors—to determine the association 323 

between metaGRS and recurrent AIS; none of these confounders significantly influenced our 324 

results (Figure S4).  325 

We compared the association results of IPW adjusted (accounting for index event bias) with 326 

those of non-adjusted IPW (accounting for confounding bias). The results remained almost 327 

unchanged, but the 95% confidence intervals overlapped (Figure S5). A comparison of the 328 

three distinct models did not indicate an effect of index event bias. 329 

 330 

Association of metaGRS and AIS recurrence in patients with/without hypertension 331 

We divided the test sample into subgroups according to the presence or absence of a history 332 

of hypertension and evaluated the risk effect of the metaGRS tertile. The high metaGRS 333 

group without a history of hypertension showed a higher risk effect for AIS recurrence 334 
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compared to the low metaGRS group (OR of the high metaGRS group compared to that of 335 

the low metaGRS group was 2.24 [95% CI: 1.07–4.66, p=0.032], Figure 2 and Table S14). 336 

However, no significant association was observed between the metaGRS and AIS recurrence 337 

in the group with a history of hypertension (the OR of the high metaGRS group compared to 338 

that of the low metaGRS group was 1.21 [95% CI: 0.69–2.13, p=0.50] (Figure 2 and Table 339 

S14). 340 

 341 

342 
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Discussion 343 

 We successfully examined the association between recurrent AIS and our best model PRS 344 

(metaGRS using LDpred2); the adjusted OR was 1.18 for each unit of SD increase in PRS. 345 

Our metaGRS showed stronger (adjusted OR per SD=1.37) association when comparing 346 

recurrent AIS with AIS-free controls. Furthermore, a high PRS was associated with AIS 347 

recurrence particularly in groups without a history of hypertension (OR of the top vs. bottom 348 

metaGRS tertile=2.24). These results are consistent with the result of a previous study 349 

wherein the stroke prediction accuracy of the PRS was high in the group with low 350 

CHA2DS2-VASc scores.
12

 These results indicate the utility of the PRS in developing more 351 

precise strategies to prevent AIS recurrence in individuals with a high PRS who do not have 352 

high profiles based on clinical risk factors.  353 

We attempted to mitigate potential index event bias since our purpose was to specifically 354 

determine the efficacy of PRS among AIS patients. It is difficult to predict and provide an 355 

accurate assessment of recurrent AIS based on genetic predisposition owing to the possible 356 

effect of index event bias leading to a distorted association in studies on recurrent 357 

stroke.
19,20,53

 This study found no evidence of heterogeneous associations between covariates 358 

and the metaGRS; we did not find any evidence of a solid collider bias of known variables. 359 

By applying IPW, we confirmed that our results support the association between metaGRS 360 

and recurrent AIS.  361 

There are three putative reasons our metaGRS could predict AIS recurrence. First, the 362 

metaGRS algorithm combines the genetic profiles of related traits and slightly improves the 363 

performance, reaching the level of significance. Second, the performances of PRS-CS 364 

(incremental R
2
=0.00441) and LDpred2 (incremental R

2
=0.00443) in our validation analysis 365 

were better than those of other traditional PRS methods, such as P+T (incremental 366 

R
2
=0.0038) . This demonstrated the importance of using shrinkage estimation methods that 367 
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consider LD to predict AIS and AIS recurrence. Third, we restricted to use only single 368 

matched ancestry throughout.  369 

Nevertheless, our study had several limitations. First, the sample size for recurrent AIS needs 370 

to be increased (n=174 at testing), even in the largest hospital-based biobank in Japan. 371 

Compared to our metaGRS, iPGS constructed in GIGASTROKE showed a stronger 372 

association for AIS and weaker association for AIS recurrence. Although potential 373 

discrepancies exist, both PRSs (metaGRS and iPGS) exhibit the same direction of effects and 374 

have overlapping confidence intervals (Table 3, Figure S3). Second, despite using as many 375 

covariates (age, sex, the first 10 PCs, and seven risk factors (hypertension, hyperlipidemia, 376 

diabetes mellitus, smoking, vascular disease, congestive heart failure, and atrial fibrillation)) 377 

as possible based on a previous study,
12

 other confounders might have affected our results. 378 

Finally, there may have been an index event bias that was not fully detected by each method 379 

that we implemented; however this risk was minimized using multiple approaches. Further 380 

studies using different sample sets (including other ancestry groups) are warranted to confirm 381 

the prediction of recurrent stroke using the PRS. 382 

 383 

In conclusion, our study indicated that PRS can be applied to predict AIS recurrence in 384 

addition to traditional clinical risk factors. This shows the potential utility of PRS in 385 

population-based screening and in the clinical setting. Overall, our results indicate that 386 

stratifying high-risk groups for recurrent stroke among those who have experienced a stroke 387 

could be medically beneficial and help in developing personalized strategies for recurrence 388 

prevention. Our results suggest that it might be particularly useful in patients with AIS 389 

without hypertension, although this requires confirmation in independent datasets.  390 

391 
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Tables 580 

 581 

Table 1. Characteristic of the testing sample (BBJ2) 582 

 583 

 584 

All risk factor characteristics were derived from history and not at the time of registration. 585 

Odds ratio (OR), 95% CI (95% confidence intervals, and p-values were calculated using 586 

logistic regression for onset and AIS recurrence (unadjusted for other factors). *Age at AIS 587 

 

Any-AIS  

versus AIS-free controls 

Recurrent AIS 

versus non-recurrent AIS  

N sample 

(%, SD) 
OR 

95％
CI 

p-

value 

N sample 

(%, SD) 
OR 

95％
CI 

p-

value 

Total 

participants 

41,929 

(100%) 
- - - 

1,327 

(100%) 
- - - 

AIS / AIS 

recurrent 

1,470 

(3.5%) 
- - - 

174 

(13.1%) 
- - - 

Age (SD)
*
 

70.0 

(SD=12.6) 
1.18 

[1.06–

1.31] 
0.002 

64.1 

(SD=11.5) 
0.83 

[0.59–

1.16] 
0.256 

Female sex 
19,407 

(46.3%) 
0.48 

[0.43–

0.54] 
<0.001 

383 

(28.9%) 
0.63 

[0.42–

0.93] 
0.019 

Hypertensio

n 

17,710 

(42.2%) 
2.27 

[2.04–

2.53] 
<0.001 

838 

(63.1%) 
0.92 

[0.66–

1.3] 
0.673 

Hyperlipide

mia 

11,604 

(27.7%) 
2.17 

[1.95–

2.41] 
<0.001 

603 

(45.4%) 
0.92 

[0.66–

1.29] 
0.625 

Diabetes 
3,622 

(8.6%) 
1.16 

[0.97–

1.39] 
0.089 

125 

(9.4%) 
0.97 

[0.52–

1.7] 
1.000 

Smoking
**

 
21,570 

(51.9%) 
1.43 

[1.28–

1.59] 
<0.001 

795 

(60.5%) 
1.28 

[0.90–

1.82] 
0.179 

Vascular 

disease 

3,136 

(7.5%) 
1.31 

[1.08–

1.56] 
0.005 

122 

(9.2%) 
1.08 

[0.59–

1.87] 
0.778 

Heart failure 
1,329 

(3.2%) 
1.27 

[0.95–

1.66] 
0.095 

48 

(3.6%) 
1.79 

[0.78–

3.75] 
0.124 

Atrial 

fibrillation 

1,004 

(2.4%) 
2.22 

[1.71–

2.84] 
<0.001 

65 

(4.9%) 
1.07 

[0.46–

2.23] 
0.850 
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case-control was that at recruitment, while age at recurrent AIS case-control was that at first 588 

incidence. The numbers indicate the median threshold age. ** The total number of missing 589 

values of smoking was 389 for all case-control and 12 for recurrent AIS case-control 590 

samples. Abbreviations: BBJ2, BioBank 2
nd

 cohort; AIS, all ischemic stroke; SD = standard 591 

deviation 592 

  593 
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Table 2. Polygenic risk score performance at validation 594 

 595 

Method Best parameters 

Mean 

number of 

variants 

Best mean 

incremental 

Nagelkerke 

R
2
 

Standard 

deviation 

95% 

confidence 

interval 

P+T 

Clumping R
2
=0.95, 

Clumping kb=526, 

Imputation R
2
=0.8, 

p-value threshold=1 

3,144,737 0.0038 0.0012 
0.0030–

0.0046 

LDpred2 

ρ value=0.0056, 

heritability value x 

1.0, 

no_sparse 

898,456 0.00443 0.0013 
0.0035–

0.0054 

Lassosum2 
S=0.9, 

lambda=0.00388 
282,520 0.0039 0.0013 

0.0030–

0.0048 

PRS-CS Phi=1.00E-04 985,439 0.00441 0.0012 
0.0036–

0.0053 

PRS-CSx Phi=1.00E-05 1,016,745 0.0037 0.0008 
0.0031–

0.0042 

  596 

  597 
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Table 3. Polygenic risk score performance at testing 598 

 599 

PRS Method 
Association 

tests 

OR per SD 

[95% CI] 
p-value 

Incre- 

mental 

AUC 

Incremental 

Nagelkerke R
2
 

MetaGRS 
AIS 1.21[1.15–1.27] 2.89E-12 0.0087 0.0044 

Recurrence 1.18[1.00–1.39] 0.044 0.0123 0.0057 

MEGASTROKE 

27 SNVs 

AIS 1.11[1.06–1.17] 4.23E-05 0.0033 0.0015 

Recurrence 1.07[0.91–1.25] 0.41 0.0032 0.0009 

GIGASTROKE 

84 SNVs 

AIS 1.08[1.03–1.14] 2.96E-03 0.0022 0.0008 

Recurrence 1.17[1.00–1.38] 0.054 0.0125 0.0052 

GIGASTROKE 

iPGS 

AIS 1.26[1.20–1.33] 1.24E-17 0.0130 0.0066 

Recurrence 1.08[0.91–1.27] 0.37 0.0044 0.0011 

 600 

Polygenic risk score performance was evaluated using an independent testing set for AIS and 601 

recurrent AIS. We showed two main association tests; AIS (any-AIS cases vs. AIS-free 602 

controls) and AIS recurrence (recurrent AIS vs. non-recurrent AIS). Incremental AUC and R
2
 603 

are the differences in the values when fitting with/without PRS, along with age, sex, the first 604 

10 PCs, and seven risk factors. Abbreviations: AIS, all ischemic strokes; OR, odds ratio; 605 

AUC, area under the curve; PC, principal components; PRS, polygenic risk score; SD = 606 

standard deviation 607 

  608 
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Figure Legends 609 

Figure 1. Workflow  610 

 611 

MEGASTROKE AIS summary statistics of European (EUR) studies were only used for 612 

PRS-CSx. 1000 Genomes Project super population samples (EAS or EUR) were used for the 613 

LD reference panel. Abbreviations: GWAS = genome-wide association study, PRS = 614 

polygenic risk score, P+T = pruning and thresholding, OR = odds ratio, AIS = all ischemic 615 

stroke, ToMMo = Tohoku Medical Megabank; LD, linkage disequilibrium. 616 

We used a logistic regression model to assess the association of the PRS using the two case-617 

control settings for AIS (A: any-AIS vs. AIS-free controls) and AIS recurrence (B: recurrent 618 

AIS vs. non-recurrent AIS). We also applied two other combinations of case-controls (C: 619 

recurrent versus AIS-free controls and D: non-recurrent versus AIS-free controls). 620 

621 
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Figure 2. Odds ratio of metaGRS tertiles with/without a history of hypertension 622 

  623 

 624 

Association of AIS recurrence and meta-GRS tertiles with or without a history of 625 

hypertension (HT) in the testing sample, with reference to the low metaGRS tertiles.  626 

 627 

 628 

 629 

 630 

 631 

 632 

  633 
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 634 

SUPPLEMENTARY MATERIALS 635 

 636 

 637 

Recurrent stroke prediction by applying a stroke polygenic risk score  638 

in the Japanese population 639 

 640 

 641 

  642 
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Supplementary Methods 643 

 644 

Samples 645 

BioBank Japan (BBJ) collected DNA, serum, and medical records (clinical information) with 646 

consent from patients. The BBJ 1
st
 cohort (BBJ1) dataset contained all ischemic stroke (AIS, 647 

n=17,621) cases, including large artery stroke (LAS, n=981), small vessel stroke (SVS, 648 

n=3,108), and cardioembolic stroke (CES, n=608) cases. The patients without AIS were 649 

included as controls (n=162,317).  650 

Testing involved the use of data from part of the BBJ 2
nd

 cohort (BBJ2) dataset, which 651 

contains information about AIS cases (n=1,470), including LAS (n=268), SVS (n=508), CES 652 

(n=122), and transient ischemic attack (TIA, n=105). All patients without AIS were included 653 

as controls (n=40,459). Among these cases, recurrent ischemic stroke (n=187) was used as a 654 

case of recurrent AIS, which included LAS (n=40), SVS (n=57), CES (n=11), and transient 655 

ischemic attack (TIA, n=20). Samples with information on the first onset date and follow-up 656 

of under 30 days were excluded; AIS cases with recurrence (n=174) were set as the case 657 

group, and AIS cases without recurrence (n=1,153) remained in the control group in the 658 

testing sample. 659 

 660 

Quality control and imputation process of BBJ1 data 661 

We removed variants with call rates <0.99, samples with call rates <0.98, non-East Asian 662 

samples, and sex-discordant samples. We used 939 samples whose genotypes were analyzed 663 

using whole-genome sequencing (WGS); we added an additional quality control based on the 664 

concordance rate between the genotyping array and WGS. We excluded variants with 665 

concordance rates <99.5% or non-reference discordance rates ≥0.5% and Hardy-Weinberg 666 

equilibrium (HWE) (p<1e-6). The 10 principal components (PCs) were calculated by 667 
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applying additional quality control (QC) to the BBJ1 genotyped data. We removed samples 668 

from close relatives (King’s cutoff >0.0884), and 24 long LD regions,
54

 including the MHC 669 

region (chr6, position 25,000,000-35,000,000), and MAF<0.01. We pruned (PLINK2 670 

parameters: --indep-pairwise 200 50 0.20) and finally used 92,231–92,303 variants to 671 

conduct projection and calculate the first 10 PCs depending on a 10-fold sample set of the 672 

90% BBJ1 dataset. 673 

Subsequently, the datasets were phased (Eagle v2.4.1) and imputed (Minimac4 v1.0.2) using 674 

the developed panel.
55

 We further conducted quality control to remove variants with minor 675 

allele counts <10, close relatives (King cutoff >0.0884), and imputation r-square <0.8.  676 

 677 

Quality control and imputation process for BBJ2 data 678 

We removed samples with no age/sex information, sex discrepancy, call rates <0.98, 679 

heterozygosity rates with SD >4 or <- 4, from duplicate or twins (pi-hat >= 0.75), and from 680 

non-East Asian subjects. We then removed variants with a call rate <0.99, duplicate SNPs, 681 

heterozygous count <5, HWE (p<1e-6), and allele frequency discrepancies (gap from 1000 682 

genomes EAS >0.16). A total of 41,929 samples and 525,239 variants were analyzed.  683 

We applied additional quality control to the BBJ2 genotyped data to calculate the 10 PCs. We 684 

removed variants in 24 long LD regions,
54

 pruned them (PLINK2 parameters: --indep-685 

pairwise 200 50 0.05), extracted close relatives (King cut-off >0.0884), and used 69,068 686 

variants to calculate the first 10 PCs. 687 

We removed variants of the imputation r-squared <0.3 after phasing (Eagle v2.4.1) and 688 

imputing (Minimac4 v1.0.2) the developed panel.
55

 We used a lower r-square threshold for 689 

BBJ2 to reduce the number of variants unmatched with BBJ1. 690 

 691 

Polygenic risk score parameters at the derivation 692 
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Pruning and threshold used a total of 1,224 parameter combinations of three stricter 693 

imputation r-squared score thresholds {0.8, 0.9, and 0.95}, four base sizes of the clumping 694 

window {50, 100, 200, and 500}, six squared correlations of clumping {0.01, 0.05, 0.2, 0.5, 695 

0.8, and 0.95}, and 17 p-value threshold {1e-8, 3e-8, 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 696 

3e-4, 1e-3, 3e-3, 0.01, 0.03, 0.1, 0.3, and 1}. We used clumping windows and divided the 697 

base size by the squared correlation of clumping.
56–59

 The following default parameters were 698 

used for LDpred2: three heritability {0.7, 1, and 1.4}×h
2

LDSC, where h
2

LDSC is the heritability 699 

estimate from the constrained LD score regression,
52

 21 ρ estimates {equally spaced on a log 700 

scale between 1e-5 and 1}, and sparse or not. The following default parameters were used for 701 

Lassosum2: 10 values of s {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0} and 20 values of 702 

λ {equally spaced on a log scale between 0.1 and 0.001}. Regarding PRS-CS and PRS-CSx, 703 

we used slightly more extended parameters: phi {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 0.01, 0.1, 1, 704 

and auto}, than the default parameters {1e-4, 1e-3, 0.01, 0.1, 1, and auto}, because the 705 

optimized parameter in the initial trials using our dataset was the smallest (phi=1e-4) in the 706 

default range. Other parameters were set to default values (a=1, b=0.5).
41,42

  707 

 708 

Linkage disequilibrium (LD) reference 709 

We used the EAS superpopulation of the 1000 Genomes panel (n=504) as a LD reference for 710 

P+T clumping. For Ldpred2, Lassosum2, PRS-CS, and PRS-CSx models, we restricted our 711 

use of external LD reference panels to the HapMap 3 variants, which were also constructed 712 

from 1000 Genomes EAS. HapMap 3 variant restriction resulted in 898,456, 898,456, 713 

985,440, and 1,076,835 variants of Ldpred2, Lassosum2, PRS-CS, and PRS-CSx, 714 

respectively. To use PRS-CSx for the EUR, we used the EUR superpopulation of the 1000 715 

Genomes panel and its HapMap3 variants (1,016,745 variants).  716 

 717 
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Genome wide association study summary statistics for metaGRS construction 718 

MetaGRS was developed following a previous study
14

 and included nine binary and eight 719 

quantitative traits. The nine binary traits were SVS, LAS, CES, myocardial infarction (MI), 720 

stable angina pectoris (SAP), unstable angina pectoris (AP), atrial fibrillation (AF), diabetes 721 

(DM), and ever smoking (SM) from the BBJ1 dataset. Subsequently, we conducted GWAS. 722 

The number of cases and controls is listed in Table S15. Summary statistics were obtained 723 

from the jMorp website (https://jmorp.megabank.tohoku.ac.jp) and were used for eight 724 

quantitative traits—body mass index (BMI), height (HE), systolic blood pressure (SBP), 725 

diastolic blood pressure (DBP), total cholesterol (TC), triglyceride (TG), high-density 726 

lipoprotein (HDL), and low-density lipoprotein (LDL) from the Tohoku Medical Megabank 727 

Project (ToMMo; 22,033 to 47,056 samples).
60

  728 

 729 

Polygenic risk score calculation from other milestone studies 730 

We obtained effect weights from the PGS catalog (PGS000665 and PGS002725 of 731 

https://www.pgscatalog.org for PRS32 and iPGSEAS, respectively) and for PRS89 from the 732 

supplementary tables.
18

 We used variants that matched with the BBJ2 dataset (imputation r-733 

squared > 0.3). The unmatched variants in PRS32 and PRS89 included proxy variants that 734 

showed the highest r-squared values with the index variants only from an r-squared value 735 

greater than 0.3. The r-squared values were calculated using the plink --r2 command
35

 with 736 

the 1000 Genome EAS as a reference.  737 

  738 
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Supplementary Notes 739 

 740 

Characteristics of the PRS methods during validation 741 

The following characteristics of each method were observed while testing several 742 

parameters: the best mean incremental R
2
 of 0.0038 was observed for the P + T method when 743 

we liberalized the p-value threshold to 1 and clumped r
2
 >0.8, whereas it was below 0.001 744 

when we used a low p-value threshold (<10
-8

, Table S5). For LDpred2, ρ values higher than 745 

0.001 showed good performance (mean incremental R
2
 was 0.0038 for ρ values >=0.001 746 

compared to 0.0016 for ρ values <0.001), while heritability estimates and sparse parameters 747 

made less difference (Table S6). For Lassosum2, the closer the value of parameter “s” is to 1, 748 

the higher the prediction accuracy, but it wasn’t the case at exactly 1. Larger lambda 749 

parameters correlate with greater accuracy (mean incremental R
2
 was between 0.0025 to 750 

0.0039). However, the accuracy sharply decreases (mean incremental R
2
<0.001) if the value 751 

is too small (<0.01). The prediction performance was maximized when the parameters were 752 

s=0.9 and lambda=0.0038 (Table S7). High and low phi values resulted in low performance 753 

for PRS-CS (mean incremental R
2
 was 0.0041 for phi=10

-3
, 10

-4
, and 10

-5
 compared to 754 

0.0029 for other phi parameters; Table S8). Meanwhile, PRS-CSx was relatively consistent 755 

regardless of the phi values (mean incremental R
2
 was 0.0032 for phi=10

-3
, 10

-4
, and 10

-5
 756 

compared to 0.0028 for other phi parameters; Table S9). 757 

The performance of the PRS-CS (R
2
=0.00441) was comparable to that of LDpred2 758 

(R
2
=0.00443) in the validation analysis. Low validation predictability (incremental R

2
 < 759 

0.001) was observed when we restricted the p-value threshold in the P+T method to genome-760 

wide significance (p<5×10
-8

). PRS-CSx improves cross-population polygenic prediction by 761 

integrating GWAS summary statistics from other populations;
61–65

 however, we could not 762 

reproduce this result in our current study using PRS-CSx. Our results demonstrate the 763 
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importance of using Bayesian methods of high-dimensional techniques in variable selection 764 

and shrinkage estimation considering LD (such as LDpred2 and PRS-CS) to predict AIS and 765 

recurrent AIS.  766 

 767 

  768 
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Supplementary Figures 769 

 770 

Figure S1. Genome-wide association study (GWAS) in derivation samples 771 
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 772 
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 774 

 775 

Figure S2. Elastic net weight  776 

The mean weight of 10-fold elastic net regression as determined by “glmnet” in the 777 

validation sample. The X-axis shows the AS and the 17 binary and quantitative traits. Error 778 

bars represent standard deviations.  779 

Abbreviations: AIS, all ischemic stroke; SVS, small vessel stroke; LAS, large artery stroke; 780 

CES, cardioembolic stroke; MI, myocardial infarction; SAP, stable angina pectoris; UAP, 781 

unstable angina pectoris; AF, atrial fibrillation; DM, diabetes; SM, smoking; BMI, body mass 782 

index; HE, height; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total 783 

cholesterol; TG, triglyceride; HCL, high-density lipoprotein; LDL, low-density lipoprotein; 784 

SD, standard deviation.     785 

 786 

  787 
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 788 

 789 

Figure S3. Odds ratio per SD to predict AIS and AIS recurrence 790 

Odds ratio per standard deviation by metaGRS and three publicly available PRS in the 791 

independent test set of AIS (case=1, 470, control=40,459) and AIS recurrence case-control 792 

set (case=174, control=1,153). Age, sex, the first 10 PCs, and seven risk factors were 793 

adjusted. Error bars represent 95% confidence intervals. The dotted line represents the point 794 

at which the ORs per SD of AIS and AIS recurrence were equal. Abbreviations: OR, odds 795 

ratio; AIS, all ischemic stroke; PRS, polygenic risk score; PC, principal component; SD, 796 

standard deviation. 797 

  798 
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 799 

 800 

Figure S4. Association between seven comorbidities and AIS/AIS recurrence 801 

The Y-axis shows the odds ratio per standard deviation (SD) and 95% confidence interval 802 

(CI) of the seven risk factors (six clinical comorbidities and smoking) in the BBJ 2
nd

 cohort. 803 

In our dataset, we used HT defined as SBP>140 mmHg, DBP>90 mmHg, or hypertension 804 

history, DM inclusive of type 1 diabetes and other diabetes, SM as a current smoker at the 805 

time of registration, VD representing myocardial infarction, arteriosclerosis obliterans, stable 806 

angina pectoris, unstable angina pectoris, and AF inclusive of atrial flutter. We used the status 807 

at the time of registration and history of these comorbidities. 808 

Abbreviations: HT, hypertension; HL, hyperlipidemia; DM, diabetes; SM, smoking; VD, 809 

vascular disease; HF, congestive heart failure; AF, atrial fibrillation.   810 

  811 
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 812 

  813 

Figure S5. Association between metaGRS and AIS recurrence in patients with or 814 

without IPW adjustment 815 

The y-axis shows the odds ratio per SD and the 95% confidence interval for predicting 816 

recurrent AIS. Model 1: age and sex; model 2: age, sex, and seven risk factors; model 3: age, 817 

sex, the first 10 principal components (PCs), and seven risk factors. The color represents 818 

whether the inverse probability weight (IPW) is adjusted. We applied logistic regression 819 

using variables as covariates when the IPW was not adjusted. We replaced 14 missing data 820 

on the smoking status to mean values.  821 

822 
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In separate spreadsheets S1-15 824 
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