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ABSTRACT

Allostatic self-efficacy (ASE) represents a computational theory of fatigue and depression. In brief, it postulates that (i) fa-1

tigue is a feeling state triggered by a metacognitive diagnosis of loss of control over bodily states (persistently elevated in-2

teroceptive surprise); and that (ii) generalisation of low self-efficacy beliefs beyond bodily control induces depression.3

Here, we convert ASE theory into a structural causal model (SCM). This allows for identification of empirically testable hy-4

potheses regarding casual relationships between variables of interest. We use conditional independence tests on ques-5

tionnaire data from healthy volunteers (N=60) to identify contradictions to the proposed SCM. Moreover, we estimate two6

causal effects proposed by ASE theory using three different methods.7

Our analyses suggest that, in healthy volunteers, the data are not fully compatible with the proposed SCM. We therefore8

refine the SCM and present an updated version for future research. Second, we confirm the predicted negative average9

causal effect from metacognition of allostatic control to fatigue across all three different methods of estimation.10

Our study represents an initial attempt to refine and formalise ASE theory using methods from causal inference. Our results11

confirm key predictions from the ASE theory but also suggest revisions which require empirical verification in future stud-12

ies.13

INTRODUCTION14

Fatigue is a prominent symptom of major clinical significance in numerous disorders across medical disciplines7,44 . It is funda-15

mentally disabling for patients and profoundly affects their quality of life10 . Fatigue is a common feature across a wide range of im-16

munological and endocrine disorders, cancer, and neuropsychiatric diseases. In particular, it constitutes one of the core diagnostic17

criteria of major depression in standard psychiatric classification schemes (ICD-10 and DSM-5;2,22).18

The clinical concept of fatigue is a heterogeneous construct, and fatiguability of cognitive and motor processes needs to be distin-19

guished from the subjective perception of fatigue18 . This study focuses on the latter. The pathophysiological mechanisms leading20

to fatigue are likely diverse18 . Previous theories have focused on a variety of neurophysiological, immunological and inflammatory21

processes. Unfortunately, there are no mechanistically interpretable clinical tests available for fatigue that could be used to guide22

individual treatment18 .23

More recently, a novel perspective on fatigue has been proposed – the allostatic self-efficacy theory (ASE;18,27,40). The ASE theory is24

based on computational concepts of brainbody interactions27,40 which, in turn, are conceptually related to and inspired by Bayesian25

theories of perception (predictive coding;12) and action (active inference;13). The ASE theory emphasises the role of two cognitive26

factors for fatigue: interoception andmetacognition.27

Interoception corresponds to the perception of bodily states and is of major importance for understanding determinants of men-28

tal health15,20 . Many contemporary concepts of interoception are grounded in Bayesian theories of perception and conceptualise29

interoception as an inference process based on the brain’s generative model of sensory inputs from the body1,15,27,28,36,37 . More30

specifically, interoception can be conceptualised as "inferences about bodily (physiological and biochemical) states that are coupled31

to regulatory processes which serve to control these states"41 . Metacognition can be summarised as cognition about cognition11 ,32

comprising a variety of evaluation processes by which the brain monitors its own performance. Building on a generic mathematical33

model of brainbody interactions, the ASE theory describes how the brain attempts to control bodily states via monitoring interocep-34

tive surprise (as an index of the degree of dyshomeostasis;40).35
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In brief, the ASE theory proposes that the subjective experience of fatigue arises when, in a situation of persistent dyshomeostasis36

(and thus enduringly elevated interoceptive surprise), the brain arrives at the metacognitive diagnosis that its control over bodily37

states is failing; a condition also referred to as low allostatic self-efficacy. (Put differently, fatigue is a feeling state signalling the im-38

perative need to rest because regulatory actions fail to resolve dyshomeostasis.) Once a generalisation of low self-efficacy beliefs be-39

yond the body has taken place, leading to a general sense of helplessness and perceived lack of control, this is postulated to trigger40

the onset of depression33,40 .41

At present, the ASE theory is arguably the only concept of fatigue that explains its ubiquitous occurrence across chronic disorders.42

It offers testable predictions based on either (i) computational quantities (prediction error or surprise) which can be estimated from43

behavioural and/or neurophysiological data or on (ii) self-report data about perceived control over bodily states (metacognition of44

allostatic control). In this study, we focus on the latter option.45

Empirically, there is initial evidence that metacognition of allostatic control – as measured by a self-report questionnaire – is inversely46

associated with fatigue, as predicted by ASE theory33 . However, a comprehensive investigation of the predictions made by the ASE47

theory is still lacking to date. Furthermore, as almost all disease concepts in psychiatry, ASE theory has been formulated verbally,48

but not as a precise causal model.49

Here, we present an initial attempt to tackle the latter issue. To this end, we identify variables of central interest in the ASE theory,50

namely metacognition of allostatic control (M ; specifically, the feeling of being in control over one’s own bodily states), fatigue (F ),51

general self-efficacy (S), and depression (D). We then formalize the causal structure implied by the ASE theory in the language of52

causal inference, more precisely, in the form of a structural causal model (SCM;5,24,25). In contrast to classical probabilistic models,53

an SCM induces not only an observational distribution but also a set of so-called interventional distributions. In other words, an SCM54

predicts how a system reacts under interventions43 . We make use of a publicly available empirical dataset to test key aspects of the55

structure of the proposed SCM. Moreover, we use established methods for the estimation of average causal effects focusing on cen-56

tral aspects of the ASE theory.57

MATERIALS AND METHODS58

Empirical Dataset59

In this work, we used data from a previous study conducted at the Translational Neuromodeling Unit (TNU) Zurich, the perception60

of breathing in the human brain (PBIHB) study; a detailed description of the dataset can be found elsewhere14 . It comprises be-61

havioural, questionnaire and neuroimaging data from 60 healthy individuals. The questionnaire data used for our analysis are freely62

available for download from the Zenodo open data repository at https://doi.org/10.5281/zenodo.10992529. Participants completed63

a battery of psychological questionnaires assessing subjective affective measures, both general and breathing-specific subjective64

interoceptive beliefs as well as measures of general positive and negative affect, resilience, self-efficacy and fatigue.65

For our analysis, we focused on the following measures as representations of the central quantities of the ASE theory:66

• fatigue (F ): Fatigue Severity Scale (FSS)67

• general self-efficacy (S): General Self-Efficacy Scale (GSES)68

• depression (D): Centre for Epidemiologic Studies Depression Scale (CES-D)69

• metacognition of allostatic control (M): Sum of the subscales 3 (not worrying) and 8 (trusting) of the Multidimensional As-70

sessment of Interoceptive Awareness (MAIA3,8).71

One important caveat is that, to our knowledge, there does not yet exist a measure that was specifically developed for the construct72

ofM (metacognition of allostatic control, i.e. the feeling of being in control over one’s own bodily states). In this study, as a proxy73

measure, we use the sum of the subscales 3 and 8 of the MAIA questionnaire. These subscales reflect an individual’s tendency not74

to experience distress in response to bodily inputs signalling dyshomeostasis and to perceive the body as a safe place, respectively.75

The sum of these subscales was used in a previous study testing predictions from ASE theory33 andmay currently represent the76

best approximation toM that is easily applied in practice.77
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SCM of the ASE theory78

An SCM5,25 over variables X = [X1, ..., Xn] comprises a set of structural equations and distributions of the noise variables (a formal79

definition of an SCM is provided in Appendix A1). The structural equations together with the noise distributions induce the obser-80

vational distribution PX as simultaneous solution to the structural equations43 . In addition to the observational distribution, an SCM81

induces interventional distributions. Each intervention denotes a scenario in which we fix a certain subset of the variables to a cer-82

tain value, e.g. Pdo(X1:=x1) .83

Under assumptions of linearity and normality, the SCM of the ASE theory takes the following form:84

A = Na (1)

G = Ng (2)

M = θ1A+ θ2G+Nm (3)

F = θ3M + θ4A+ θ5G+Nf (4)

S = θ6A+ θ7G+Ns (5)

D = θ8F + θ9S + θ10FS + θ11A+ θ12G+Nd (6)

where A stands for age, G for gender,M for metacognition of allostatic control, F for fatigue, S general self-efficacy,D for depres-85

sion, and Ni are jointly independent noise variables. ∀i ̸= g, Ni follows a normal distribution and Ng is a Bernoulli random variable.86

Figure 1: Directed acyclic graph (DAG) J0 summarizing the key proposal of the allostatic self-efficacy theory (ASE;40). The DAG J0 is
representative for the induced observational distribution P and the interventional distributions induced by interventions on metacognition of
allostatic control (M ; Pdo(M:=m)), fatigue (F ; Pdo(F :=f)) or general self-efficacy (S; Pdo(S:=s)). The other variables in the graph are depression (D),
age (A) and gender (G). Black edges represent causal directions as proposed by the ASE theory, grey edges represent effects that are not
explicitly part of the ASE theory but are likely to exist.

Figure 1 displays a graphical summary of the causal structure implied by the ASE theory in the form of a directed acyclic graph (DAG)87

J0 . The directed edge frommetacognition of allostatic control (M ) to fatigue (F ) represents the prediction that fatigue arises as a88

consequence of a metacognitive diagnosis by the brain – i.e. the brain concludes that it has low control over its bodily states. When89

this low allostatic self-efficacy (for which fatigue is the accompanying feeling state) is combined with beliefs of lack of control in90

other domains than the body (low general self-efficacy), this is predicted to lead to the onset of depression. These effects are rep-91

resented by the directed edges from fatigue (F ) to depression (D) and from general self-efficacy (S) to depression (D). The variables92

age (A) and gender (G) are not explicitly part of the ASE theory, but are known to be associated with the central quantities of the93

theory. Hence, the DAG J0 in Figure 1 is representative for the induced observational distribution P and the interventional distribu-94

tions induced by interventions on metacognition of allostatic control (M ; Pdo(M :=m)), fatigue (F ; Pdo(F :=f)) or general self-efficacy (S;95

Pdo(S:=s)).96
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When taking a closer look at the causal graph in Figure 1, there are a number of points worth highlighting. (i) There is no direct link97

betweenmetacognition of allostatic control (M ) and general self-efficacy (S). (ii) There is no direct link frommetacognition of al-98

lostatic control (M ) to depression (D). All of its influence is mediated by fatigue (F ). (iii) There is no direct link between fatigue (F )99

and general self-efficacy (S). While these three links are, in principle, plausible causal influences, they were not included in the orig-100

inal formulation of the ASE theory40 . Whether these links should be included in a revision of the ASE theory can, in principle, be101

tested using methods of causal inference, given appropriate readouts of the involved quantities and relying on the assumption of102

the Markov condition.103

Statistical Analysis104

Our hypotheses as well as the entire analysis were pre-registered in a time-stamped analysis plan that is publicly available on the105

Zenodo open data repository at https://doi.org/10.5281/zenodo.10559656. Below, we explicitly highlight any deviations from the106

pre-specified analysis plan. The analysis code is available at https://github.com/alexjhess/pbihb-ase-causality. The analysis pipeline107

underwent an internal code review by a researcher not involved in the initial data analysis to identify errors and ensure the repro-108

ducibility of our results.109

Causal structure of ASE theory in the PBIHB dataset110

Learning causal structure from observational data is inherently difficult. One reason is the existence of models that are observation-111

ally but not interventionally equivalent6,25,26,43 . This has several implications (e.g. see43), one of them being that without assump-112

tions, it is impossible to learn causal structure from observational data.113

In graphical models, the Markov condition (see e.g.16) is a formalisation of the following principle (sometimes referred to as Reichen-114

bach’s common cause principle): If two random variablesX and Y are dependent, then there must be some cause-effect structure115

that explains the observed dependence. That is, eitherX causes Y , or Y causesX , or another unobserved variableH causes both116

X and Y , or some combination of the aforementioned29 . A formal definition of the Markov condition is presented in Appendix A2.117

The Markov condition establishes a connection from graphical separation properties (d-separation; see Appendix A3 for a formal118

definition) to conditional independencies in the distribution. Any distribution induced by an acyclic SCM satisfies the Markov con-119

dition with respect to the corresponding graph17,25 . Hence, the Markov condition is typically considered to be a mild assumption.120

Assuming that the observational distribution P induced by the SCM of the ASE theory (equations 1-6) is Markov with respect to the121

DAG J0 , we tested whether we find any contradictions to the structure of the DAG J0 in the PBIHB dataset. More precisely, we ex-122

amined the three predictions described in the last paragraph of and formalised as part of our pre-registered Hypothesis 1: Data123

from the PBIHB study satisfy the following conditional independence statements:124

(i) M ⊥⊥ S | A,G125

(ii) M ⊥⊥ D | F,A,G andM ⊥⊥ D | F,A,G, S126

(iii) F ⊥⊥ S | A,G and F ⊥⊥ S | A,G,M127

As a statistical test for conditional independence, we used the asymptotic χ2 test on the mutual information for conditional Gaus-128

sians (MIcg) for mixed discrete and normal variables as implemented in the R package bnlearn35 , using a significance level α = 0.01129

(Bonferroni corrected).130

Since conditional independence testing is a difficult statistical problem38 , we validated our results using two alternative methods:131

a kernel conditional independence test (KCI;45) as implemented in the R package CondIndTests, and a test based on the gener-132

alised covariance measure (GCM;38) as implemented in the R package GeneralisedCovarianceMeasure. These additional tests of133

conditional independence were not part of our pre-specified analysis. We decided to conduct these additional tests to evaluate the134

robustness of our results across different methods of conditional independence testing (i.e. a sensitivity analysis). We used the same135

significance level α = 0.01 for the KCI as well as the GCM based tests to ensure compatibility with the pre-specified tests.136
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Estimating the average causal effect from M to F137

ASE theory predicts that fatigue is a feeling state that is triggered by a metacognitive diagnosis of loss of control over bodily states.138

We aimed to test this prediction as part of our Hypothesis 2: There is a negative average causal effect frommetacognition of allo-139

static control (M ) to fatigue (F )140
∂

∂m
Edo(M :=m) [F ] = θ3. (7)

Adjusting for covariates is one of various methods for estimating causal effects from observational data. Suppose we are interested141

in finding the effect ofM on F and assume the factors deemed relevant to the problem are structured as in Figure 1. In other words,142

we are interested in calculating the intervention distribution Pdo(M :=m)(f). Given a valid adjustment set (VAS) Z, here e.g. Z = (A,G),143

the intervention distribution can be calculated (see23,30,39) as Pdo(M :=m)(f) =
∑

z P(f | m, z)P(z), since144

Pdo(M :=m)(f) =
∑
z

Pdo(M :=m)(f,m, z) (8)

=
∑
z

Pdo(M :=m)(f | m, z)Pdo(M :=m)(m, z) (9)

=
∑
z

Pdo(M :=m)(f | m, z)Pdo(M :=m)(z) (10)

=
∑
z

P(f | m, z)P(z) (11)

where in the last step one can use the fact that causal relationships are autonomous under interventions (this property is some-145

times referred to as "autonomy")26 .146

In linear Gaussian systems, a causal effect fromM to F can be approximated by ∂
∂m

Edo(M :=m) [F ] (see e.g.26). Assuming that Z is a147

VAS for {M,F} and {M,F},Z follow a Gaussian distribution, then the conditional F | M = m,Z = z follows a Gaussian distribution as148

well. Hence, the mean of the distribution is given by149

E [F |M = m,Z = z] = θ3m+ btz (12)

for some θ3 and b. It follows from equation 11 that150
∂

∂m
Edo(M :=m) [F ] = θ3 (13)

One can estimate the conditional mean (eq. 12) by regressing F onM and Z and subsequently reading off the regression coeffi-151

cients forM . Alternatively, more sophisticated techniques for estimation of the average causal effect can be used, such as the propen-152

sity score method32 and double/debiased machine learning (DML;8). In Appendix B, the twomethods are described in more detail.153

As pre-specified in our analysis plan, we conducted linear regression in combination with a one-sided t-test on the regression coeffi-154

cient ofM to evaluate Hypothesis 2. We compared our estimate of the causal effect fromM to F obtained via linear regression with155

the results obtained from using more sophisticated estimation techniques, i.e. the propensity score method32 and DML8 , following156

our pre-registered analysis plan.157

Estimating the average causal effect from F *S on D158

Another prediction of ASE theory is that fatigue, in combination with a generalisation of low self-efficacy beliefs beyond bodily con-159

trol, induces depression. We formalised this prediction as part of our Hypothesis 3: There is a negative average causal effect of the160

interaction term between fatigue and general self-efficacy (F *S) on depression (D)161

∂

∂f∂s
Edo(F :=f,S:=s) [D] = θ10. (14)

Evaluation of Hypothesis 3 followed the same line of reasoning as for Hypothesis 2. We used linear regression in combination with162

a one-sided t-test on the regression coefficient of F *S. Subsequently, we compared the resulting estimate to the results obtained163
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using the propensity score method and DML.164

RESULTS165

Raw Data166

Figure 2 shows a scatter plot matrix of the raw data. Displayed are the measures for all variables A,G,M,F, S,D used in the analysis.167
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Figure 2: Scatter plot matrix of raw data used in the analysis. Displayed are all the pairwise scatter plots of the variables used for the analysis in a
matrix format. For example, the scatter plot located on the intersection of row 3 and column 2 is a plot of variables age versus fatigue (as
measured by the FSS). The variables displayed are gender, age, fatigue (assessed by the FSS), metacognition of allostatic control (assessed by the
MAIA3,8), self-efficacy (assessed by the GSES) and depression (assessed by the CES-D).

Results from the Statistical Analysis168

Causal structure of ASE theory in the PBIHB dataset169

Table 1 displays the results from conditional independence testing to evaluate the three predictions formulated as part of Hypothe-170

sis 1. The results can be summarised as follows:171

Table 1: Results from different conditional independence test methods (MIcg , GCM, KCI) for the three predictions formulated as part of
Hypothesis 1. Results are presented for three different test methods. An asterisk indicates statistically significant evidence against the null
hypothesis (H0 : variables are conditionally independent) using the pre-specified level α = 0.01, which corresponds to a threshold of p < 0.05
Bonferroni corrected for the multiple comparisons of the five tests, p-values are shown in parentheses.

Hypothesis 1 d-separation statement MIcg (p-value) GCM (p-value) KCI (p-value)

(i) M ⊥⊥J0
S | A,G 22.044* (1.634e-05) 4.254* (2.104e-05) 26.451* (5.194e-06)

(ii)
M ⊥⊥J0 D | F,A,G 24.167* (5.652e-06) -3.131* (0.001743) 8.513* (0.001346)

M ⊥⊥J0
D | F,A,G, S 16.883* (0.000216) -2.574 (0.010064) 2.992 (0.022626)

(iii)
F ⊥⊥J0

S | A,G 13.010* (0.001496) -3.390* (0.000700) 13.613* (0.001279)

F ⊥⊥J0
S | A,G,M 4.057 (0.131500) -2.088 (0.036799) 2.013 (0.118908)
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(i)M ̸⊥⊥ S | A,G. We find significant evidence that metacognition of allostatic control (M ) and general self-efficacy (S) are not in-172

dependent conditional on age (A) and gender (G) across all three different conditional independence test methods. In other words,173

we find a contradiction regarding the conditional independence ofM and S given A,G, within the DAG J0 .174

(ii)M ̸⊥⊥ D | F,A,G andM ⊥⊥ D | F,A,G, S. We find significant evidence thatM and depression (D) are not independent conditional175

on fatigue (F ), A, G across all three methods for conditional independence testing. This result is consistent with our findings for (i)176

in the sense that if we add a directed edge fromM to S in the DAG J0 (Figure 1), the only set of variables that d-separatesM andD177

is the set F,A,G, S (and not F,A,G). However, the results for conditional independence tests ofM andD conditional on F,A,G, S178

are mixed with 2 out of 3 tests (GCM and KCI) not reaching the pre-specified significance level α = 0.01. Hence further evidence is179

needed to draw conclusions regarding the statementM ⊥⊥ D | F,A,G, S.180

(iii) F ̸⊥⊥ S | A,G and F ⊥⊥ S | A,G,M . When looking at the conditional independence between F and S, the results depend on181

the set of variables that we condition on. We find significant evidence that F and S are not independent conditional on A,G across182

all three different test methods. However, we fail to reject the null hypothesis that F and S are independent conditional on the set183

M,A,G consistently across all three different test methods. This result is also in line with our findings for (i) in the sense that if we184

add a directed edge fromM to S in the DAG J0 (Figure 1), the only set of variables that d-separates F and S is the setM,A,G.185

Estimating the average causal effect from M to F186

As predicted by the ASE theory, we find significant evidence for a negative average causal effect frommetacognition of allostatic187

control (M ) to fatigue (F ) ∂
∂m

Edo(M :=m) [F ] = θ3 across all three different estimation methods. The resulting estimates θ̂3 for the VAS188

Z = (A,G) are displayed in Table 2 alongside lower and upper bounds of a 95% confidence interval for θ̂3 , the corresponding value189

of the t-statistic as well as the p-value for the one-sided t-test.190

Table 2: Average causal effect from M to F using Z = (A,G). Displayed are estimates of the average causal effect fromM to F θ̂3 across three
different methods to adjust for the covariates Z = (A,G). We report a point estimate θ̂3 , the lower and upper bounds of a 95% confidence
interval for θ̂3 , the value of the t-statistic as well as the p-value for the one-sided t-test. An asterisk indicates a statistical significance using the
pre-specified level α = 0.017 (Bonferroni-corrected).

estimation method θ̂3 confidence interval t value p-value

linear regression -0.4845* -0.712 -0.257 -4.259 3.968e-05

propensity score -0.4816* -0.717 -0.246 -4.092 6.689e-05

DML -0.3872* -0.6481 -0.1262 -2.9082 0.0018

The results from our sensitivity analysis, i.e. estimating θ3 using a different VAS Z = (A,G, S), are listed in Table 3. They confirm the191

finding of a negative average causal effect fromM to F when using Z = (A,G) as a VAS. The main difference between the results192

of the two analyses are that the second analysis using Z = (A,G, S) yields a slightly lower absolute value for θ̂3 as well as a non-193

significant p-value using the DMLmethod.194

Table 3: Average causal effect from M to F using Z = (A,G, S). Displayed are estimates of the average causal effect fromM to F θ̂3 across
three different methods to adjust for the covariates Z = (A,G, S). We report a point estimate of θ̂3 , the lower and upper bounds of a 95%
confidence interval for θ̂3 , the value of the t-statistic as well as the p-value for the one-sided t-test. An asterisk indicates a statistical significance
using the pre-specified level α = 0.017 (Bonferroni-corrected).

estimation method θ̂3 confidence interval t value p-value

linear regression -0.3545* -0.610 -0.099 -2.785 0.0037

propensity score -0.3775* -0.692 -0.063 -2.400 0.0098

DML -0.2049 -0.563 0.153 -1.122 0.1309
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Estimating the average causal effect from F *S to D195

We do not find evidence for the predicted negative average causal effect of the interaction term between fatigue and general self-196

efficacy (F *S) on depression (D) ∂
∂f∂s

Edo(F :=f,S:=s) [D] = θ10 across all three different estimation methods for both VAS Z = (A,G)197

and Z = (A,G,M). Tables containing the resulting estimates for θ̂10 including a 95% confidence interval and the value of the t-198

statistic as well as the p-value for the one-sided t-test are listed in the Appendix C.199

DISCUSSION200

In this paper, we proposed a formulation of the allostatic self-efficacy (ASE) theory of fatigue and depression in the language of causal201

inference. Specifically, we identified the variables of central interest to the ASE theory and formulated a structural causal model (SCM)202

under assumptions of linearity and normality. The SCM as well as the induced directed acyclic graph (DAG) describe the direction of203

causality among these variables. Using data of 60 healthy individuals from a previous study on interoception of breathing and its204

relation with several psychopathological constructs14 , we tested the proposed causal model empirically. Relying on the assumption205

of the Markov condition, we used the dataset to search for contradictions to conditional independence statements (Hypothesis 1)206

that are implied by the graph structure (d-separation). In a second and third step, we estimated the value of two causal effects that207

are predicted by the ASE theory using methods of covariate adjustment, propensity scores and double/debiased machine learning.208

As predicted by the ASE theory, we found a statistically significant negative average causal effect frommetacognition of allostatic209

control (M ) to fatigue (F ) ∂
∂m

Edo(M :=m) [F ] = θ3 across all three methods of estimation. Our sensitivity analysis using a different valid210

adjustment set largely confirmed this finding with two out of three estimation methods yielding a significant result.211

The assumption of the Markov condition establishes a connection from d-separation statements in a causal graph to conditional212

independence statements in the distribution. In the analysis of Hypothesis 1, we tested concrete predictions implied by the DAG213

J0 (Figure 1). (i) Using the the data from the PBIHB study, we were able to reject the null hypothesis ofM ⊥⊥ S | A,G at the pre-214

specified level α = 0.01. (ii) We found significant evidence againstM ⊥⊥ D | F,A,G in the empirical data set. However, in line with215

the graph structure J0 implied by the ASE theory, we did not find clear evidence againstM ⊥⊥ D | F,A,G, S. That is, only one out216

of three conditional independence tests rejected the null hypothesis of metacognition of allostatic control (M ) being independent217

from depression (D) conditional on the set F,A,G, S. (iii) We also found significant evidence against F ⊥⊥ S | A,G in the empirical218

data. Yet, we did not find any evidence against (iii) F ⊥⊥ S | A,G,M . All three conditional independence test methods consistently219

failed to reject the null hypothesis of fatigue (F ) and general self-efficacy (S) being independent given the set A,G,D,M .220

There are a number of potential explanations for the results related to Hypothesis 1. The most straightforward explanation is that221

the proposed causal model is incorrect. This can include the presence of additional edges between nodes as well as variables that222

were not considered acting as mediators or confounds or a combination of all of the aforementioned. For example, although the223

ASE theory does not make an explicit statement about a direct link betweenmetacognition of allostatic control (M ) and general224

self-efficacy (S), it is plausible to assume the existence of a directed edge fromM (the feeling of control over bodily states) to S (an225

individuals general expectation of personal mastery and control4). The construct of S is closely related to concepts of metacog-226

nition (see e.g.9) and represents a "global" construct of self-beliefs about one’s capacity to achieve goals and overcome adversity;227

this can be understood as including more "local" domain-specific forms of self-efficacy, such as metacognition of allostatic control.228

From this view, the idea that metacognition of allostatic control (M ) may contribute to (an thus influence) beliefs of general self-229

efficacy (S) is therefore not entirely unreasonable and would be a potential explanation for the results of (i) and (iii). More precisely,230

a directed edge fromM to S would renderM and S d-connected, since there would always exist a path betweenM and S that is231

not blocked by any set of variables. This cause-effect structure would explain the observed dependence between the two variables232

in the empirical data set according to Reichenbach’s common cause principle29 . Another consequence of introducing and edge233

fromM to S would be that the set of variables that d-separates F and S would consist of variables A,G,M and not A,G only, which234

corresponds to our findings for (iii). The same is true for the set of variables d-separatingM andD, which would consist of variables235

F,A,G, S and not F,A,G in this case, potentially explaining our findings for (ii). However, since the evidence for (ii)M ⊥⊥ D | F,A,G, S236

was mixed, further research needs to bring clarity to the question of (conditional) independence ofM andD.237
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The revised DAG J1 (Figure 3) provides a graphical summary of the above considerations regarding the results related to Hypoth-238

esis 1. From DAG J0 to J1 , we added a directed edge fromM to S. However, there are several other potential explanations for the239

observed results, so this example should by no means be taken as "the correct model". If anything, this should be regarded as an240

updated hypothesis to be tested in future investigations.241

Figure 3: Updated directed acyclic graph (DAG) J1 of the allostatic self-efficacy theory (ASE;40) providing one potential explanation for the
observed results from analysis of Hypothesis 1. Modifications from DAG J0 to J1 are shown in red.

Concerning Hypothesis 2, we found evidence for a negative average causal effect frommetacognition of allostatic control (M) to fa-242

tigue (F) ∂
∂m

Edo(M :=m) [F ] = θ3 across all three estimation methods (covariate adjustment, propensity scores, DML) for two differ-243

ent VAS. This is in line with the prediction by the ASE theory that the subjective experience of fatigue arises as a consequence of a244

metacognitive diagnosis that the brain’s control over bodily states is failing (low allostatic control). This also confirms findings from245

previous research, which identified metacognition of allostatic control (M ) (operationalised by the sum of the subscales 3 and 8 of246

the MAIA questionnaire) to be associated with fatigue (F ) scores33 . Our new results go beyond this previous finding, in the sense247

that the current study suggests a direction of the effect as opposed to purely associative statements. It is worth highlighting that248

the estimation of the causal effect fromM to F would not be affected by the proposed additional link betweenM to S as suggested249

by the analysis results concerning Hypothesis 1 (i) (see Figure 3) since the set A,G would still be a valid adjustment set (VAS).250

With regard to Hypothesis 3, we did not find evidence for a negative average causal effect of the interaction term between fatigue251

and general self-efficacy (F *S) on depression (D) ∂
∂f∂s

Edo(F :=f,S:=s) [D] = θ10 . The present work is, to the best of our knowledge,252

the first attempt to investigate the predicted influence of the interaction between fatigue and general self-efficacy on depression.253

Across all three different estimation methods and using different VAS, we found, if anything, very small effects. However, one may254

rightfully question whether the sample in this study was adequate for testing Hypothesis 3, at least in the context of the ASE theory.255

This is because our participants were drawn from the general population and, not surprisingly, did not show pronounced levels of256

depression (compare Figure 2). By contrast, predictions of the ASE theory concerning depression assume a clinically relevant state257

of depression40 . Therefore, the potential interaction effect F *S onD remains an open question that should be addressed in the fu-258

ture, using samples with clinically relevant levels of depression.259

The present study has a number of limitations. First of all, we are limited by certain features of the dataset at hand. In addition to260

the low levels of depression discussed above, the sample size (N=60) is relatively small. Therefore, it will be crucial to see whether261

our findings can be reproduced in larger population samples. Moreover, the dataset is purely observational, meaning that there are262

no interventions on any of the variables of interest. This makes the problem of causal inference (even more) challenging. A logical263

aim for future studies would be to use variables likeM as targets for cognitive interventions.264

Additionally, our analysis relies on the assumption that we have access to valid measurements of the variables in our SCM. While265

we employed validated and widely used measures for fatigue, depression, and general self-efficacy, there does not yet exist a val-266
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idated measurement tool that was specifically developed for the construct of metacognition of allostatic control (M ). Here, as in267

previous research33 , we used a plausible proxy measure, the sum of the MAIA subscales 3 and 8 (for a detailed motivation, please268

see the Methods section). An important goal for future research is the development and validation of easily applicable readouts for269

metacognition of allostatic control (M ).270

Beyond the limitations of the dataset, our proposed SCM of the ASE theory is arguably only a crude approximation to reality. The271

most obvious concern is the one of unobserved confounds, which we articulated in more detail in the discussion of the results from272

Hypothesis 1. More specifically, one important limitation of the present study is that our SCM does not include sleep. While sleep273

is not an explicit component of the ASE theory, previous work has repeatedly demonstrated the importance of sleep quality for fa-274

tigue (e.g.19,33). In the present study, we did not examine the potential influence of sleep since the available dataset did not include275

any measures of sleep quality.276

A second limitation is that we adopt the common assumption that all effects are linear and that all of the random variables follow277

a normal distribution (except gender). These assumptions of linearity and normality should be kept in mind when interpreting our278

findings for Hypotheses 2 and 3. Another potential drawback of our SCM is that we did not explicitly consider the role of time. Most279

of the variables in our SCM are plausibly considered to be dynamic states, i.e. their values are likely to change over time. In this work,280

we used a dataset representing a snapshot in time and implicitly assumed that the causal effects take place instantaneously. How-281

ever, it is plausible to assume that, for example, the effects of elevated fatigue levels do not immediately lead to elevated symptoms282

of depression, but that this effect evolves over timescales of weeks, months or even years.283

Finally, there are numerous assumptions underlying our statistical tests. Conditional independence testing, which lies at the heart284

of causal discovery39 , is one of its most challenging tasks34 . For Hypothesis 1, we additionally rely on the assumption of the Markov285

condition. Without going into details for any of these assumptions, we highlight that the strongest of all the assumptions made286

throughout the entire analysis is the assumption of unconfoundedness. In other words, our results are based on the assumption287

that our proposed SCM contains all variables relevant for the phenomenon under consideration. However, it is likely that further288

variables exist that influence those in the proposed SCM (e.g. sleep, see above). The omission of these (partially unknown) variables289

may affect the results for all three hypotheses that we tested.290

Despite the numerous limitations, this work also has several strengths worth highlighting. Foremost, we provided the first concrete291

formulation of the ASE theory in the language of causal inference. Our proposal of an SCM brings the content of a verbally formu-292

lated theory into the realm of concrete mathematical equations. Together with the induced DAG, they provide a formal basis for293

analysis and allowed us to identify a set of empirically testable hypotheses which may guide future research. Secondly, we used294

multiple independent methods for both conditional independence testing (Hypothesis 1) as well as the estimation of causal effects295

(Hypotheses 2 and 3). In this way, we are able to draw conclusions in that they do not depend on assumptions and properties of any296

single method. Last but not least, all of our hypotheses and statistical analysis procedures were pre-registered and specified in de-297

tail in an ex ante analysis plan (https://doi.org/10.5281/zenodo.10559656). Preregistration is an important and effective protection298

for the robustness of research, given the many degrees of freedom and the numerous cognitive biases that scientists may inadver-299

tently be affected by21 .300

CONCLUSIONS301

In summary, our work provides a formal basis for testing predictions by the ASE theory of fatigue and depression in the context of302

causal inference. We evaluated central aspects of our proposed SCM using a publicly available dataset and provided an updated303

version of the SCM that accounts for our empirical findings. In addition, we were able to confirm previous findings regarding the as-304

sociation betweenmetacognition of allostatic control (M ) and fatigue (F ). Our analysis enabled us to quantify the direction as well305

as the sign of the causal effect, i.e. we found a negative average causal effect fromM to F ∂
∂m

Edo(M :=m) [F ] = θ3 , as predicted by306

the ASE theory. Finally, we identified a number of open questions that remain to be addressed in future research and that may help307

unravel the mechanisms behind fatigue and depression.308

ACKNOWLEDGMENTS

Wewish to thank Jonas Peters for helpful discussions.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.24309015doi: medRxiv preprint 

https://doi.org/10.5281/zenodo.10559656
https://doi.org/10.1101/2024.06.17.24309015
http://creativecommons.org/licenses/by/4.0/


AUTHOR CONTRIBUTIONS

Conceptualization, A.J.H., D.W., J.H. and K.E.S.; methodology, A.J.H., J.H. and K.E.S.; software, A.J.H. and D.W.; validation, D.W.; formal
analysis, A.J.H.; investigation, A.J.H. and O.K.H.; resources, O.K.H. and K.E.S.; data curation, O.K.H.; writing—original draft preparation,
A.J.H.; writing—review and editing, A.J.H., D.W., O.K.H., J.H. and K.E.S.; visualization, A.J.H.; supervision, K.E.S.; project administration,
A.J.H.; funding acquisition, O.K.H. and K.E.S. All authors have read and agreed to the published version of the manuscript.

FUNDING

This research was funded by the René and Susanne Braginsky Foundation, the ETH Foundation and the University of Zurich. O.K.H.
(née Faull) was supported by a Marie Sklodowska-Curie Postdoctoral Fellowship from the European Unions Horizon 2020 research
and innovation program under the grant agreement 793580, and a Rutherford Discovery Fellowship from the Royal Society Te
Aprangi.

AUTHOR COMPETING INTERESTS

The authors declare no conflicts of interest.

AI ASSISTED TECHNOLOGIES

We did not use any AI assisted technologies, neither for data analysis nor during writing of the manuscript.

REFERENCES
[1] V. Ainley, M. A. J. Apps, A. Fotopoulou, and M. Tsakiris. Bodily precision: a predictive coding account of individual differences in interoceptive accuracy. Philosophical Trans-

actions of the Royal Society B: Biological Sciences, 371(1708):20160003, Nov. 2016. doi: 10.1098/rstb.2016.0003. URL https://royalsocietypublishing.org/doi/full/
10.1098/rstb.2016.0003. Publisher: Royal Society.

[2] A. P. Association. Diagnostic and Statistical Manual of Mental Disorders. 5 edition, 2013. URL https://dsm.psychiatryonline.org/doi/book/10.1176/appi.books.
9780890425596.

[3] P. Bach, V. Chernozhukov, M. S. Kurz, and M. Spindler. DoubleML – An Object-Oriented Implementation of Double Machine Learning in R, Jan. 2023. URL http://arxiv.
org/abs/2103.09603. arXiv:2103.09603 [cs, econ, stat].

[4] A. Bandura. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2):191–215, Mar. 1977. ISSN 0033295X. doi: 10.1037/0033-295X.84.
2.191. URL /record/1977-25733-001.

[5] K. A. Bollen. Structural equations with latent variables. Structural equations with latent variables. JohnWiley & Sons, Oxford, England, 1989. ISBN 978-0-471-01171-2.
doi: 10.1002/9781118619179. Pages: xiv, 514.

[6] S. Bongers, P. Forré, J. Peters, and J. M. Mooij. Foundations of structural causal models with cycles and latent variables. The Annals of Statistics, 49(5):2885–2915,
Oct. 2021. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2064. URL https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-5/
Foundations-of-structural-causal-models-with-cycles-and-latent-variables/10.1214/21-AOS2064.full. Publisher: Institute of Mathematical Statistics.

[7] A. Chaudhuri and P. O. Behan. Fatigue in neurological disorders. The Lancet, 363(9413):978–988, Mar. 2004. ISSN 0140-6736. doi: 10.1016/S0140-6736(04)15794-2.
URL https://www.sciencedirect.com/science/article/pii/S0140673604157942.

[8] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Double/debiased machine learning for treatment and structural parameters.
The Econometrics Journal, 21(1):C1–C68, Feb. 2018. ISSN 1368-4221. doi: 10.1111/ectj.12097. URL https://doi.org/10.1111/ectj.12097.

[9] I. Clark and G. Dumas. The regulation of task performance: A trans-disciplinary review. Frontiers in Psychology, 6(JAN):1862, Jan. 2016. ISSN 16641078. doi: 10.3389/
fpsyg.2015.01862. URL www.frontiersin.org. Publisher: Frontiers Media S.A.

[10] J. D. Fisk, P. G. Ritvo, L. Ross, D. A. Haase, T. J. Marrie, andW. F. Schlech. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clinical
Infectious Diseases, 18(Supplement_1):S79–S83, Jan. 1994. ISSN 1058-4838. doi: 10.1093/clinids/18.Supplement_1.S79. URL https://doi.org/10.1093/clinids/18.
Supplement_1.S79.

[11] S. M. Fleming and R. J. Dolan. The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594):1338–1349,
2012. ISSN 14712970. doi: 10.1098/rstb.2011.0417. Publisher: Royal Society.

[12] K. Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456):815–836, Apr. 2005. ISSN 0962-8436. doi:
10.1098/rstb.2005.1622. URL https://royalsocietypublishing.org/doi/10.1098/rstb.2005.1622. Publisher: Royal Society.

[13] K. J. Friston, J. Daunizeau, J. Kilner, and S. J. Kiebel. Action and behavior: a free-energy formulation. Biological Cybernetics, 102(3):227–260, Mar. 2010. ISSN 1432-0770.
doi: 10.1007/s00422-010-0364-z. URL https://doi.org/10.1007/s00422-010-0364-z.

[14] O. K. Harrison, L. Köchli, S. Marino, R. Luechinger, F. Hennel, K. Brand, A. J. Hess, S. Frässle, S. Iglesias, F. Vinckier, F. H. Petzschner, S. J. Harrison, and K. E. Stephan. In-
teroception of breathing and its relationship with anxiety. Neuron, 0(0):1–14, Oct. 2021. ISSN 0896-6273. doi: 10.1016/J.NEURON.2021.09.045. URL http:
//www.cell.com/article/S0896627321007182/fulltext. Publisher: Elsevier.

[15] S. S. Khalsa, R. Adolphs, O. G. Cameron, H. D. Critchley, P. W. Davenport, J. S. Feinstein, J. D. Feusner, S. N. Garfinkel, R. D. Lane, W. E. Mehling, A. E. Meuret, C. B. Nemeroff,
S. Oppenheimer, F. H. Petzschner, O. Pollatos, J. L. Rhudy, L. P. Schramm, W. K. Simmons, M. B. Stein, K. E. Stephan, O. Van den Bergh, I. Van Diest, A. von Leupoldt, M. P.
Paulus, V. Ainley, O. Al Zoubi, R. Aupperle, J. Avery, L. Baxter, C. Benke, L. Berner, J. Bodurka, E. Breese, T. Brown, K. Burrows, Y. H. Cha, A. Clausen, K. Cosgrove, D. Deville,
L. Duncan, P. Duquette, H. Ekhtiari, T. Fine, B. Ford, I. Garcia Cordero, D. Gleghorn, Y. Guereca, N. A. Harrison, M. Hassanpour, T. Hechler, A. Heller, N. Hellman, B. Herbert,
B. Jarrahi, K. Kerr, N. Kirlic, M. Klabunde, T. Kraynak, M. Kriegsman, J. Kroll, R. Kuplicki, R. Lapidus, T. Le, K. L. Hagen, A. Mayeli, A. Morris, N. Naqvi, K. Oldroyd, C. Pané-Farré,
R. Phillips, T. Poppa, W. Potter, M. Puhl, A. Safron, M. Sala, J. Savitz, H. Saxon, W. Schoenhals, C. Stanwell-Smith, A. Teed, Y. Terasawa, K. Thompson, M. Toups, S. Umeda, V. Up-
shaw, T. Victor, C. Wierenga, C. Wohlrab, H. w. Yeh, A. Yoris, F. Zeidan, V. Zotev, and N. Zucker. Interoception and Mental Health: A Roadmap. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging, 3(6):501–513, June 2018. ISSN 24519030. doi: 10.1016/j.bpsc.2017.12.004. Publisher: Elsevier Inc.

[16] S. L. Lauritzen and S. L. Lauritzen. Graphical Models. Oxford Statistical Science Series. Oxford University Press, Oxford, New York, May 1996. ISBN 978-0-19-852219-5.
[17] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Independence properties of directed markov fields. Networks, 20(5):491–505, 1990. ISSN 1097-0037. doi:

10.1002/net.3230200503. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200503.
[18] Z. M. Manjaly, N. A. Harrison, H. D. Critchley, C. T. Do, G. Stefanics, N. Wenderoth, A. Lutterotti, A. Müller, and K. E. Stephan. Pathophysiological and cognitive mechanisms

of fatigue in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 90(6):642–651, June 2019. ISSN 1468330X. doi: 10.1136/jnnp-2018-320050. URL
http://jnnp.bmj.com/. Publisher: BMJ Publishing Group.

[19] V. Nociti, F. A. Losavio, V. Gnoni, A. Losurdo, E. Testani, C. Vollono, G. Frisullo, V. Brunetti, M. Mirabella, and G. Della Marca. Sleep and fatigue in multiple sclerosis: A
questionnaire-based, cross-sectional, cohort study. Journal of the Neurological Sciences, 372:387–392, Jan. 2017. ISSN 0022-510X. doi: 10.1016/j.jns.2016.10.040.
URL https://www.sciencedirect.com/science/article/pii/S0022510X16306840.

[20] C. L. Nord and S. N. Garfinkel. Interoceptive pathways to understand and treat mental health conditions. Trends in Cognitive Sciences, 0(0), Apr. 2022. ISSN 1364-6613.
doi: 10.1016/J.TICS.2022.03.004. URL http://www.cell.com/article/S1364661322000626/fulltext. Publisher: Elsevier.

[21] B. A. Nosek, C. R. Ebersole, A. C. DeHaven, and D. T. Mellor. The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11):2600–2606, Mar.
2018. doi: 10.1073/pnas.1708274114. URL https://www.pnas.org/doi/10.1073/pnas.1708274114. Publisher: Proceedings of the National Academy of Sciences.

[22] W. H. Organization. ICD-10 : international statistical classification of diseases and related health problems : tenth revision. World Health Organization, 2004. ISBN 978-
92-4-154649-2. URL https://iris.who.int/handle/10665/42980. Accepted: 2012-06-16T14:40:38Z Journal Abbreviation: ICD-10.

[23] J. Pearl. Belief networks revisited. Artificial Intelligence, 59:49–56, 1993.
[24] J. Pearl. Causal Diagrams for Empirical Research. Biometrika, 82(4):669–688, 1995. ISSN 0006-3444. doi: 10.2307/2337329. URL https://www.jstor.org/stable/2337329.

Publisher: [Oxford University Press, Biometrika Trust].
[25] J. Pearl. Causality. Cambridge University Press, Sept. 2009. ISBN 978-0-521-89560-6. Google-Books-ID: f4nuexsNVZIC.
[26] J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, 2017. URL https://library.oapen.org/

handle/20.500.12657/26040. Accepted: 2019-01-20 23:42:51.
[27] F. H. Petzschner, L. A. Weber, T. Gard, and K. E. Stephan. Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagno-

sis. Biological Psychiatry, 82(6):421–430, Sept. 2017. ISSN 18732402. doi: 10.1016/j.biopsych.2017.05.012. Publisher: Elsevier USA.
[28] G. Pezzulo, F. Rigoli, and K. Friston. Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134:17–35, Nov. 2015. ISSN

18735118. doi: 10.1016/j.pneurobio.2015.09.001. Publisher: Elsevier Ltd.
[29] H. Reichenbach. The Direction of Time. Dover Publications, Mineola, N.Y., 1956.
[30] J. Robins. A new approach to causal inference in mortality studies with a sustained exposure periodapplication to control of the healthy worker survivor effect. Mathe-

matical Modelling, 7(9):1393–1512, Jan. 1986. ISSN 0270-0255. doi: 10.1016/0270-0255(86)90088-6. URL https://www.sciencedirect.com/science/article/pii/
0270025586900886.

[31] J. M. Robins, M. A. Hernan, and B. Brumback. Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology, 11(5):550, Sept. 2000. ISSN 1044-3983.
URL https://journals.lww.com/epidem/fulltext/2000/09000/marginal_structural_models_and_causal_inference_in.11.aspx.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.24309015doi: medRxiv preprint 

https://royalsocietypublishing.org/doi/full/10.1098/rstb.2016.0003
https://royalsocietypublishing.org/doi/full/10.1098/rstb.2016.0003
https://dsm.psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
https://dsm.psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
http://arxiv.org/abs/2103.09603
http://arxiv.org/abs/2103.09603
/record/1977-25733-001
https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-5/Foundations-of-structural-causal-models-with-cycles-and-latent-variables/10.1214/21-AOS2064.full
https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-5/Foundations-of-structural-causal-models-with-cycles-and-latent-variables/10.1214/21-AOS2064.full
https://www.sciencedirect.com/science/article/pii/S0140673604157942
https://doi.org/10.1111/ectj.12097
www.frontiersin.org
https://doi.org/10.1093/clinids/18.Supplement_1.S79
https://doi.org/10.1093/clinids/18.Supplement_1.S79
https://royalsocietypublishing.org/doi/10.1098/rstb.2005.1622
https://doi.org/10.1007/s00422-010-0364-z
http://www.cell.com/article/S0896627321007182/fulltext
http://www.cell.com/article/S0896627321007182/fulltext
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200503
http://jnnp.bmj.com/
https://www.sciencedirect.com/science/article/pii/S0022510X16306840
http://www.cell.com/article/S1364661322000626/fulltext
https://www.pnas.org/doi/10.1073/pnas.1708274114
https://iris.who.int/handle/10665/42980
https://www.jstor.org/stable/2337329
https://library.oapen.org/handle/20.500.12657/26040
https://library.oapen.org/handle/20.500.12657/26040
https://www.sciencedirect.com/science/article/pii/0270025586900886
https://www.sciencedirect.com/science/article/pii/0270025586900886
https://journals.lww.com/epidem/fulltext/2000/09000/marginal_structural_models_and_causal_inference_in.11.aspx
https://doi.org/10.1101/2024.06.17.24309015
http://creativecommons.org/licenses/by/4.0/


[32] P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, Apr. 1983. ISSN 0006-3444.
doi: 10.1093/biomet/70.1.41. URL https://doi.org/10.1093/biomet/70.1.41.

[33] M. Rouault, I. Pereira, H. Galioulline, S. M. Fleming, K. E. Stephan, and Z.-M. Manjaly. Interoceptive and metacognitive facets of fatigue in multiple sclerosis. European Jour-
nal of Neuroscience, 58(2):2603–2622, 2023. ISSN 1460-9568. doi: 10.1111/ejn.16048. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.16048.

[34] J. Runge. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, pages 938–947. PMLR, Mar. 2018. URL https://proceedings.mlr.press/v84/runge18a.html. ISSN: 2640-3498.

[35] M. Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical Software, 35:1–22, July 2010. ISSN 1548-7660. doi: 10.18637/jss.v035.i03.
URL https://doi.org/10.18637/jss.v035.i03.

[36] A. K. Seth. Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17(11):565–573, Nov. 2013. ISSN 13646613. doi: 10.1016/j.tics.2013.
09.007. Publisher: Elsevier Current Trends.

[37] A. K. Seth, K. Suzuki, and H. D. Critchley. An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 3(JAN):395, Jan. 2012. ISSN 16641078.
doi: 10.3389/fpsyg.2011.00395. URL www.frontiersin.org. Publisher: Frontiers.

[38] R. D. Shah and J. Peters. The hardness of conditional independence testing and the generalised covariance measure. The Annals of Statistics, 48(3):1514–1538,
June 2020. ISSN 0090-5364, 2168-8966. doi: 10.1214/19-AOS1857. URL https://projecteuclid.org/journals/annals-of-statistics/volume-48/issue-3/
The-hardness-of-conditional-independence-testing-and-the-generalised-covariance/10.1214/19-AOS1857.full. Publisher: Institute of Mathematical Statistics.

[39] P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2000. ISBN 978-0-262-19440-2.
[40] K. E. Stephan, Z. M. Manjaly, C. D. Mathys, L. A. Weber, S. Paliwal, T. Gard, M. Tittgemeyer, S. M. Fleming, H. Haker, A. K. Seth, and F. H. Petzschner. Allostatic self-efficacy:

A metacognitive theory of dyshomeostasis-induced fatigue and depression. Frontiers in Human Neuroscience, 10(NOV2016):550, Nov. 2016. ISSN 16625161. doi:
10.3389/fnhum.2016.00550. URL www.frontiersin.org. Publisher: Frontiers Media S. A.

[41] B. Toussaint, J. Heinzle, and K. E. Stephan. A computationally informed distinction of interoception and exteroception. Neuroscience & Biobehavioral Reviews, 159:
105608, Apr. 2024. ISSN 0149-7634. doi: 10.1016/j.neubiorev.2024.105608. URL https://www.sciencedirect.com/science/article/pii/S0149763424000770.

[42] W. M. v. d. Wal and R. B. Geskus. ipw: An R Package for Inverse Probability Weighting. Journal of Statistical Software, 43:1–23, Sept. 2011. ISSN 1548-7660. doi: 10.
18637/jss.v043.i13. URL https://doi.org/10.18637/jss.v043.i13.

[43] S. Weichwald and J. Peters. Causality in Cognitive Neuroscience: Concepts, Challenges, and Distributional Robustness. Journal of Cognitive Neuroscience, 33(2):226–247,
Feb. 2021. ISSN 1530-8898. doi: 10.1162/jocn_a_01623.

[44] S. Wessely. Chronic Fatigue: Symptom and Syndrome. Annals of Internal Medicine, 134(9_Part_2):838–843, May 2001. ISSN 0003-4819. doi: 10.7326/
0003-4819-134-9_Part_2-200105011-00007. URL https://www.acpjournals.org/doi/10.7326/0003-4819-134-9_part_2-200105011-00007. Publisher: American College of
Physicians.

[45] K. Zhang, J. Peters, D. Janzing, and B. Schoelkopf. Kernel-based Conditional Independence Test and Application in Causal Discovery, Feb. 2012. URL http://arxiv.org/
abs/1202.3775. arXiv:1202.3775 [cs, stat].

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.17.24309015doi: medRxiv preprint 

https://doi.org/10.1093/biomet/70.1.41
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.16048
https://proceedings.mlr.press/v84/runge18a.html
https://doi.org/10.18637/jss.v035.i03
www.frontiersin.org
https://projecteuclid.org/journals/annals-of-statistics/volume-48/issue-3/The-hardness-of-conditional-independence-testing-and-the-generalised-covariance/10.1214/19-AOS1857.full
https://projecteuclid.org/journals/annals-of-statistics/volume-48/issue-3/The-hardness-of-conditional-independence-testing-and-the-generalised-covariance/10.1214/19-AOS1857.full
www.frontiersin.org
https://www.sciencedirect.com/science/article/pii/S0149763424000770
https://doi.org/10.18637/jss.v043.i13
https://www.acpjournals.org/doi/10.7326/0003-4819-134-9_part_2-200105011-00007
http://arxiv.org/abs/1202.3775
http://arxiv.org/abs/1202.3775
https://doi.org/10.1101/2024.06.17.24309015
http://creativecommons.org/licenses/by/4.0/


APPENDIX A. DEFINITIONS

A1. Structural Causal Model
We adopt the definition of SCMs according to43 :

Definition 1. An SCM over variables X = [X1, ..., Xn] comprises

• structural equations which relate each variableXk to its parents PA(Xk) ⊆ {X1, ..., Xn} and a noise variable Nk via a function
fk such thatXk := fk (PA (Xk) , Nk), as well as a

• noise distribution PN of the noise variables N = [N1, ..., Nn]
T .

In a directed causal graph associated with an SCM, the nodes correspond to the variablesX1, ..., Xn and there is an edge from
Xi toXj wheneverXi appears on the right hand side of the equationXj := fj (PA (Xj) , Nj). In other words, ifXi ∈ PA(Xj) the
graph contains the edgeXi → Xj . For this work, we assume that the graph does not contain any cycles. The structural equations
together with the noise distributions induce the observational distribution PX ofX1, ..., Xn as simultaneous solution to the equa-
tions.

A2. Markov condition
Definition 2. Given a DAG G over nodes X, we say that the distribution PX satisfies

(i) the global Markov property (MP) with respect to G if ∀ disjoint A,B,C ⊆ X
A d-sep B | C =⇒ A ⊥⊥ B | C

(ii) the local Markov property (MP) if ∀j Xj ⊥⊥ NDj |PAj

(iii) the factorisation property if PX is absolutely constant with respect to a product measure and ∀x∀j, p(xPAj
) > 0 : p(x) =

p(x1, ..., xd) =
∏d

j p(xj |xPAj
)

In the above definition, we used the following notation: NDj represent the non-descendants of nodeXj and PAj denotes all nodes
that have a directed edge to nodeXj .

A3. d-separation
Definition 3. d-separation is a graphical criterion whether two nodes are connected or not. Let X, Y, Z disjoint.

(i) A pathX = i1, ..., im = Y is blocked by Z ⇐⇒ ∃ node ik with ik−1 → ik → ik+1 and ik ∈ Z
OR ∃ node ik with ik−1 ← ik ← ik+1 and ik ∈ Z
OR ∃ node ik with ik−1 ← ik → ik+1 and ik ∈ Z
OR ∃ node ik with ik−1 → ik ← ik+1 and ik /∈ Z andDE(ik) ∩ Z = ∅

(ii) X, Y are d-connected given Z ⇐⇒ ∃X ∈ X, Y ∈ Y s.t. ∃ path betweenX and Y that is not blocked

(iii) if X, Y are not d-connected, then they are d-separated. We sometimes write X d-sep Y | Z or X ⊥⊥G Y | Z

APPENDIX B. ESTIMATING CAUSAL EFFECTS USING COVARIATE ADJUSTMENT

B1. The "propensity score" method
In a point treatment situation one can adjust for a set of confounders Z = (A,G)when estimating the effect of exposureM by
weighting observations i by the inverse probability weights

wi =
1

P (Mi = mi | Zi = zi)
(15)

To increase statistical efficiency, one can use stabilised weights, e.g.

swi =
P (Mi = mi)

P (Mi = mi | Zi = zi)
(16)

When dealing with a continuous exposure variableM , one can use stabilised weights

swi =
f(mi)

f(mi | zi)
(17)

where f(mi) is the marginal density function ofM , evaluated at the observed value in unit i,mi , and f(mi | zi) conditional density
function ofM given Z, evaluated at the observed values in unit i, {mi, zi}42 . Weighting observations i by swi , one can fit a causal
model, for instance a marginal structural model (MSM)

E [Fm] = β0 + θ3m (18)

with continuous outcome fatigue F . The response variable Fm is the potential outcome that could have been observed in a unit un-
der study, when that unit would have received a specific treatment levelm31 . The expectation E [Fm] is the mean outcome, when all
units under study would have received a specific treatment levelm. Parameter θ3 then quantifies the causal effect ofM on F 42 .
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B2. Double/Debiased Machine Learning
DML removes the impact of regularisation bias and overfitting on estimation of the parameter of interest θ3 by using Neyman-orthogonal
moments and cross-fitting8 . One application of DML is in the context of a partial linear regression model,

F = Mθ3 + J0(Z) +Nf , E(Nf |M,Z) = 0, (19)
M = m0(Z) + V , E(V | Z) = 0, (20)

with fatigue F , metacognition of allostatic controlM , a VAS Z = (A,G) consisting of confounding covariates and stochastic error
terms Nf and V . The confounding covariates Z affectM and F via the functionsm0 and J0 , respectively. DML can be used to esti-
mate θ3 , i.e. the main regression coefficient that we would like to infer, which can be interpreted as the average causal effect fromM
to F3 .

APPENDIX C. RESULTS FROM ESTIMATING THE AVERAGE CAUSAL EFFECT FROM F *S TO D

Table 4: Average causal effect of the interaction term F *S to D using Z = (A,G). Displayed are estimates of the average causal effect of the
interaction term F *S toD θ̂10 across three different methods to adjust for the covariates Z = (A,G). We report a point estimate of θ̂10 , the lower
and upper bounds of a 95% confidence interval for θ̂10 , the value of the t-statistic as well as the p-value for the one-sided t-test. An asterisk
indicates a statistical significance using the pre-specified level α = 0.017 (Bonferroni-corrected).

estimation method θ̂10 confidence interval t value p-value

linear regression 0.0281 -0.191 0.247 0.257 0.6010

propensity score 0.0142 -0.151 0.180 0.172 0.5680

DML -0.2051 -0.476 0.066 -1.482 0.0691

Table 5: Average causal effect of the interaction term F *S to D using Z = (A,G,M). Displayed are estimates of the average causal effect of
the interaction term F *S toD θ̂10 across three different methods to adjust for the covariates Z = (A,G,M). We report a point estimate of θ̂10 ,
the lower and upper bounds of a 95% confidence interval for θ̂10 , the value of the t-statistic as well as the p-value for the one-sided t-test. An
asterisk indicates a statistical significance using the pre-specified level α = 0.017 (Bonferroni-corrected).

estimation method θ̂10 confidence interval t value p-value

linear regression 0.0671 -0.122 0.257 0.711 0.7599

propensity score 0.0337 -0.159 0.227 0.350 0.6362

DML 0.0153 -0.283 0.314 0.100 0.5399
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