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Abstract  

Frontotemporal Dementia (FTD) is a prevalent form of early-onset dementia characterized by 

progressive neurodegeneration. It encompasses a group of heterogeneous disorders, including 

behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary progressive 

aphasia (nfvPPA), and semantic variant primary progressive aphasia (svPPA). Due to disease 

heterogeneity and overlapping symptoms, diagnosis of FTD and its subtypes still poses a 

challenge. Magnetic-resonance imaging (MRI) is commonly used to support the diagnosis of 

FTD. Using machine learning and multivariate statistics, we tested whether brain atrophy 

patterns are associated with severity of cognitive impairment, whether this relationship differs 

between the phenotypic subtypes, and whether we could use these brain patterns to classify 

patients according to their FTD variant. 

A total of 136 patients (70 bvFTD, 36 svPPA, 30 nfvPPA) from the frontotemporal lobar 

degeneration neuroimaging initiative (FTLDNI) database underwent brain MRI and clinical 

and neuropsychological examination. Deformation-based morphometry (DBM), which offers 

increased sensitivity to subtle local differences in structural image contrasts was used to 

estimate regional cortical and subcortical atrophy. Atlas-based associations between DBM 

values and performance across different cognitive tests were assessed using partial least 

squares (PLS). We then applied linear regression models to discern the group differences 

regarding the relationship between atrophy and cognitive decline in the three FTD 

phenotypes. Lastly, we assessed whether the combination of neural and behavioral patterns in 

the latent variables identified in the PLS analysis could be used as features in a machine-

learning model to predict FTD subtypes in patients. 

Results revealed four significant latent variables that combined accounted for 86% of the 

shared covariance between cognitive and brain atrophy measures. PLS-based atrophy and 

behavioral patterns predicted the FTD phenotypes with a cross-validated accuracy of 89.12%, 

with high specificity (91.46-97.15%) and sensitivity (84.19-93.56%). When using only MRI 
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measures and two behavioral tests in the PLS and classification algorithm, ensuring clinical 

feasibility, our model was similarly precise (83.62%, specificity 86.38-93.51%, sensitivity 

76.17-87.50%). Here, including only atrophy or behavior patterns in the analysis led to 

prediction accuracies of 69.76% and 76.38%, respectively, highlighting the increased value 

of combining MRI and clinical measures in subtype classification.  

We demonstrate that the combination of brain atrophy and clinical characteristics, and 

multivariate statistical methods can serve as an imaging biomarker for early disease 

phenotyping in FTD, whereby inclusion of DBM measures adds to the classification 

precision in the absence of extensive clinical testing. 
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Introduction  

Frontotemporal Dementia (FTD) is one of the most common forms of early-onset dementia. 

It is characterized by atrophy and gliosis in the frontal and temporal lobes of the brain1 as 

well as neuropathological abnormalities in the form of hyperphosphorylated protein 

accumulations, typically composed of either tau or TDP-432,3. Clinically, it encompasses a 

group of heterogeneous neuropathological disorders causing a wide spectrum of symptoms, 

including changes in behavior, language, executive control, and motor symptoms4,5. The core 

FTD spectrum syndromes are behavioral variant frontotemporal dementia (bvFTD), 

nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant primary 

progressive aphasia (svPPA)6. Patients with bvFTD initially present with abnormal behavior, 

changes in personality and emotion, and reduced executive control and social cognition. This 

includes symptoms like disinhibition, compulsions, dietary changes, apathy, or lack of 

empathy7. In primary progressive aphasias, cognitive deficits predominantly manifest 

themselves in the language domain. About 5 to 7 years after symptom onset, as pathology 

spreads,5 patients develop additional behavioral symptoms of bvFTD. Patients with svPPA 

show progressive impairments in conceptual knowledge, word retrieval, and single-word 

comprehension whereas nfvPPA is defined by effortful speech in combination with motor 

speech apraxia and agrammatism8.  

Given the heterogeneity and considerable overlap of clinical symptoms and pathology of 

FTD with other disorders, the diagnosis of FTD still poses a significant challenge to 

clinicians9. To date, no validated FTD-specific plasma, cerebrospinal fluid or positron 

emission tomography biomarkers have been identified. Structural magnetic resonance 

imaging (MRI) is therefore commonly used in clinical practice to confirm a diagnosis of 

FTD10. However, MRI is currently insufficiently sensitive to detect subtle neuronal loss in the 

early stages of the disease11, leading to delayed or incorrect diagnoses. This leads to delayed 

and inappropriate treatment and increased distress for patients and caretakers. The 

development of biomarkers for the detection and diagnosis of FTD at symptom onset is 

critical to ensure optimal care for patients as well as to accurately inform critical trials. As 

methods of morphometric analysis and the use of multivariate statistics and machine learning 

methods are advancing, it is becoming increasingly feasible to combine MRI-based features 

with these techniques to improve early detection and diagnosis. 
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Previous MRI studies on FTD have largely focused on assessing gray matter atrophy as 

measured by cortical thickness or voxel-based morphometry10. The findings of these studies 

corresponded to evidence from post-mortem studies in that they demonstrated specific 

patterns of atrophy in frontal and temporal cortices on a group level12,13. BvFTD has been 

related to atrophy in fronto-insular cortices as well as basal ganglia14–17. SvPPA has been 

associated with left anterior temporal pole and hippocampal atrophy18–21. In nfvPPA, atrophy 

seems to be most prevalent in the left inferior frontal gyrus, specifically involving Broca’s 

area12,22–25. Another method to estimate atrophy patterns in MRI images is deformation-based 

morphometry (DBM). Using DBM has considerable advantages over other estimations of 

cortical atrophy. While voxel-based morphometry and cortical thickness estimation depend 

on automated tissue segmentation, occasionally leading to erroneous tissue classification and 

thereby to incorrect calculation of gray matter volume26, DBM does not directly rely on 

image contrast to represent tissue alterations. DBM is also more sensitive to subtle 

differences as it matches images locally (i.e. at voxel level) based on similarities in contrast 

and intensities27,27,28. This makes DBM a potential candidate for diagnostic purposes, given 

the need for improved diagnostic biomarkers for FTD and particularly for the categorization 

of patients according to FTD variants. However, only few studies have applied DBM in the 

context of FTD. For instance, studies focusing on bvFTD identified the insula and anterior 

and medial temporal regions as epicenters of brain atrophy29,30. In svPPA, the left medial 

temporal lobe and perirhinal cortex have been implicated31. Cardenas et al.32 studied DBM in 

FTD patients and found atrophy in the frontal lobes and anterior temporal lobes as well as in 

the thalamus, pons, and superior and inferior colliculi. While these findings broadly align 

with the conclusions of other MRI studies, they also highlight the utility of DBM in 

identifying small changes in gray matter structure, especially in subcortical areas33. 

Previous attempts at an automated classification of FTD patients based on structural MRI in 

combination with machine learning techniques have achieved high accuracy (80-90%) in 

distinguishing patients from control groups10. However, few cases have implemented a 

multiclass approach34–40. As binary classifiers necessitate the exclusion of all but two 

potential clinical labels, multiclass methods offer greater value from a clinical standpoint. 

Additionally, FTD subtypes represent a spectrum, making it challenging for a binary variable 

to fully encompass their nuances. Thus, we opted for a multiclass method here. Furthermore, 

many studies grouped FTD clinical variants together in their analysis. Considering their 

heterogeneity in terms of behavioral and neurodegenerative features, early detection of 
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specific FTD syndromes is highly relevant to determine appropriate treatments. While studies 

achieved high accuracies22,41, only two studies classified each FTD subtype against a group of 

all others and patients with Alzheimer’s Disease. Notably, Tahmasian et al. (2016)42 achieved 

high specificity (97.5% and 94.2%) but very poor sensitivity (50% and 0%). Kim et al. 

(2019)43 used cortical thickness measures in a hierarchical classification scheme to classify 

FTD subtypes which resulted in an accuracy of 75.8%. Improved implementation of machine 

learning is therefore crucial for enhancing early detection of FTD variants. 

The present study took advantage of the sensitivity of DBM measurements to capture the 

relationship between brain atrophy patterns and disease-related clinical measures in the three 

main variants of FTD. Modeling the relationship between brain atrophy and cognitive decline 

individually in three phenotypic variants (bvFTD, svPPA, nfvPPA) might make it possible to 

disambiguate the different domains of disease within the FTD population and their link with 

brain morphometric measures. Here, we used a multivariate method to relate the different 

cognitive symptoms of FTD variants to system-wide atrophy patterns. We analyzed data from 

136 FTD patients who were diagnosed with either bvFTD, svPPA, or nfvPPA from the 

frontotemporal lobar degeneration neuroimaging initiative (FTLDNI) database. We used 

DBM as a measure of structural brain alterations, in combination with partial least squares 

(PLS)44–46 to quantify the magnitude and pattern of volume change in different FTD variants 

as compared to each other and to identify the cortical and subcortical structures most 

sensitive to change. Using the resulting patterns that maximally explain the covariance 

between FTD subtypes, we were able to predict FTD variant diagnosis in our cohort. 

In concordance with previous neuroimaging and ex vivo studies, we expected pathological 

changes in fronto- and temporocortical regions as well as subcortical structures. The main 

aim of this study was to enhance the understanding of the disease mechanisms underlying 

FTD and to provide potential early imaging biomarkers for disease severity assessment and 

phenotyping. 
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Materials and methods  

Participants 

Data analyzed in this study includes participants from the FTLDNI that had T1-weighted MR 

images. The FTLDNI was founded through the National Institute of Aging and started in 

2010 (https://memory.ucsf.edu/research/studies/nifd). The primary goals of FTLDNI are to 

identify neuroimaging modalities and methods of analysis for tracking frontotemporal lobar 

degeneration and to assess the value of imaging versus other biomarkers in diagnostic roles. 

Baseline and follow-up data from 136 FTLDNI participants were included in this study. Data 

was accessed and downloaded through the LONI platform in July 2023. We included patients 

with bvFTD (n(baseline) = 70, n(followup) = 38), svPPA (n(baseline) = 36, n(followup) = 

24), and nfPPA (n(baseline) = 30, n(followup) = 15). The inclusion criteria for FTD patients 

were diagnosis of possible or probable FTD according to the FTD consortium criteria7. All 

subjects provided informed consent and the protocol was approved by the institutional review 

boards at all sites. 

Clinical assessment 

All participants were assessed at the initial visit for clinical characteristics (motor, non-motor, 

and neuropsychological performance) by site investigators. The neuropsychological 

assessment included Mini-Mental State Examination (MMSE) and Clinical Dementia Rating 

Scale (CDR) as measures of global cognition, forward digit span and California Verbal 

Learning Test (CVLT, items recalled correctly after four learning trials, items recalled 

correctly after 30 second delay, items recalled correctly after 10-minute delay, and word 

recognition) as measures of verbal memory and learning, Modified Trail Making Test 

(MTMT, time and correct lines) and backward digit span as measures of executive function, 

as well as Verbal Fluency (phonological and semantic), Boston Naming Test (BNT), and 

Peabody Picture Vocabulary Test (PPVT) as measures of language ability. 

Structural MRI acquisition and processing 

For details on MRI acquisition protocols and scanner information, please refer to 

https://cind.ucsf.edu/research/grants/frontotemporal-lobar-degeneration-neuroimaging-

initiative-0. 
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T1w scans for each participant were pre-processed through our standard pipeline including 

noise reduction47, intensity inhomogeneity correction48, and intensity normalization into the 

range [0-100]. The pre-processed images were then linearly (9 parameters: 3 translation, 3 

rotation, and 3 scaling)49 and nonlinearly50 registered to the MNI-ICBM152-2009c average51. 

The quality of the linear registrations was visually verified by an experienced rater (author 

M.D.), blinded to the diagnostic group. Only 7 scans did not pass this quality control step and 

were discarded. 

DBM values 

DBM analysis was performed using MNI MINC tools29. The principle of DBM is to warp 

each individual scan to a common template through a non-linear deformation, where local 

shape differences between the two images (i.e., the subject's T1w image and the template) are 

encoded in the deformations. The local deformation obtained from the non-linear 

transformations can then be used as a measure of tissue expansion or atrophy by estimating 

the determinant of the Jacobian for each transform. Local contractions can be interpreted as 

shrinkage of tissue (atrophy) and local expansions are often related to ventricular or sulci 

enlargement. DBM was used to assess regional volumetric differences whereby DBM values 

were calculated based on 102 regions from CerebrA atlas52. 

 

Statistical analysis 

Demographics and cognitive scores 

All statistical analyses were performed using MATLAB version R2022a. One-way ANOVAs 

were conducted to compare demographic and cognitive variables at baseline, followed by 

independent t-tests with Tukey HSD correction for multiple comparisons. Categorical 

variables (i.e., sex) were analyzed using chi-square analyses. Results are expressed as 

mean±standard deviation and [median]. A p-value of p <0.05 was considered statistically 

significant. 

Partial least squares regression 

PLS analysis was used to relate behavioral and brain atrophy patterns44,46. The goal of the 

analysis is to identify combinations of cognitive scores and brain patterns that optimally 

covary with each other. PLS is a multivariate technique used to establish relationships 
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between two sets of variables. This approach can be used to identify weighted linear 

combinations of variables that exhibit a high degree of covariation45. The resulting linear 

combinations of these variables can be construed as atrophy networks and their 

corresponding clinical manifestations. 

 

 

Figure 1. Partial Least Squares (PLS) analysis flowchart. Z-scored matrices for DBM data and 
behavioral/demographic data were combined into a single brain * behavior covariation matrix. Consequently, 
we applied single value decomposition to the resulting matrix, yielding orthogonal latent variables (LV). Each 
LV represented atrophy patterns linked to clinical characteristics, with their associated singular value reflecting 
the covariance between atrophy and behavior (for detailed explanation see Zeighami et al53). We then applied 
linear regression models to discern the differences between the diagnostic FTD groups in terms of behavior and 
brain patterns in each LV. Lastly, we used the individual brain and behavior scores of each patient as features in 
a machine learning classifier (employing an ensemble of discriminant learners with bagging aggregation 
method) to predict the FTD subtype of each subject both in the baseline and follow-up visit data. 

 

We followed the approach described in Zeighami et al.53 (Fig.1). Behavioral and brain data 

were represented as two matrices X and Y, with X representing cognitive scores in 12 

columns, while Y representing brain measure across 102 regions using the CerebrA atlas. The 

matrices were standardized through z-scoring and a correlation matrix (X�Y) was computed. 

The correlation matrix was then subjected to singular value decomposition (SVD54). 

X′Y=UΔV′  (1) 
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The decomposition process results in a collection of orthogonal latent variables (LVs), with U 

and V constituting the matrices of left and right singular vectors, while Δ is a diagonal matrix 

containing the singular values. The covariance explained by each latent variable is used as its 

effect size. 

The statistical significance of each LV was evaluated using permutation tests. The rows of 

matrix X were randomly permuted (repeated 500 times), and the behavior-brain correlation 

matrix was recomputed. The permuted correlation matrices were subjected to SVD as before, 

generating the null distribution for the covariance explained across LVs, which was then used 

to calculate the P-value. 

The contribution of individual variables was assessed through bootstrap resampling. By 

random sampling with replacement of participants (repeated 500 times). As a result, a 

sampling distribution was generated for each individual weight within the singular vectors. A 

"bootstrap ratio" was computed for each CerebrA region, representing the ratio of its singular 

vector weight to its standard error estimated through bootstrapping and used to identify 

voxels that make substantial contributions to the atrophy patterns55. Bootstrap ratio maps 

were thresholded using the 95% confidence interval criterion. 

Group differences between FTD variants 

To gauge the extent to which the data driven PLS patterns differ between the FTD variants, 

patient-specific scores were computed. Specifically, the brain and behavioural patterns for 

latent variables were projected onto individual patients’ data, producing scalar atrophy scores 

and behavioral scores for each subject. These scores are akin to principal component scores 

or factor scores: 

Brain score�=�XU  (2) 

Behavioral score�=�YV (3) 

We then used the following Linear Regression Model to assess if the relationship between 

atrophy scores and behavioral scores differs between the three phenotypic FTD groups: 

Behavioral score ~ Brain score + variant + Brain score:variant  (4) 
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The variable of interest was the interaction term, Brain score:variant, which indicates the 

slope differences between the three FTD subtypes and reflects the contribution of cortical 

atrophy to cognitive performance in each diagnostic group. 

 

Predictive capacity of the model 

We assessed whether the combination of brain and behavioral patterns identified in the PLS 

analysis could be used as features to predict FTD subtypes in patients. To this end, we 

employed a machine learning multi-class ensemble classifier, using an ensemble of 

discriminant learners (bagging aggregation method). A 10-fold cross-validation scheme was 

performed on 100 randomized train and test splits to assess the performance of the classifier. 

We used the combination of neural and behavioral patterns in the latent variables identified in 

the PLS analysis as features to train the model. The model then predicted clinical diagnoses 

(i.e. FTD variants) in the test data. Performance of the model was evaluated in terms of 

prediction accuracy for each cross-validation fold (mean and standard deviation) by 

comparing the predicted diagnostic group with the clinician diagnosis (‘gold standard’) in the 

cross-validated test subset. We also examined the sensitivity and specificity of our model for 

each FTD subtype. Note that the FTD variant information was not included in any previous 

steps (i.e. the PLS analysis), to avoid leakage of information in the variant classification task. 

As our model included measures of disease severity, we also tested the precision of the 

predictions in a severity-matched sample, based on CDR scores (only including participants 

with CDR scores below 1.5), to ensure that the model does not solely rely on group 

differences in disease severity. 

Finally, we validated the stability of our model by projecting brain and behavior patterns of 

the LVs onto the longitudinal data to predict patients’ FTD subtype diagnosis. Using the 

same machine learning multi-class ensemble classifier as before, we utilized the baseline data 

as the training set and tested the performance of the model on the longitudinal data as the test 

set. Note that prediction for the longitudinal timepoints was also performed within the same 

cross-validation scheme, and no data from baseline visits of the same participants were used 

in the training folds for the longitudinal predictions. We converted follow-up test and DBM 

scores into z-scores based on the baseline data, by matching each score to the respective 

baseline z-score. This ensured that follow-up values were comparable to the baseline (cross-
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sectional) dataset. We again measured the prediction accuracy, as well as sensitivity and 

specificity, of the model in identifying the diagnosed FTD variant of the patient. 

To ensure the clinical utility of our diagnostic approach in terms of time and necessary 

neuropsychological test batteries, we repeated the PLS analysis and prediction while 

including minimal variables that can be completed in under an hour, i.e. only using T1w MRI 

derived DBM values for the brain patterns (5-10 minutes), and CDR (box score, language 

score, and behavior score, ~30minutes) and BNT (5-15minutes) for the behavior score. As 

the full battery of tests included in our PLS analysis takes over 2 hours to administer, a 

minimal assessment including CDR and BNT is more feasible and still informative for 

clinicians. 

 

Longitudinal changes 

To determine the longitudinal change of the brain and behavior patterns resulting from the 

PLS analysis, we compared the scores of each patient with a baseline and follow-up visit (n = 

32) using pairwise t-tests. Lastly, we calculated the yearly rate of change in behavior and 

brain scores for each FTD syndrome to investigate whether the progression of clinical 

symptoms and atrophy patterns differs between diagnostic groups. We then used unpaired t-

tests to compare the rates of change between the FTD variants.  

 

      (4) 

This analysis was repeated for the brain and behavior scores of each LV separately. For 

longitudinal measurements, we selected the time point for each subject that was closest to a 

one-year follow-up after the baseline assessment. The mean time between baseline and 

follow-up visits was 1.03 years (sd = 0.44) with a range of 0.40 - 3.57 years. 

Data availability  

FTLDNI MRI and clinical measures are available through https://ida.loni.usc.edu/login.jsp. 

Derived data supporting the findings of this study, including individual PLS scores, are 

available from the corresponding author on request.  
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Results  

Demographic and clinical characteristics 

Table 1 compares demographic variables and cognitive test scores between bvFTD, svPPA, 
and nfvPPA patients at baseline. Significant differences were observed in age distribution, 
with nfvPPA subjects being on average older compared to other groups (bvFTD: p< 001; 
svPPA: p<.007). Clinical measures also showed notable distinctions (Supplementary Table 
1). 
Table 1. Baseline demographic and cognitive characteristics in FTD subtypes. Values expressed as mean 
(standard deviation). Asterisks indicate significant group differences based on one-way ANOVA or chi-square 
analysis comparing the groups. bvFTD = behavioral variant FTD; svPPA = semantic variant primary 
progressive aphasia; nfvPPA = nonfluent variant primary progressive aphasia.            

 

 

 

 bvFTD svPPA nfvPPA p-value 

Demographics 

Number of subjects (total n=136) 70 36 30  

Age (years, mean (SD) 61.47 (6.39)  63 (6.30)  68.10 (7.90)  <.001* 

Sex (M:F, %M) 47:23 (67.14%) 20:16 (55.56%) 14:16 (46.67%) .137 

Education  15.61 (2.88) 17.03 (2.88)  16.91 (3.30)  .031* 

Cognition 

CDR box score 6.3 (3.3) 4.1 (2.3) 2.5 (2.5) <.001* 

CDR language 0.7 (0.6) 1.1 (0.6) 1.3 (0.7) <.001* 

CDR behavior 1.3 (0.8) 1.1 (0.6) 0.5 (0.5) <.001* 

MMSE 23.6 (4.9) 24.4 (5.1) 25.5 (5.1) .287 

CVLT memory 19.3 (7.7) 17.0 (6.5) 21.9 (7.7) .053 

CVLT recall after 30second delay 4.3 (2.7) 2.9 (2.5) 5.5 (2.9) .002* 

CVLT recall after 10minute delay 3.2 (2.8) 1.8 (2.3) 5.3 (2.8) <.001* 

CVLT recognition 7.1 (1.8) 6.4 (2.4) 8.2 (0.9) .002* 

Digit span forward 5.6 (1.3) 6.8 (1.5) 5.0 (1.3) <.001* 

Digit span backward 3.5 (1.4) 4.9 (1.3) 3.5 (1.4) <.001* 

MTMT correct lines 9.9 (5.0) 13.3 (2.5) 12.2 (3.9) .001* 

MTMT time 74.0 (40.4) 46.9 (29.5) 62.9 (39.1) .008* 

Verbal fluency phonological 6.6 (4.5) 8.6 (4.5) 7.0 (5.0) .132 

Verbal fluency semantic 9.4 (6.3) 8.1 (4.1) 11.6 (8.4) .137 

BNT 12.2 (3.1) 5.0 (3.6) 12.3 (2.9) <.001* 

PPVT 13.2 (3.3) 8.6 (4.2) 14.5 (2.0) <.001* 
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PLS analysis 

The PLS analysis revealed four statistically significant latent variables relating behavioral 

measures in FTD to their corresponding brain atrophy patterns (permuted p < 0.05) at 

baseline. These patterns respectively account for 44.16%, 28.05%, 8.02%, and 5.75% (total 

of 85.98%) of the shared covariance between clinical and brain atrophy measures (Fig.2). 

 

Figure 2: Covariance explained and permutation p-values for all latent variables in the PLS analysis. 
Latent variable I (LV-I, covariance explained = 44.16%, p<0.001), latent variable II (LV-II, covariance 
explained = 28.05%, p<0.001), latent variable III (LV-III, covariance explained = 8.02%, p<0.05), and latent 
variable IV (LV-IV, covariance explained = 5.75%, p<0.05) are selected for further analysis based on p-value 
(permuted p < 0.05). 

 

Behavioral and atrophy patterns 

In summary, LV-I mostly represented confrontational naming and verbal learning/memory 

skills and was associated with temporal lobe structure and subcortical areas. LV-II captured 

diverse cognitive features in combination with frontal and subcortical atrophy patterns, while 

LV-III and LV-IV encompassed behavioral aspects and distributed atrophy networks. 
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The cognitive features contributing to the first LV (LV-I, Fig.3C), in order of magnitude, 

were impaired performance in confrontational naming (BNT and PPVT), verbal learning 

(CVLT), semantic verbal fluency, and MMSE, but comparatively higher scores in working 

memory/executive function (digit span). The corresponding brain pattern for this clinical 

profile was largely driven by atrophy in the temporal lobes and subcortical areas (amygdala, 

nucleus accumbens, hippocampus) on the one hand, and higher volume in the cerebellum on 

the other hand (Fig.3A/B, see Supplementary Table 2 and 3 for specific brain areas). 

For the second LV (LV-II), greater impairment in CDR sum of boxes, higher age, and higher 

BNT score, as well as lower MMSE scores, digit span, and phonological verbal fluency 

contributed to covariation. Regarding DBM measurements, predominantly increased 

ventricular expansion and lower volume in left frontal areas (including Broca’s area) and 

subcortical structures (pallidum, thalamus, but lower hippocampal volume), were involved.  

Supplementary Figure 1 shows an example of how the putative brain network and the 

associated behavioral phenotype relate to each other. For each LV, we estimated patient-

specific scores by projecting the brain and behavior patterns onto individual patients’ data 

(see Methods). The resulting scalar values (termed brain scores and behavior scores) reflect 

the extent to which an individual patient expresses each pattern. The two scores are 

correlated, i.e. patients with greater atrophy in the network in Fig.3A/B also tend to conform 

more closely to the clinical phenotype in Fig.3C. In LVs I and II, patients who score highly 

on both likely have more severe pathology, and we illustrate this by coloring the points 

(individual patients) by their MMSE scores. Individuals with more pronounced atrophy and 

symptom severity also tend to score highly on MMSE, a measure of global cognition. 

Brain and behavior patterns for LVs III and IV are shown and discussed in the Supplementary 

Figure 2 and Table 4. 
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Figure 3: Latent variables I and II (LVs I - II) obtained from the PLS analysis. A, Brain pattern bootstrap 
ratios in MNI space, surface projection. Maps only include regions that significantly contribute to the LV, as 
estimated by bootstrapping values and confidence intervals. B, Brain pattern bootstrap values in MNI space, 
horizontal view illustrating subcortical structures and cerebellum. C, Pattern of demographic and cognitive test 
scores. The effect size estimates are derived from SVD analysis and the Confidence Intervals (CI) are calculated 
by bootstrapping. 

 

Group differences 

Fig.4 shows how the putative atrophy network and associated behavioral patterns are related 

to each other in individual patients and how these associations differ between FTD variants. 

While this measure is derived from the overall population, when compared between the 

groups of interest it can provide further insight regarding the heterogeneity and nuances of 

the disease sub-groups as it indicates whether the relationship and the degree of pattern 

expression are consistent or diverse across groups. 
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Figure 4: Individual patients’ brain versus behavioral PLS score and group differences between FTD 
variants. A, LV-I (adjusted R2= 0.569, p<.001). B, LV-II (adjusted R2 = 0.409, p<0.001). bvFTD = behavioral 
variant FTD; svPPA = semantic variant primary progressive aphasia; nfvPPA = nonfluent variant primary 
progressive aphasia. 

 

Compared to bvFTD, the brain and behaviour scores in LV-I had stronger associations (i.e. 

steeper slopes) in svPPA and nfvPPA (Fig.4A), although these slope differences were 

statistically marginal (p~0.08). For LV-II, the nfvPPA subtype had a significantly higher 

intercept (tStat=2.57, p=0.01) and slope (tStat=2.19, p=0.03) compared to the bvFTD variant, 

suggesting that it expresses the behaviour pattern to a greater extent and that the atrophy 

pattern has a more pronounced impact on cognition patterns in patients with nfvPPA, i.e. LV-

II is reflective of the cognition and atrophy patterns of nfvPPA.  
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Table 2. Differences in the predictions of the PLS model for the different FTD subtypes in LVs I and II, 

as determined by a linear regression model. P-values are reported after correction for multiple comparisons 

using a false discovery rate controlling method with a significance threshold of 0.05. Significant intercept or 

slope differences are indicated by an asterisk. bvFTD = behavioral variant FTD; svPPA = semantic variant PPA; 

nfvPPA = nonfluent variant PPA. 

Contrast  tStat p-value 

Latent variable I 

bvFTD vs svPPA Intercept 0.305 0.761 

 Slope -1.764 0.082 

bvFTD vs nfvPPA Intercept -0.220 0.827 

 Slope -1.787 0.078 

svPPA vs nfvPPA Intercept -0.413 0.680 

 Slope 0.188 0.852 

Latent variable II 

bvFTD vs svPPA Intercept -1.412 0.162 

 Slope -0.426 0.672 

bvFTD vs nfvPPA Intercept -2.575 0.012* 

 Slope -2.192 0.032* 

svPPA vs nfvPPA Intercept -0.654 0.516 

 Slope -1.336  0.186 

 

Predictive capacity of the model 

We examined the capacity of the combination of neural and behavioral patterns in the latent 

variables identified in the PLS analysis as features to predict clinical outcomes in patients. 

We applied a multi-class machine learning classifier with a 10-fold cross-validation loop on 

100 randomized train and test splits. The predicted FTD subtype classification based on brain 

and behavior scores (including 16 cognitive scores and age, education, and sex) was then 

compared to clinician variant diagnoses; the resulting 3-class mean prediction accuracy over 

all repetitions was 89.12%. The mean sensitivity ranged from 84.19% for nfvPPA to 93.56% 

for bvFTD, with mean specificities of 91.46% for bvFTD to 97.15% for svPPA (Table 3). 

When we exclusively included brain scores in our model, the accuracy was reduced to 

69.76%, whereas predictions based on the full battery of behavioral scores were 86.05% 

accurate. 
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Projecting the results of the PLS analysis onto the longitudinal data of the same cohort as an 

in-sample validation (with subject-level cross-validation), our classification model achieved 

an accuracy of 88.09%, suggesting robustness of our model. 

To assess whether our model was adaptable for a clinical setting with limited time and 

resources, we repeated our analyses while only including the CDR scales and the BNT into 

the PLS and our classification model (Supplementary Figure 3). Using these minimal 

variables, our model still achieved an accurate FTD subtype classification of 83.62%. Here, 

the combination of brain and clinical measures was crucial as predictions only using the 

behavior scores were only accurate 76.38% of the time. Notably, adding MRI measures to the 

clinical model increased the sensitivity for both PPAs by over 15% (70.19% to 87.50% for 

svPPA and 61.13% to 76.17% for nfvPPA).  

To ensure our models did not solely rely on disease severity as a predictor, we repeated all 

the analyses in severity-matched subsamples (CDR<1.5). The models achieved similar 

accuracies within these severity-matched samples (Table 3), suggesting that the models do 

not use severity in symptoms to differentiate the patients across variants. 
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Table 3. Results of the classification analysis. Machine learning was used to predict diagnosis of FTD variant 
for each participant in a k-fold cross-validation. Results are presented as mean values and SD. bvFTD = 
behavioral variant FTD; svPPA = semantic variant PPA; nfvPPA = nonfluent variant PPA. 

 Classification  accuracy Sensitivity Specificity Balanced accuracy 

Brain patterns only (including age/sex/education)  

brain 69.76% (sd=2.73%) bvFTD: 63.50% (sd=4.28%) 

svPPA: 93.76% (sd=2.00%) 

nfvPPA: 50.71% (sd=6.51%) 

bvFTD: 76.28% (sd=3.15%) 

svPPA: 94.92% (sd=1.65%) 

nfvPPA: 82.47% (sd=2.26%) 

bvFTD: 69.89% 

svPPA: 94.34% 

nfvPPA: 66.59% 

 in CDR matched sample 

brain 

 

68.99% (sd=2.78%)  bvFTD: 58.20% (sd=5.19%) 

svPPA: 93.42% (sd=2.07%) 

nfvPPA: 53.15% (sd=6.26%) 

 bvFTD: 77.39% (sd=2.97%) 

svPPA: 93.40% (sd=1.91%) 

nfvPPA: 82.69% (sd=2.18%) 

bvFTD: 67.80% 

svPPA: 93.41% 

nfvPPA: 67.92% 

longitudinal data 

brain 

71.94% (sd=3.08%) 

 

 

bvFTD: 67.92% (sd=6.08%) 

svPPA: 89.27% (sd=3.51%) 

nfvPPA: 56.11% (sd=6.19%) 

bvFTD: 79.35% (sd=3.46%) 

svPPA: 94.95% (sd=1.14%) 

nfvPPA: 83.52% (sd=3.05%) 

bvFTD: 73.64% 

svPPA: 92.11% 

nfvPPA: 69.81% 

Behavior patterns only: Maximal model (including 16 cognitive scores, age/sex/education)  

behavior 86.05% (sd=1.51%) bvFTD: 87.34% (sd=2.49%) 

svPPA: 84.92% (sd=2.12%) 

nfvPPA: 85.43% (sd=2.61%) 

bvFTD: 91.65% (sd=1.63%) 

svPPA: 94.53% (sd=0.57%) 

nfvPPA: 92.74% (sd=1.54%) 

bvFTD: 89.50% 

svPPA: 89.73% 

nfvPPA: 89.08% 

 in CDR matched sample 

behavior 

 

 85.88% (sd=1.41%)  bvFTD: 84.20% (sd=3.08%)  

svPPA: 84.42% (sd=2.19%) 

  nfvPPA: 89.75% (sd=1.10%) 

 bvFTD: 93.66% (sd=1.30%) 

   svPPA: 93.40% (sd=0.38%) 

  nfvPPA: 91.88% (sd=1.64%) 

bvFTD: 88.93% 

svPPA: 88.91% 

nfvPPA: 90.82% 

longitudinal data 

behavior 

  92.47% (sd=1.99%)  bvFTD: 92.00% (sd=1.64%) 

svPPA: 86.82% (sd=5.69%) 

nfvPPA: 100% (sd=0%) 

bvFTD: 100% (sd=0%) 

svPPA: 100% (sd=0%) 

nfvPPA: 89.52% (sd=2.77%) 

bvFTD: 96.00% 

svPPA: 93.41% 

nfvPPA: 94.76% 

Combination brain + behavior: Maximal model (including 16 cognitive scores, age/sex/education)  

brain + behavior 89.12% (sd=1.21%) bvFTD: 88.88% (sd=2.10%) 

svPPA: 93.56% (sd=2.04%) 

nfvPPA: 84.19% (sd=3.02%) 

bvFTD: 91.46% (sd=1.75%) 

svPPA: 97.15% (sd=1.06%) 

nfvPPA: 94.65% (sd=0.80%) 

bvFTD: 90.17% 

svPPA: 95.36% 

nfvPPA: 89.42% 

 in CDR matched sample 

brain + behavior 

88.88% (sd=1.51%) bvFTD: 85.84% (sd=2.63%) 

svPPA: 93.25% (sd=2.12%) 

nfvPPA: 87.45% (sd=2.80%) 

bvFTD: 92.89% (sd=1.64%) 

svPPA: 96.78% (sd=1.16%) 

nfvPPA: 93.69% (sd=0.77%) 

bvFTD: 89.37% 

svPPA: 95.02% 

nfvPPA: 90.57% 

longitudinal data 

brain + behavior 

88.09% (sd=1.45%) 

 

bvFTD: 85.71% (sd=3.43%) 

svPPA: 92.31% (sd=1.56%) 

nfvPPA: 90.00% (sd=0%) 

bvFTD: 95.65% (sd=0.86%) 

svPPA: 95.83% (sd=0.48%) 

nfvPPA: 92.59% (sd=1.82%) 

bvFTD: 90.68% 

svPPA: 94.07% 

nfvPPA: 91.30% 

Behavior only: Minimal model (including CDR, BNT, age/sex/education)  

behavior (CDR + BNT) 76.38% (sd=1.20%) bvFTD: 84.82% (sd=1.80%) 

svPPA: 70.19% (sd=1.74%) 

nfvPPA: 61.13% (sd=3.08%) 

bvFTD: 80.91% (sd=1.74%) 

svPPA: 89.07% (sd=0.82%) 

nfvPPA: 91.52% (sd=1.23%) 

bvFTD: 82.87% 

svPPA: 79.63% 

nfvPPA: 76.33% 

CDR 63.87% (sd=1.70%) bvFTD: 83.14% (sd=1.79%) 

svPPA: 25.58% (sd=3.07%) 

nfvPPA: 65.52% (sd=4.27%) 

bvFTD: 64.48% (sd=1.53%) 

svPPA: 83.52% (sd=1.93%) 

nfvPPA: 91.26% (sd=0.81%) 

bvFTD: 73.81% 

svPPA: 54.55% 

nfvPPA: 78.39% 

BNT 71.77% (sd=0.99%) 

 

bvFTD: 84.75% (sd=1.30%) 

svPPA: 78.12% (sd=0.00%) 

nfvPPA: 28.13% (sd=3.47%) 

bvFTD: 65.41% (sd=1.64%) 

svPPA: 89.97% (sd=0.37%) 

nfvPPA: 93.96% (sd=1.04%) 

bvFTD: 75.08% 

svPPA: 84.05% 

nfvPPA: 61.05% 

 in CDR matched sample 

behavior 

 

73.98% (sd=1.42%) bvFTD: 80.00% (sd=2.37%) 

svPPA: 71.53% (sd=1.86%) 

nfvPPA: 63.91% (sd=3.22%) 

bvFTD: 81.73% (sd=1.84%) 

svPPA: 87.86% (sd=1.02%) 

nfvPPA: 89.67% (sd=1.48%) 

bvFTD: 80.87% 

svPPA: 79.70% 

nfvPPA: 76.79% 

in CDR matched sample 

CDR 

60.10% (sd=1.94%) bvFTD: 78.23% (sd=2.06%) 

svPPA: 27.09% (sd=3.25%) 

nfvPPA: 66.74% (sd=4.56%) 

bvFTD: 67.07% (sd=1.63%) 

svPPA: 79.62% (sd=2.41%) 

nfvPPA: 89.65% (sd=0.94%) 

bvFTD: 72.65% 

svPPA: 53.36% 

nfvPPA: 78.20% 

in CDR matched sample 

BNT 

70.17% (sd=0.99%) bvFTD: 83.31% (sd=0.89%) 

svPPA: 80.00% (sd=0.00%) 

nfvPPA: 29.35% (sd=3.62%) 

bvFTD: 65.34% (sd=1.73%) 

svPPA: 88.99% (sd=0.45%) 

nfvPPA: 94.77% (sd=0.86%) 

bvFTD: 74.33% 

svPPA: 84.50% 

nfvPPA: 62.06% 
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longitudinal data 

behavior 

84.95% (sd=1.22%) bvFTD: 85.08% (sd=1.72%) 

svPPA: 89.05% (sd=1.97%) 

nfvPPA: 79.13% (sd=2.25%) 

bvFTD: 91.40% (sd=1.18%) 

svPPA: 90.36% (sd=0.91%) 

nfvPPA: 95.03% (sd=1.28%) 

bvFTD: 88.24% 

svPPA: 89.71% 

nfvPPA: 87.08% 

Combination brain + behavior: Minimal model (including CDR, BNT, age/sex/education)  

brain + behavior 83.62% (sd=1.19%) 

 

bvFTD: 84.35% (sd=1.61%) 

svPPA: 87.50% (sd=0.00%) 

nfvPPA: 76.17% (sd=4.21%) 

bvFTD: 86.38% (sd=1.76%) 

svPPA: 93.34% (sd=0.79%) 

nfvPPA: 93.51% (sd=0.89%) 

bvFTD: 85.37% 

svPPA: 90.42% 

nfvPPA: 84.84% 

CDR + brain 73.63% (sd=1.40%) 

 

bvFTD: 80.46% (sd=1.53%) 

svPPA: 64.78% (sd=2.73%) 

nfvPPA: 68.38% (sd=3.80%) 

bvFTD: 77.17% (sd=1.83%) 

svPPA: 87.20% (sd=1.14%) 

nfvPPA: 92.43% (sd=0.99%) 

bvFTD: 78.82% 

svPPA: 75.99% 

nfvPPA: 80.40% 

BNT + brain 76.74% (sd=1.16%) bvFTD: 83.72% (sd=1.37%) 

svPPA: 87.84% (sd=1.32%) 

nfvPPA: 43.04% (sd=3.40%) 

bvFTD: 69.27% (sd=1.82%) 

svPPA: 95.33% (sd=0.47%) 

nfvPPA: 93.02% (sd=0.99%) 

bvFTD: 76.50% 

svPPA: 91.59% 

nfvPPA: 68.03% 

 in CDR matched sample 

brain + behavior 

 

 81.54% (sd=1.42%) 

 

 bvFTD: 79.24% (sd=2.13%) 

svPPA: 90.00% (sd=0.00%) 

nfvPPA: 75.14% (sd=4.40%) 

bvFTD: 87.54% (sd=1.86%) 

svPPA: 91.75% (sd=0.98%) 

nfvPPA: 92.03% (sd=1.09%) 

bvFTD: 83.39% 

svPPA: 90.88% 

nfvPPA: 83.59% 

in CDR matched sample 

CDR + brain 

72.39% (sd=1.60%) bvFTD: 76.38% (sd=1.73%) 

svPPA: 68.35% (sd=2.61%) 

nfvPPA: 69.78% (sd=4.10%) 

bvFTD: 80.46% (sd=1.87%) 

svPPA: 85.65% (sd=1.32%) 

nfvPPA: 90.77% (sd=1.21%) 

bvFTD: 78.42% 

svPPA: 77.00% 

nfvPPA: 80.28% 

in CDR matched sample 

BNT + brain 

75.08% (sd=1.22%) bvFTD: 81.92% (sd=1.45%) 

svPPA: 90.37% (sd=1.41%) 

nfvPPA: 40.57% (sd=3.55%) 

bvFTD: 69.42% (sd=1.92%) 

svPPA: 94.24% (sd=0.57%) 

nfvPPA: 93.59% (sd=1.01%) 

bvFTD: 75.67% 

svPPA: 92.31% 

nfvPPA: 67.08% 

longitudinal data 

brain + behavior 

85.77% (sd=2.04%)   bvFTD: 81.77% (sd=2.64%) 

svPPA: 92.85% (sd=2.59%) 

nfvPPA: 87.00% (sd=5.71%) 

bvFTD: 94.43% (sd=2.45%) 

svPPA: 90.27% (sd=1.33%) 

nfvPPA: 94.38% (sd=1.72%) 

bvFTD: 88.10% 

svPPA: 91.56% 

nfvPPA: 90.69% 

 

Stability of brain atrophy and clinical patterns 

To ensure that age, sex, or education were not driving the observed relationship between 

brain characteristics and cognitive function in the patients, we repeated the analyses after 

regressing out the effects of age, sex, and education based on the healthy control group (see 

Supplementary Table 5). The results remained largely unchanged in terms of the number of 

LVs, their behavioral patterns and differences between FTD variants, and their prediction 

accuracy in classifying subjects into FTD subgroups. This suggests that the findings in FTD 

patients reflect disease processes rather than changes in cognitive functioning in healthy 

aging. Neural patterns were very similar after this step, as shown in Supplementary Figure 4. 

Longitudinal progression of brain atrophy and clinical patterns 

In terms of the longitudinal changes of brain and behavior scores in the entire patient cohort, 

we found that the brain patterns in all four LVs (I: p=0.007, II: p<0.001, III: p<0.001, IV: 

p<0.003) as well as behavior patterns in LVs I and II (I: p=0.006, II: p<0.002) significantly 

worsened over time (Supplementary Figure 5). Scores in the behavioral pattern of LV-IV 

slightly increased over time (p=0.007). As expected, since baseline and follow-up visits were 
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only about one year apart, the changes are relatively small. With regard to the yearly rate of 

change in the three diagnostic groups, we only found differences between variants in LV-I 

(Fig.5). Here, we found significant differences in the delta values for behavioral scores, with 

increased changes in svPPA individuals compared to both bvFTD (tStat=-2.8541, p<0.01) 

and nfvPPA (tStat=-3.1358, p<0.006). Similarly, the svPPA variant changed more in terms of 

their brain scores than the nfvPPA subtype (tStat=-3.2975, p=0.004). 

 

Figure 5:  Boxplots showing the longitudinal progression of brain and behavior scores for LVs I and II. A, 
Yearly rate of change in behavior scores in the three FTD variants. B, Yearly rate of change in brain scores in 
the three FTD variants. Asterisks indicate significant group differences based on unpaired t-tests comparing the 
groups. BV: bvFTD, SV: svPPA, PNFA: nfvPPA.  
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Discussion  

The present study links clinical features of the three core FTD subtypes, bvFTD, svPPA, and 

nfvPPA, to the underlying brain atrophy pattern using a single integrated analysis. In these 

three cohorts, in addition to higher age, a range of cognitive characteristics, including global 

cognitive function, language, and executive function, were linked to brain atrophy. While 

atrophy patterns were widely distributed across both cortical and subcortical structures, the 

covariance between atrophy and behavioral measures was largely explained by the 

involvement of frontal and temporal lobes and subcortical structures. We also found 

differences in baseline and longitudinal cognitive performance and in the relationship 

between atrophy and cognition between bvFTD, svPPA, and nfvPPA. This allowed us to use 

the observed atrophy and cognition patterns in a prediction model, yielding high prediction 

accuracy (89.12%), sensitivity, and specificity in classifying FTD patients into phenotypes as 

compared to clinician subtype diagnosis as a gold standard. Even when only including 

minimal features (DBM values, CDR subscales, and BNT scores) as predictors, our model 

outperformed previous attempts at automated diagnosis of FTD, thereby demonstrating 

clinical utility. In this scenario, the MRI-derived features crucially contributed to the 

diagnostic accuracy (76% versus 83% without and with MRI features, respectively). This 

provides promising evidence that the combination of DBM and multivariate statistical 

methods could potentially aid the automated diagnosis and classification of FTD patients, in 

addition to constituting a means to investigate the complex manifestations of cognitive 

decline in FTD in relation to patterns of brain atrophy. 

Our data driven PLS results align with previous findings on neuropathological changes in 

FTD. We found that the covariation of FTD groups explained in LV-I was partially explained 

by atrophy in the temporal lobe. While temporal lobe atrophy has been mostly associated 

with svPPA12, some studies indicate that it can also contribute to symptoms in bvFTD, 

especially in combination with hippocampal abnormalities56, which we also saw in LV-II. 

This has been interpreted as the involvement of dysfunction of the default mode, limbic, and 

salience networks in the pathogenesis of bvFTD57, leading to the observed changes in 

emotional and social processing. Particularly in LV-II, our results show that atrophy in the 

frontal lobe plays a crucial role in behavioral and cognitive symptoms in FTD, including 

impairment of executive function, attention, and language. Additionally, we found that 

structural changes in the insula contributed to cognitive decline and specifically seemed to 
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distinguish nfvPPA from svPPA in LV-I. Due to its extensive anatomical and functional 

connections to linguistic, motor, and sensory areas in the frontal cortex58,59, the insula has 

been associated with semantic, syntactic, and phonological processing60 and seems to be 

responsible for the development of motor speech disorders like apraxia61. This explains its 

potential involvement in the pathophysiology of nfvPPA. The atrophy pattern in LV-III was 

largely driven by cerebellar structural changes. Behavioral impairment in genetic FTD has 

been associated with cerebellar atrophy56,62 and seems to show distinct patterns between FTD 

subtypes, specifically involvement of lobule VII in bvFTD and lobule VI in nfvPPA63 which 

we found in LV-I, although we did not find focal atrophy in lobule V as previously 

described63. While the contribution of frontotemporal-lobar degeneration to cognitive 

symptoms in FTD has been widely established5, subcortical atrophy is only recently receiving 

more attention. In LV-II, we found pronounced atrophy around the ventricles as distinctive 

features between FTD subgroups, confirming findings that ventricular expansion is a 

common feature of bvFTD and constitutes a sensitive and reliable marker of disease 

progression29. Involvement of the thalamus and amygdala, which we found in several LVs, 

has been reported for both sporadic and genetic FTD and seems to precede cortical 

atrophy56,57,64. Previous studies have shown distinctive atrophy patterns in the thalamus 

between the core FTD subtypes65,66. Considering that the amygdala is part of the limbic 

system and is implicated in emotional processing and reward learning67, it is not surprising 

that our analyses found involvement of this structure. Overall, this suggests that investigating 

subcortical atrophy in FTD is a promising avenue for both diagnostic purposes and improving 

our understanding of neural mechanisms underlying clinical presentation. It also highlights 

the utility of DBM in assessing cortical and subcortical atrophy given its improved accuracy 

in detecting structural changes in deeper brain layers. 

To test whether the brain and behaviour patterns derived from the PLS analysis were useful 

as informative features that could separate individual patients with different FTD syndromes, 

we assessed prediction of FTD subtype in an automated machine learning procedure. 

Classification accuracy was 89.12%, with sensitivities for different variants ranging from 

84.19% to 93.56% and specificities of 91.46% to 97.15%. We validated the robustness of our 

model by projecting the results of the PLS analysis onto the longitudinal data of the same 

cohort as well as testing our model in a disease severity-matched sample of this cohort and 

obtained similar accuracies. Importantly, we also tested whether the combination of atrophy 

scores and only two neuropsychological tests (CDR and BNT) would be sufficient to 
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distinguish FTD syndromes. These measures were chosen because they are clinically useful, 

and because they require little time compared to the full test battery used in our maximal 

model. This is relevant as patients’ attention and capability to endure lengthy examinations is 

reduced and clinicians have limited time for extensive testing. Even with these minimal input 

variables (combined with the MRI information), our model achieved an accuracy of 83.62%. 

These accuracies are comparable with or superior to those of similar studies. While studies 

usually achieve high accuracy when differentiating FTD patients from healthy controls10, few 

groups attempted to identify the FTD subtype22,41, only one of which used a three-way 

comparison rather than comparing two groups against each other at a time42. The latter study 

resulted in high specificity (94.2-97.5%) but low sensitivity (0-50%). Given that predictions 

were less accurate in our study when we used behavioral variables only, the strength of our 

approach seems to lie in the combination of neural and clinical characteristics in the patients, 

particularly the use of DBM, as well as the application of a multivariate statistics method that 

allows us to capture the maximal covariance across features that leads to a data-driven 

separation between groups, indicated by the clear separation between variants in terms of 

brain scores in LVs I and IV particularly. These results suggest that automated methods 

incorporating DBM-derived atrophy and clinical performance could assist in the diagnosis of 

FTD subtypes. 

One of the strengths of this study is that our image processing pipelines have been developed 

and extensively validated for use in multi-center and multi-scanner datasets of aging and 

neurodegenerative disease populations and provide robust and sensitive DBM 

measures29,30,53. We further quality-controlled all the steps of the pipeline to ensure the 

accuracy of the results. Similarly, we have demonstrated the reliability of our analysis results 

repeating all steps after regressing out the effects of healthy aging. An intriguing result of this 

study is the high prediction accuracy (over 89%) our approach achieved for classifying FTD 

patients according to FTD variant. This is particularly relevant given that differential 

diagnosis of FTD as opposed to other psychiatric disorders and even controls still poses a 

challenge9,68,69. While many MRI studies indicate good diagnostic accuracy when comparing 

subjects with bvFTD and cognitively unimpaired individuals or patients with Alzheimer’s 

Disease, they rarely achieve a higher accuracy than about 80%10. To our knowledge, there is 

only one study to date that has attempted to predict FTD subtypes solely based on MRI 

data70. This study focused on ventricular features to discriminate bvFTD from PPAs in the 

FTLDNI cohort. The best accuracies in these dichotomous comparisons were 66% and 71% 
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respectively, meaning our approach to a three-way comparison outperformed this study. This 

highlights the increased sensitivity of DBM as well as the potential utility of DBM paired 

with multivariate statistics in the diagnosis of FTD. This is an important step for improving 

patient care and diagnostic prognosis. 

The present study has some limitations that need to be taken into account. Although PLS 

provides a comprehensive approach to investigating brain-behavior relations, it cannot 

provide insight into how each particular clinical manifestation potentially relates to a specific 

brain region, rather than the atrophy pattern as a whole. Such individual relationships need to 

be addressed in future studies. Another methodological consideration is that these results are 

valid only for the sample of FTD patients included here. Further validation is needed in 

larger, more diverse samples before we can be confident that the observed results will 

generalize to the rest of the population. These samples should include logopenic and semantic 

behavioral as well as genetic variants of FTD to cover the entire disease spectrum as well as 

subjects with a higher range of educational and ethnic backgrounds. Furthermore, sample 

sizes in the FTLDNI cohort are small, particularly for the two PPA groups, and some relevant 

information on the subjects is missing, such as disease duration, time from diagnosis, and 

comorbidities, potentially obscuring confounding factors in our analyses. It should also be 

noted that the bvFTD patients displayed higher disease severity than other groups which 

might impact our analyses. Similarly, our analyses could not cover all cognitive domains 

since many participants did not undergo respective testing and the FTLDNI did not collect 

information on language comprehension and writing/reading skills, for instance. To 

investigate the diagnostic utility of our approach which uses machine learning and 

multivariate statistics, future studies could directly compare traditional approaches, including 

cortical thickness and voxel-based morphometry, to our results and include genetic variants 

of FTD in their sample to ensure generalizability over the entire spectrum of FTD. 

Altogether, findings in this study demonstrate a robust mapping between neurodegeneration 

as estimated by DBM values and the cognitive manifestations of the core FTD subtypes. The 

combination of DBM and multivariate statistical methods could potentially serve as an 

imaging biomarker for diagnosis and phenotyping in FTD and thereby improve early disease 

management and automated diagnosis. 
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