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Key Points 41 

Question: Can individuals be accurately classified as high or low pain sensitive based on two 42 

features of cortical activity: sensorimotor peak alpha frequency (PAF) and corticomotor 43 

excitability (CME)?  44 

Findings: In a cohort study of 150 healthy participants, the performance of a logistic 45 

regression model was outstanding in a training set (n=100) and excellent in a test set (n=50), 46 

with the combination of slower PAF and CME depression predicting higher pain. Results 47 

were reproduced across a range of methodological parameters, and inclusion of covariates did 48 

not improve model performance 49 

Meaning: A novel cortical biomarker comprised of PAF and CME can accurately distinguish 50 

high and low pain sensitive individuals  51 

 52 
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Abstract 62 

Background: Biomarkers would greatly assist chronic pain management. The present study 63 

aimed to undertake analytical validation of a sensorimotor cortical biomarker signature for 64 

pain consisting of two measures: sensorimotor peak alpha frequency (PAF) and corticomotor 65 

excitability (CME), using a human model of prolonged temporomandibular pain (masseter 66 

intramuscular injection of nerve growth factor [NGF]). 67 

Methods: 150 participants received an injection of NGF to the right masseter muscle on Days 68 

0 and 2, inducing prolonged pain lasting up to 4 weeks. Electroencephalography (EEG) to 69 

assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on 70 

Days 0, 2 and 5. We determined the predictive accuracy of the PAF/CME biomarker 71 

signature using a nested control-test scheme: machine learning models were run on a training 72 

set (n = 100), where PAF and CME were predictors and pain sensitivity was the outcome. 73 

The winning classifier was assessed on a test set (n = 50) comparing the predicted pain labels 74 

against the true labels. 75 

Results: The winning classifier was logistic regression, with an outstanding area under the 76 

curve (AUC=1.00). The locked model assessed on the test set had excellent performance 77 

(AUC=0.88). Results were reproduced across a range of methodological parameters. 78 

Moreover, inclusion of sex and pain catastrophizing as covariates did not improve model 79 

performance, suggesting the model including biomarkers only was more robust. PAF and 80 

CME biomarkers showed good-excellent test-retest reliability. 81 

Conclusions: This study provides evidence for a sensorimotor cortical biomarker signature 82 

for pain sensitivity. The combination of accuracy, reproducibility, and reliability, suggests the 83 

PAF/CME biomarker signature has substantial potential for clinical translation. 84 
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Several objective pain biomarkers have been proposed, including neuroimaging 85 

markers of mechanistic/structural abnormalities1-3, neural oscillatory rhythms4 and “multi-86 

omics” metrics of micro RNA5, proteins6 , lipids and metabolites7. Such biomarkers would 87 

greatly assist decision making in the diagnosis, prevention and treatment of chronic pain8.  88 

However, attempts at establishing pain biomarkers have suffered from either insufficient 89 

sample sizes to conduct full-scale analytical validation using machine learning8-10,  failure to 90 

use clinically relevant pain models11-13 or lack of assessment of reproducibility or test-retest 91 

reliability14,15. These factors have hindered the clinical translatability of prospective pain 92 

biomarkers.  93 

Research suggests that the neural oscillatory rhythms involved in processing 94 

nociceptive input, and the corticospinal signalling involved in the subsequent motor response, 95 

are both critical in shaping the subjective experience of pain4,16.  This work has culminated to 96 

the identification of a promising sensorimotor cortical biomarker signature for predicting pain 97 

sensitivity involving two metrics: 1) sensorimotor peak alpha frequency (PAF), defined as the 98 

dominant sensorimotor cortical oscillation in the alpha (8-12Hz) range17 and 2) corticomotor 99 

excitability (CME), defined as the efficacy at which signals are relayed from primary motor 100 

cortex (M1) to peripheral muscles18. Previous work has shown that slower PAF prior to pain 101 

onset and reduced CME during prolonged pain (“depression”) are associated with more pain, 102 

while faster PAF and increased CME (“facilitation”) are associated with less pain19-23. Given 103 

individuals who experience higher pain in the early stages of a prolonged pain episode (e.g. 104 

post-surgery) are more likely to develop chronic pain in the future24, slow PAF prior to an 105 

anticipated prolonged pain episode and/or CME depression during the acute stages of pain 106 

could be predictors for the transition to chronic pain.  107 

This paper presents the main outcomes of the PREDICT trial, a pre-registered 108 

(NCT0424156225) analytical validation of the PAF/CME biomarker signature using a model 109 
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of prolonged myofascial temporomandibular pain (masseter intramuscular injection of nerve 110 

growth factor [NGF]). Repeated NGF injections induce progressively developing prolonged 111 

pain lasting up to 4 weeks23,26, and has been shown to mimic chronic pain characteristics such 112 

as time course (gradual development), type of pain (movement-evoked), functional 113 

impairments, hyperalgesia (decreased pressure pain thresholds) and mechanism of 114 

sensitization27,28. This makes the NGF model a highly standardised prolonged pain model 115 

with which to undertake biomarker validation.  116 

The aim of the PREDICT trial was to determine whether individuals could be 117 

accurately classified as high or low pain sensitive based on baseline PAF and CME 118 

facilitator/depressor classification. We predicted the area under the curve (AUC) of the 119 

receiver operator characteristic (ROC) curve for distinguishing high and low pain sensitive 120 

individuals would be at least 70% (which represents an acceptable AUC)29. 121 

 122 

Methods 123 

Participants 124 

The PREDICT trial enrolled 159 healthy participants (70 females, 89 males, mean age 125 

25.1 ± 6.1), with 150 participants remaining after dropouts. Ethical approval was obtained 126 

from the University of New South Wales (HC190206) and the University of Maryland 127 

Baltimore (HP-00085371). Written, informed consent was obtained. The supplementary 128 

appendix contains all additional details regarding participant characteristics and 129 

methodology.   130 

 131 

 132 
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Experimental Protocol 133 

 Outcomes were collected over a period of 30 days. Participants attended the 134 

laboratory on Day 0, 2, and 5. Baseline questionnaire data were collected on Day 0. Pressure 135 

pain thresholds, PAF and CME were measured on Day 0, 2 and 5. PAF was obtained via a 5-136 

minute eyes-closed resting-state EEG recording from 63 electrodes. Sensorimotor PAF was 137 

computed by identifying the component in the signal (transformed by independent 138 

component analysis) that had a clear alpha peak (8-12Hz) upon frequency decomposition and 139 

a scalp topography suggestive of a sensorimotor source.  CME was obtained using 140 

transcranial magnetic stimulation (TMS) mapping; single pulses of TMS delivered to the left 141 

primary motor cortex (M1), and motor evoked potentials (MEPs) recorded from the right 142 

masseter muscle using electromyography (EMG) electrodes. TMS was delivered at each site 143 

on a 1cm-spaced grid superimposed over the scalp, and a map of the corticomotor 144 

representation of the masseter muscle was generated. Corticomotor excitability was indexed 145 

as map volume, which is calculated by summing MEP amplitudes from all “active sites” on 146 

the grid. NGF was injected into the right masseter muscle at the end of the Day 0 and 2 147 

laboratory sessions. Electronic pain diaries were collected from Days 1 to 30 at 10am and 148 

7pm each day, where participant rated their pain (0-10) during various activities. Pain upon 149 

functional jaw movement is a key criterion for the diagnosis of TMD30 and pain during 150 

chewing and yawning are higher compared to other activities after an NGF injection to the 151 

masseter muscle28,31. As such, the primary outcomes were pain upon chewing and yawning. 152 

The protocol and methodology are shown in Figure 1A and 1B.  153 

Analytical Validation Plan 154 

 Division of the Data. Analysis was conducted in R, MATLAB and Python, with code 155 

publicly available https://github.com/DrNahianC/PREDICT_Scripts. Figure 1C details the 156 
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analysis plan. We adopted a nested-control-testing scheme by partitioning 150 participants 157 

into the first 100 (training set) and second 50 (test set) individuals to participate in the study. 158 

 Growth Mixture Modelling. We used growth mixture modelling (GMM) in R32-34 to 159 

form two classes: high and low pain sensitive. For this categorization, we used the sum of 160 

pain upon chewing and yawning data, and pain data from Days 1-7, as this was the timeframe 161 

when pain was most prominent (eFigure 3). As such, participants would more reliably fall 162 

into high and low pain sensitive classes during this timeframe. The first and last 40 163 

participants (80 in total) in the training set, based on the ordering of probabilities of the pain 164 

intensity trajectory belonging to one of the classes, were labelled as high and low pain 165 

sensitive. The trained GMM model, once established, was locked and utilized to label the test 166 

set. Consequently 38 out of 50 test set participants were labelled, with a different proportion 167 

of high and low pain sensitive (24 high and 14 low pain) compared to the training set since 168 

the classifications were based on the probability thresholds established in the training set. 169 

These labels were recorded for subsequent comparison with the predicted labels produced by 170 

the trained machine learning model. 171 

Machine Learning Model Selection and Fine Tuning. We utilized five machine 172 

learning models on the labelled training set —logistic regression, random forest, gradient 173 

boosting, support vector machine, and neural network. The dependent variable was pain 174 

sensitivity label (high/low) identified from the GMM and independent variables were 175 

sensorimotor PAF and ΔCME: the latter was typified as facilitator and depressor, depending 176 

on whether they showed an increase or decrease in map volume on Day 5 relative to Day 0, 177 

respectively. For each model, we identified optimized parameters through 5-fold cross-178 

validation: we randomly divided the 80 participants into an internal training set of 64 179 

participants (consisting of four equal folds of 16) and a validation set of 16. The optimized 180 

models in the internal training set were then employed to predict labels in the validation set to 181 
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facilitate model selection. The model with the best performance (area under the curve) on the 182 

validation set was then locked in. 183 

Test Set Prediction. The locked machine learning model was assessed on the test set. 184 

The participant IDs in this set did not coincide with those in the pain diary data, thereby 185 

preserving the double-blind nature of the analysis. By using the ground-truth labels 186 

(shuffled), predicted labels (unshuffled), and the shuffling order for the test set, we were able 187 

to evaluate the model's performance by comparing the reordered predicted labels against the 188 

ground-truth labels established by the GMM. Performance was assessed via receiver 189 

operating characteristic (ROC) area under the curve (AUC), with 95% confidence intervals 190 

reported. AUC values between 0.7-0.8, 0.8-0.9 and 0.9-1 were considered “acceptable”, 191 

“excellent”, and “outstanding” respectively29. 192 

  193 

Results 194 

PAF/CME demonstrated good-excellent test-retest reliability  195 

PAF and ΔCME showed good to excellent test-retest reliability across sessions 196 

(eFigures 5 and 7).  197 

Outstanding performance on the training validation set 198 

Figure 2A shows the pain scores for participants in the training and test set classified 199 

as high and low pain sensitive. Figure 2B (upper) shows the performances of the models 200 

across the internal training and validation sets. Logistic regression was the winning classifier 201 

based on its outstanding performance (AUC=1.00[1.00-1.00]) when applied to the validation 202 

set (Figure 2B lower), with slower PAF and CME depression predicting higher pain with 203 

regression coefficients of -1.25 and -1.27 for PAF and CME respectively.  204 
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Excellent performance on the test set 205 

 When the locked logistic regression model was applied to the test set, performance 206 

(Figure 2C upper) was excellent (AUC=0.88[0.78-0.99]). The optimal probability threshold 207 

for being classified as high pain sensitive was 0.40, with an associated sensitivity of 0.875 208 

and specificity of 0.79. Applying this 0.40 probability threshold to our data, to be labelled as 209 

high pain sensitive, a facilitator would need a PAF<9.56, and a depressor would need a 210 

PAF<10.57. Figure 2C (lower) shows the differences in pain scores between participants 211 

predicted to have high or low pain. Visually one can observe slower PAF in those predicted 212 

to have high vs. low pain sensitivity (Figure 2D), This was statistically significant according 213 

to a two-sample t-test (t(48)=5.8,  p<.001). Moreover, one can observe a decrease in CME 214 

within the masseter motor maps in those predicted to have high pain (Figure 2E), whereas 215 

those predicted to have low pain exhibited an increase in CME. The differences in ΔCME 216 

between these groups was statistically significant (t(48)=2.81, p=.007). 217 

A benefit for a combined signature 218 

We reran the models to determine whether the combined PAF/CME signature out-219 

performed each measure individually (eFigure 10). The performance of the PAF-only logistic 220 

regression model on the training validation and test set were respectively excellent 221 

(AUC=0.95[0.84-1.00]) and outstanding (AUC=0.83[0.70-0.96]). The performance of the 222 

CME-only logistic regression model for the training validation and test set were respectively 223 

excellent (AUC=0.88[0.69-1.00]) and acceptable (AUC=0.75[0.60-0.91]).  224 

Inclusion of covariates did not improve model performance 225 

We evaluated the performance of the biomarker combined with covariates. As there 226 

were many variables, we applied feature selection, i.e. filtering features by inspecting p-227 

values when associating predictors and labels, and using parameter tuning to optimize the 228 
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coefficients associated with the filtered features. Five features were subsequently selected and 229 

optimized – Sensorimotor PAF, CME, Sex, Pain Catastrophizing Scale (PCS) Total and PCS 230 

Helplessness. The associations between labels and biomarkers/covariates in the training vs. 231 

test set, and performance of the models are shown in Figure 3A and 3B. When including 232 

these five features, the performance of the logistic regression model (regression coefficients 233 

of -0.86, -0.69, 0.64, 0.02 and 0.06 for PAF, CME, Sex, PCS Total and PCS Helplessness 234 

respectively) was outstanding (AUC=1.00[1.00-1.00]) and excellent (AUC=0.81[0.67-0.95]) 235 

for the training validation and test set were respectively. Thus, the model with biomarkers 236 

only outperformed the model including covariates. 237 

Results were reproducible across methodological choices  238 

 To determine whether our results were robust across different methodological 239 

choices, we repeated the analysis using different PAF calculation methods, including 240 

component level data (with the sensorimotor component chosen manually or using an 241 

automated script) vs. sensor level data (with a sensorimotor region of interest), using different 242 

frequency windows (8-12Hz vs. 9-11Hz) and using different CME calculation methods (map 243 

volume vs. map area). We found that, regardless of the choices, logistic regression was the 244 

best or equal-best performing model when applied to the training-validation set (Figure 3C), 245 

with AUCs varying from acceptable (AUC=0.77) to outstanding (AUC=1.00). When the 246 

locked models were applied to the test set, performance varied from acceptable (AUC=0.73) 247 

to excellent (AUC=0.88) (Figure 3D). Lastly, excellent performance was demonstrated when 248 

the data was analysed two other ways (eFigure 11 and 12): where GMM pain labels were 249 

established using the whole 30 days rather than the first 7 days (training validation 250 

AUC=0.84[0.64-1], test AUC =0.89[0.79-0.99]), and when missing pain diary data was not 251 

imputed (training validation AUC=0.81[0.6-1], test AUC=0.89[0.79-0.99]).  252 
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Discussion 253 

A full-scale analytical validation of the PAF and CME biomarker signature was 254 

conducted using a prolonged pain model. In an initial training set (n=100), we found that a 255 

logistic regression was the optimal classifier based on its outstanding performance 256 

(AUC=100%), with slower PAF and CME depression predicting higher pain. When this 257 

model was applied to an independent test set, the AUC was excellent (AUC=88%). 258 

PAF/CME showed good-excellent test-retest reliability, and results were reproduced across a 259 

range of methodological parameters. Inclusion of covariates did not improve model 260 

performance, suggesting the model including biomarkers only was more robust. Overall, the 261 

combination of sample size, pain model validity, and biomarker accuracy, reproducibility and 262 

reliability suggest the PAF/CME biomarker signature has substantial potential for clinical 263 

translation. 264 

Our results suggest that individuals who have slow PAF prior to an anticipated 265 

prolonged pain episode and show corticomotor depression during a prolonged pain episode, 266 

are more likely to experience higher pain. Model performance was higher combining the two, 267 

suggesting consideration of both ascending sensory and descending motor pain processing 268 

mechanisms provides more information regarding pain sensitivity. Note that our study used a 269 

cohort of healthy participants with strict inclusion/exclusion criteria and an experimental pain 270 

model. While this may limit generalizability to clinical populations, the use of a standardized 271 

sample/design is a requirement of pre-clinical analytical validation, and an essential first step 272 

in the discovery pipeline toward a clinical biomarker signature. Moreover, there is already 273 

evidence that the proposed biomarker is generalizable to clinical contexts. A recent study 274 

showed that individuals with slower PAF experienced more pain following a thoracotomy20. 275 

Furthermore, individuals with lower CME during the acute stages of low back pain were 276 

more likely to develop chronic pain at 6-months follow-up35. This suggests PAF and CME 277 
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shows promise in being used in pre-operative and/or post-operative/post-injury contexts to 278 

classify high or low pain sensitive individuals. Given that higher acute pain predicts the 279 

development of chronic pain24 PAF and CME could potentially be used as susceptibility 280 

biomarkers for the transition from acute to chronic pain.  281 

There are several aspects of our study which stand out. The first is sample size: with 282 

recent advancements in machine learning, it has become possible to conduct analytical 283 

validation of pain biomarkers. However, deep learning requires a large amount of labelled 284 

samples to conduct rigorous training on validation and test sets8. Unfortunately, many pain 285 

susceptibility biomarker studies have not been sufficiently sampled  to adopt such 286 

approaches9,10, and the ones that have used machine learning failed to reach the sample sizes 287 

similar to that of the present study1,2.   288 

Another strength of our findings is reproducibility. Previous work has shown similar 289 

associations between slower PAF and higher upper limb pain, post-operative thoracic pain 290 

and chronic pain in various body regions17,19,20 as well as CME depression and higher upper 291 

limb pain, chronic patellofemoral pain and development of chronic low back pain22,23,36,37. 292 

The present study replicated these results in a model of jaw pain, suggesting the biomarker 293 

signature may be generalizable to pain more broadly. Note that some studies have not shown 294 

a negative relationship between PAF and pain sensitivity38,39 or a positive relationship 295 

between CME depression and pain sensitivity31. However, these studies were not sufficiently 296 

sampled to conduct analytical validation of the kind presented in this study. Nonetheless, the 297 

mixed findings could also arise from differences in methodological choices in the estimation 298 

of PAF e.g. frequency windows39 and use of sensor vs. component space data40 and 299 

estimation of CME e.g. map volume22 vs. area31. For this reason, we repeated the main 300 

analysis using different methodological choices and found at least acceptable AUCs, 301 

supporting the reproducibility of our results.   302 
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The PAF/CME measures demonstrated good-excellent reliability. Reliability is a 303 

desirable characteristic which assists in the widespread application of pain biomarkers8. We 304 

found that participants exhibit stable PAF across days despite the presence of pain, and even 305 

when considering different methodological factors that may influence the reliability such as 306 

pre-processing pipeline, recording length and frequency window14. Indeed, reliable PAF was 307 

found with a recording length as short as 2 minutes and minimal data pre-processing. We also 308 

showed that those who show CME depression on Day 2 are also likely to show CME 309 

depression on Day 5 (and vice versa for those who show CME facilitation). This was shown 310 

even when an automated method of determining MEP amplitude on each trial was applied. 311 

Thus, our work not only shows that PAF and CME can predict pain, but the relative ease with 312 

which reliable PAF/CME data can be obtained is promising for subsequent clinical 313 

translation.  314 

Another strength of this study is our pain model.  While other pain biomarker studies 315 

have shown promising results, these studies were restricted to pain models utilizing transient 316 

painful stimuli lasting seconds to minutes11-13. The brief nature of the painful stimuli 317 

questions the external validity of these findings and limits generalizability to clinical 318 

populations. In contrast, the present study used a prolonged pain model lasting weeks. 319 

Several other studies have shown that injections of NGF to the neck, elbow or masseter 320 

muscles can mimic symptoms of clinical neck pain41, chronic lateral epicondylalgia27 and 321 

TMD28 respectively. Thus, the observed relationships between PAF/CME and pain in the 322 

present study show promise in terms of clinical applicability.  323 

Lastly, the PAF/CME biomarker demonstrated high performance. A previous study 324 

found that connectivity between medial prefrontal cortex and nucleus accumbens in 39 sub-325 

acute low back pain patients (pain duration 6-12 weeks) could predict future pain persistence 326 

at ~7, 29 and 54 weeks, with AUCs of 67-83%1. Another study on 24 sub-acute low back 327 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.06.16.24309005doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24309005
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

pain patients showed that white matter fractional anisotropy measures in the superior 328 

longitudinal fasciculus and internal capsule predicted pain persistence over the next year, 329 

with an AUC of 81%2.  Though the present did not directly assess the transition to chronic 330 

pain, our AUCs of 100% (validation set) and 88% (test set) appear comparatively high. We 331 

therefore encourage future clinical studies to determine whether PAF/CME can predict the 332 

transition from acute to chronic pain. 333 

Conclusions 334 

A novel biomarker signature comprised of PAF and CME accurately and reliably 335 

distinguishes high and low pain sensitive individuals during prolonged jaw pain with an 336 

excellent AUC of 88% in an independent test set. No other pain biomarker study has shown 337 

this combination of biomarker accuracy, reproducibility, reliability and pain model validity, 338 

suggesting high potential for clinical translation.  339 
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Figure Captions 479 

Figure 1. Study methodology, including study design, data collection procedures and 480 

analysis plan.  (A) Experimental protocol showing timeline of data collection procedures. On 481 

Day 0, we measured peak alpha frequency (PAF) and corticomotor excitability (CME). At 482 

the end of the session, an injection of nerve growth factor (NGF) was administered to the 483 

right masseter muscle. On Day 2, PAF and CME were measured, followed by a second NGF 484 

injection. On Day 5, PAF and CME were measured. From Days 1-30, electronic diaries 485 

measuring jaw pain were sent to participants at 10AM and 7PM each day. (B) Details of the 486 

methodology. Sensorimotor PAF was measured using a 5 minutes eyes closed resting state 487 

EEG recording.  Sensorimotor PAF was computed by identifying the component in the signal 488 

(transformed by independent component analysis) that had a clear alpha peak in the 8–12 Hz 489 

range upon frequency decomposition and a scalp topography suggestive of a source 490 

predominately over the sensorimotor cortex. TMS mapping was conducted by stimulating the 491 

scalp area over left M1 to obtain a map of the representation of the right masseter muscle. 492 

The map consists of the motor-evoked potential (MEP) amplitude at each stimulated location, 493 

with CME corresponding to the map volume (sum of all MEPs from active sites). (C) Details 494 

of the analysis plan. We adopted a nested-control-test scheme by partitioning the 150 subjects 495 

into a training set consisting of 100 subjects and an independent test set of 50 subjects. We 496 

labelled a subset of participants in the training (n = 80) and test set (n = 38) as high or low 497 

pain sensitive using growth mixture modelling (GMM) to establish “ground-truth” labels. We 498 

then ran various machine learning models on the labelled training set (with PAF/CME as 499 

predictors, and pain severity labels as outcome), and determined optimized parameters 500 

through 5-fold cross-validation i.e. randomly dividing the 80 subjects into an internal training 501 

set of 64 subjects (with 4 equal folds of 16) and a validation set of 16. The optimized models 502 

in the internal training set were employed to predict labels in the validation set to facilitate 503 

model selection. The model with the best performance on the validation set was then locked 504 

in, and applied to the labelled test set, comparing the predicted labels of high/low pain 505 

sensitive with the ground-truth labels of high/low pain sensitive. 506 

Figure 2. Performance of the combined PAF and CME biomarker on training and test 507 

set.  (A) Results of the growth mixture modelling which categorized 80 participants in the 508 

training set (left) and 38 participants in the test (right) as high or low pain sensitive. Data 509 

shows mean pain score (chew + yawn pain rating) for each timepoint, while the shaded area 510 

shows 95% confidence intervals.  (B) The upper panel shows performances (AUC [95% 511 

confidence intervals]) of various machine learning models for the internal training set and 512 

validation set. Logistic regression (LR) was chosen as the optimal classifier based on 513 

outstanding AUC of 100% as shown in the lower panel. (C) The upper panel shows the 514 

performance of the locked logistic regression model when applied to the test set, which was 515 

in the excellent range (AUC of 88%). The lower panel shows the pain trajectories (mean 516 

chew + yawn pain and 95% confidence intervals) of participants predicted to have high or 517 

low pain sensitivity based on the locked logistic regression model. (D) Individual and mean 518 

z-transformed spectral plots and topography of the sensorimotor alpha component on Day 0 519 

for participants predicted to have high or pain sensitivity based on the locked logistic 520 

regression model. (E) The mean motor cortex maps on Day 0 and Day 5 showing normalized 521 

motor evoked potential (MEP) amplitude (expressed as a proportion of the maximal MEP 522 
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amplitude) for participants predicted to have high or low pain sensitivity based on the locked 523 

logistic regression model. 524 

 525 

Figure 3. Performance of the combined PAF and CME biomarker on training and test 526 

set when including covariates, and across PAF/CME calculation methods. (A) 527 

Visualisation of biomarkers and covariates for the training and test sets across high (red) and 528 

low (blue) pain labels identified from the GMM. Data on PAF, PCS total and PCS 529 

helplessness are plotted as boxplots, while data on CME and Sex are plotted according to 530 

facilitator: depressor (Fac: dep) and female: male (fem: mal) split respectively, including odd 531 

ratios. A lower odds ratio means a lower probability of high pain sensitive individuals 532 

belonging to the facilitator or female categories. For PAF and CME, low pain was associated 533 

with fast PAF and CME facilitation for both training and test sets. In contrast, the relationship 534 

between covariates and labels were in the opposite direction for the training and test set, 535 

suggesting the relationship between biomarkers and labels was consistent. (B) The left panel 536 

shows the performance of the locked logistic regression model on the test set when including 537 

covariates in the model. The right panel shows pain trajectories (mean chew + yawn score 538 

and 95% confidence intervals) of participants predicted to have high or low pain sensitivity 539 

based on the locked logistic regression model including covariates. (C) The performance of 540 

each machine learning model (AUC [95% confidence intervals]) on the training validation set 541 

across different PAF/CME calculation methods. This includes the sensorimotor component 542 

chosen manually after an independent component analysis, component identified using an 543 

automated script after an independent component analysis, or using a sensorimotor region of 544 

interest (ROI, mean of Cz, C3 and C4) in electrode space, to calculate PAF. We also looked 545 

at different frequency windows for computing PAF (8-12Hz vs. 9-11Hz) or CME calculated 546 

using map area or map volume. (D) The performance of the locked logistic regression model 547 

(AUC [95% confidence intervals]) when applied to the test set, across different PAF/CME 548 

calculation methods.  549 
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