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ABSTRACT

In this study, we propose a scientific framework to detect capability among biomedical large language models (LLMs) for
organizing expressions of comorbid disease and temporal progression. We hypothesize that biomedical LLMs pretrained
on next-token prediction produce latent spaces that implicitly capture "disease states" and disease progression, i.e., the
transitions over disease states over time. We describe how foundation models may capture and transfer knowledge from explicit
pretraining tasks to specific clinical applications. A scoring function based on Kullback-Leibler divergence was developed to
measure "surprise" in seeing specialization when subsetting admissions along 13 biomedical LLM latent spaces. By detecting
implicit ordering of longitudinal data, we aim to understand how these models self-organize clinical information and support
tasks such as phenotypic classification and mortality prediction. We test our hypothesis along a case study for obstructive
sleep apnea (OSA) in the publicly available MIMIC-IV dataset, finding ordering of phenotypic clusters and temporality within
latent spaces. Our quantitative findings suggest that increased compute, conformance with compute-optimal training, and
widening contexts promote better implicit ordering of clinical admissions by disease states, explaining 60.3% of the variance
in our proposed implicit task. Preliminary qualitative findings suggest LLMs’ latent spaces trace patient trajectories through
different phenotypic clusters, terminating at end-of-life phenotypes. This approach highlights the potential of biomedical LLMs
in modeling disease progression, identifying new patterns in disease pathways and interventions, and evaluating clinical
hypotheses related to drivers of severe illness. We underscore the need for larger, high-resolution longitudinal datasets
to further validate and enhance understanding of the utility of LLMs in modeling patient trajectories along clinical text and
advancing precision medicine.

Key Points
Question:
Do LLMs sensibly organize cilnical data with respect to applications in precision medicine?

Findings:
Biomedically-trained LLMs show increasing potential in promoting the organization of patient data to reflect disease progression.
In a subcohort of OSA patients, maps derived from LLMs’ latent representations reveal traceable disease trajectories.

Meaning:
Maps of disease progression offer an explanation to the utility of LLMs in precision medicine. Following current pretraining
conventions in foundation modeling, scientific inquiry into these maps may help anticipate progress in applications of LLMs for
healthcare.

Introduction
Computational medicine has made important strides over the past two decades with the digitization and centralization of
patient medical data into electronic health records (EHR)1, 2. Even so, EHR systems are primarily designed, implemented, and
operationalized for administrative function. Common structured medical variables including diagnosis codes, laboratory orders
and results, procedure codes, and medication prescriptions typically focus on billable procedures. As a result, relevant patient
phenotypes for predictive modeling are under-represented or poorly characterized in structured EHR. This leads to substantial
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work in order to harmonize clinical concepts and biomarkers using both structured EHR3 and unstructured text. A means of
integrating health status information locked in clinical text with structured representations of medical knowledge is through the
application of natural language processing (NLP)2, 4. Recently in clinical medicine, large-language models (LLMs) have been
adopted to process clinical text for topic categorization5, medical concept extraction6, 7, and medical question-answering8.

While LLMs continue to show aptitude for general NLP applications as model size increase from millions to trillions
of trainable parameters and pretraining scales to tens of terabytes of text9, clinically pretrained LLMs lag behind current
state-of-the-art (SOTA) model pretraining on non-medical text. As the field continues to move towards even larger LLMs10 and
infusion with other socio-economic and biomedical modalities including census tract-level data11, medical imaging12, and
genetics13, there remain open questions about the representative capabilities of LLMs in capturing the unique nuances of patient
health. In particular, challenges remain in identifying how latent spaces map to structured clinical variables like demographics,
disease phenotypes, medical interventions, and measures of life expectancy. Additionally, there lacks understanding on the
effect of model pretraining in building coherent representations of these common determinants of health even with continued
work in interpretability14 and clinical decision support15 for medical machine learning (ML) systems.

With the increased accessibility of large-scale EHR for A.I. research2, there exists greater opportunity to observe the effects
of LLM scaling in large population-wide studies. We hypothesize that LLMs pretrained on biomedical subject matter capture
medically coherent representations of clinical text in their latent spaces, facilitating clinically-relevant subsetting of patient
records when embedding population-wide longitudinal corpora. We propose a mixed-method approach to develop an explanatory
framework on the effectiveness of contemporary biomedical LLMs in modeling clinical phenotypes and trajectories. A latent
space analysis over the publicly available MIMIC-IV clinical dataset16 was performed across 13 biomedical LLMs of different
model sizes and pre-training strategies including BioBERT, BioBART, ClinicalBert, RadBERT, BioMegatron, Gatortron,
BioGPT, and Forge-bio10, 17–23. The proposed framework first employs a quantitative assessment detecting organizaton in
LLM latent spaces with respect to sex, age, race, diagnosis codes, procedure codes, and death statistics. This is proceeded
by qualitative assessment of the LLM latent spaces to interpret the coherence between corpus subsets and structured medical
features by visualizing admission-level corpus manifolds, identifying medically-relevant subsetting, and manually reviewing
clinical discharge reports for evidence of longitudinal ordering among a case study for obstructive sleep apnea (OSA).

We demonstrate application of the framework for investigating mechanistic drivers of severe disease in a sub-cohort of
patients with diagnosed OSA24. OSA, a chronic illness causing interrupted breathing during sleep due to over-relaxation of
muscles around the airway, is linked to several illnesses. This study investigates 6 diseases comorbid with OSA. Previous studies
hypothesize that obstruction during sleep causes coronary blood flow to increase disproportionately with myocardial work
increasing coronary artery vascular resistance, which may predict increased cardiovascular comorbidities in a dose-dependent
relation. Understanding the interaction of OSA with these comorbidities is crucial for determining the additive risk of OSA in
developing severe illnesses25. The case study focuses on discharge reports exhibiting severe OSA and concurrent heart failure
(HF), finding that admissions indexed by probability of HF diagnosis along LLM latent spaces increase the odds ratio of textual
mentions referencing dyspnea symptoms and ongoing OSA treatment. Additionally, potential non-adherence to OSA treatment,
such as continuous positive airway pressure (CPAP) treatment, was observed, highlighting the utility of using clinical text to
construct surrogates for prolonged exposure of respiratory obstruction.

Methods
Data
The analysis utilized the publicly available MIMIC-IV Clinical Database26 which includes admissions to the intensive care
units (ICUs) at Boston’s Beth Israel Deaconess Medical Center from 2001 to 2019. EHR for 331,794 admissions, each
with a recorded discharge report, were gathered, covering 1.6 million patient-days for a population of 145,915 patients. The
unstructured reports were linked to structured medical data including admission-level demographics, billable procedures,
billable diagnoses, and mortality outcomes (MIMIC-IV censors time of death past one year after the last admission). The
distribution of patient-level demographics is reported in Table 1.

It is important to note that MIMIC-IV contains additional sources of unstructured data, such as radiology reports, but these
were not considered in this analysis. The complete corpus of discharge reports totals 3.3 GB of text. Phenotypes for admissions
were labeled for the presence of OSA, HF, stroke (STRK), atrial fibrillation (AFIB), coronary artery disease (CAD), type 2
diabetes mellitus (T2DB), and hypertension (HTN) according to the International Classification of Diseases, 9th and 10th
Revision (ICD-9/10). Expert-curated ICD definitions for OSA and comorbid diagnoses are found in Table 2, and the rates of
these conditions in the MIMIC-IV patient population are also reported in Table 1.

Large Language Models
LLMs are attention-based deep learning architectures designed to predict the next token or missing tokens in sequentially
ordered data27. An advantage of transformer-based language models over recurrent architectures like RNNs28 is the absence
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of recursive operations for computing next-token probability scores. Instead, transformers utilize parallelizable feed-forward
operations. The computational graph for LLM implementations can be naively summarized as stacked blocks of multi-head
self-attention followed by feed-forward multilayer perceptrons (MLP) with residual connections between inputs and outputs for
both operations.

In essence, multi-head self-attention aggregates information from different sections of a sequence and the MLP projects
this aggregated information into a new feature space. Adding more blocks or increasing the number of parameters per block
enhances the language model’s ability to condition next-token prediction. However, scaling these models requires substantial
computational resources and a variety of optimization techniques to manage numerical instability during pretraining29. Models
of this size heavily rely on data-parallel, model-parallel, and pipeline-parallel training, given that a single GPU cannot
accommodate all model parameters or large batches of input sequences in onboard memory30.

LLMs have been employed previously in biomedical domains. Many LLMs specialized on biomedical domains are trained
on publicly available datasets such as abstracts and text from scientific literature as well as deidentified EHR datasets like
MIMIC-III31. Due to limitations in availabilty of public de-identified clinical datasets, many biomedical LLMs are pretrained on
the same clinical corpora and biomedical literature. For example, BioBART, BioMegatron, BioBERT, BioGPT, and Gatortron
all contain abstracts and/or full-text from PubMed32 in their pretraining dataset, and ClinicalBERT and Gatortron have both seen
MIMIC-III. While also trained on scientific abstracts, Forge-bio is notable for being trained on a wider set of abstracts sourced
from 6 scientific literature databases. Additionally, the Gatortron-line of models and RadBERT have been fit with in-house
clinical data from UF Health Integrated Data Repository (IDR) and radiology reports from Veterans Health Administration
(VHA) admissions, respectively.

To make comparisons between biomedical LLM architectures, this study gathered 3 characteristics of their pretraining
methodology including: 1) an estimate of the necessary compute for pretraining (6 floating-point operations per parameter per
token) by conventions developed by Yin et al.30, 2) the ratio between pretraining tokens and model parameter count determining
compute optimal training as presented by Hoffman et al.33, 3) the context width of the model, i.e., the number of input tokens
per sequence allowed by an LLM architecture. These characteristics are estimated to the best of our ability from papers and
supplementary material, but it is important to note that LLM literature is often opaque with the exact description of pretraining
methods, and pretraining conventions have been rapidly changing within recent years. Table 3 reports these characteristics for
models covered in the analysis.

Overview of Framework
The proposed framework follows an explanatory sequential design splitting analysis of biomedical LLMs’ latent spaces into
quantitative then qualitative assessment as summarized by Figure 1. Quantitative assessment is described as follows:

1. Structured admission-level variables V are mapped to unstructured discharge reports C.

2. For candidate LLMs m ∈ M, discharge reports C are tokenized then embedded forming corpus manifold E per model m.

3. For each corpus manifold, admissions are clustered into k subsets using K-Means clustering.

4. A Kullback-Liebler Divergence (KLD)-based scoring function is used to measure the amount of information lost per
subset when assuming a distribution of variables V expected by random subset assignment for admissions occurring
during the collection period.

5. A linear model is used to fit scores for each subsetted latent space against the estimated compute needed for pretraining,
the token per parameter ratio between their pretraining data and model size, and the context width of the LLMs.

6. Linear models are used to fit scores against performance on classification tasks, derived from structured EHR such as
phenotyping and overal mortality prediction, using cluster distances as input to logistic regression classifiers.
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After the subsetted latent spaces are scored, the top performing LLM is selected. To investigate applications of biomedical
LLM latent spaces for encoding phenotypes and time-dependent health status variables (referred to as "pseudotime" from
here on) as well as representing medical trajectories, the top performing LLM is assessed qualitatively for these properties as
follows:

1. UMAP34 dimensionality reduction is used to plot a 2-dimensional projection of the corpus manifold E. Projections are
plotted then shaded using color gradients corresponding to a variable of interest v.

2. Regions of high organization are observed, shading cluster membership by proximity of clusters’ centroids in the original
high-dimensional space and the information surplus over subsets.

3. Temporal ordering is observed, shading projections by time-dependent variables including age at time of admission and
time till death at discharge.

4. Phenotypic ordering is observed, shading projections by the prevalence of 6 OSA-related comorbid diseases.

5. Along OSA patients, admissions are plotted then shaded by class probability of comorbid diagnosis and 1-year mortality
estimated by logistic regression.

6. Patient admissions are then traced along the corpus manifold and their corresponding discharge reports are reviewed.

Embedding An Admission-Level Corpus
We refer to embedding a complete set of documents C as constructing a corpus manifold E. Embeddings for all 331,794
discharge reports in MIMIC-IV were computed using a set of biomedical LLMs M. This process involved tokenizing the text
and then sampling layer activations for each model m.

Without prior knowledge of which specific layer holds the best-compressed representation of the clinical documents,
activations were sampled from the last L layers per each model m. The token-wise MLP activations at the end of a transformer
block were collected and averaged into a single vector. If the context width for model m was shorter than a full discharge
report, the token sequence was chunked into pieces, each of size equal to or less than the maximum context width, without
overlap. Considering C as an admission-level corpus of the Boston’s Beth Israel Deaconess Medical Center, the transformation
m : C → Rd assigns an admission-level feature vector to each report, where d is the number of token-wise features in model m.
The construction of an admission-level vector per report can be summarized as

el
m(c) =

1
T

T

∑
t=0

ml
t(c)

where l is the layer being sampled, t is the token index along the sequence, and c ∈C. The collection of admission-level
vectors el

m(c) form one corpus manifold E l
m. Using an allocation of 290.8 node hours on NERSC’s Perlmutter supercomputer, we

sampled corpus manifolds from the last 3 layers of the 13 models covered in Table 3. Data parallel inference was implemented
to accelerate construction of manifolds using 32 Nvidia A100 GPUs. These corpus manifolds were used to ascertain the
concentration of medically relevant variables along subregions of the LLMs’ latent space as described in the following sections.

Subsetting Latent Spaces Using K-Means
Analysis of healthcare data often requires the subdivision of patient records into smaller, domain-specific cohorts to focus on
particular phenotypes or to establish suitable control groups for case-control studies. The exponential increase in records within
EHR databases necessitates scalable techniques for grouping patients based on exposures to environmental factors, occurrences
of medical events, and longitudinal outcomes35.

To prepare the latent spaces for evaluation, corpus manifolds were initially partitioned into subregions to assign admission-
level representations to different groups. Without prior knowledge of the underlying number of potential subgroups present in
the clinical dataset, K-Means clustering36 was utilized with varied number of expected clusters k. Due to constraints in available
computational resources, corpus manifolds were subsetted into 256, 512, 1024, and 2048 clusters. For each corpus manifold
E l

m, admission-level vectors were regularized using max-norm regularization37 then partitioned into k sets S = {S1,S2, ...,Sk}.
For a given set Si, the cluster’s centroid along the corpus manifold is described as

µi =
1
|Si| ∑

el
m(c)∈Si

el
m(c)
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where |Si| represents the size of the cluster. In addition to assigning each admission to a distinct cluster, the distance
relations to each cluster’s centroid were computed to be later used as input for classification models described in the subsequent
sections. After centroids are identified with K-Means, vectors on corpus manifold E l

m are mapped to cluster-space F l
m ∈ Rk,

where each dimension in the cluster-space vector corresponds to the regularized distance from the admission-level vector to
each cluster centroid found by K-Means.

Scoring Implicit Ordering in Foundation Models
Often referred to as "foundation" models, the capability of LLMs to transfer features learned during pretraining to problems not
explicitly defined in their original training policy extends the concept of transfer learning in ML38. The two stages of LLM
transfer learning, termed "pretraining" and "finetuning," involve initially training a model on the more general task of token
prediction, followed by retraining on a more specific problem with less training data. While transfer learning predates the
introduction of LLMs, these models show promise as the first iteration of foundation models due to the apparently tangential
yet simple-to-prepare task of pretraining on next-token prediction compared to the domain-specific problems tackled by NLP
applications.

Considering auto-regressive architectures exclusively at this stage, the explicit task of language modeling can be expressed
using conventions in this paper as follows:

m(U) =
T

∑
t=0

log(IP(ut |ut−i, ...,ut−1,Θ))

where m(U) is the model loss over the full corpus of pretraining text and IP(ut |ut−i, ...,ut−1,Θ) is the conditional probability
of the token t given i preceding tokens and model parameters Θ39. Often referred to as the perplexity of the LLM along the
pretraining dataset, it’s difficult to gather these measures for analysis without access to those datasets used to pretrain each
model.

Currently, the field of foundation modeling is considered relatively young, and methods for evaluating foundational
capabilities vary widely between projects and domains. By "foundational", we imply a common converging cornerstone
representation for a specific domain as opposed to the common catch all "foundation" for LLMs trained at scale. While it is
common for LLMs to be evaluated using community NLP benchmarks and human-grade standardized tests, several concerns
arise due to the opacity in large-scale LLM research to outside institutions40. Particularly, it is challenging to assess the level of
bias in benchmark construction (such as cherry-picking benchmarks) and data leakage in the pretraining dataset (where tests
and answers may be present in the dataset)41. Additionally, the cost of curating gold-standard NLP benchmarks is expensive in
terms of experts and time needed for annotation42. With millions of patients and medical records, curating benchmarks for the
field of healthcare is prohibitive.

As opposed to evaluating model capability along a behavioral framework40, we propose developing more rigorous scientific
frameworks to describe the underlying order found in LLM latent spaces by generating hypotheses for "synthesized designs"
solved implicitly during explicit pretraining on next-token prediction, then detecting for the presence of solutions to these
hypothetical tasks empirically. We use synthesized designs as a concept that offers information about how practices in
foundation modeling lead to organization along hidden representations of contemporary models. If intermediate solutions for
these implicit tasks exist within an LLM’s latent space, high degrees of order along these tasks would justify performance seen
on downstream finetuning tasks, interpreting high competency on a finetuning problem as indicative of successful encoding of
relevant information used in finetuned models along subregions of the pretrained latent space.

In the context of clinical finetuning, we hypothesize biomedical LLMs order admission-level reports into collections
capturing distinct clinical phenotypes at different stages of disease. We posit a foundational model for clinical text compresses
information seen during pretraining into latent representations encoding “disease states” - subsets of admission-level repre-
sentations with common phenotype and pseudotime. Transitions between disease states would form trajectories detectable
along a corpus of longitudinal medical data. We define a Kullback-Liebler-based43 scoring function to measure the amount of
information content or "surprise" captured along subregions on an admission-level corpus manifold as follows

∑
v∈V

Si

∑
S0

|Si|
|C|

Dkl(Pv∥Qv)

where V is a set of medical variables of interest, |Si| is the size of admission subsets, |C| is total number of admissions in
the cohort, Pv is the probability of observing the medical variable of interest v within a subset, and Qv is the probability of
observing the medical variable of interest v along a subsetting which assumes random assignment for admissions occurring
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during the collection period of the dataset. We consider the demographic determinants of the patient (sex, race, ethnicity), age
at time of admission (binned at every 5 years44), weeks till death at time of discharge, ICD diagnoses per admission and Current
Procedural Terminology (CPT)-coded services as a candidate set of medical variables V necessary to encode a disease state.
For ICD and CPT variables, codes were clustered to reduce each set of codes to 100 degrees of freedom for numerical stability.
Used as a scoring function for biomedical LLM latent spaces, the measure indicates the amount of information lost per subset
when assuming subsetting contains no discernable discrimination between the local statistics of subsetted admissions and the
global statistics of admissions in the dataset.

As a consequence, we posit the proposed scoring function will inform progress towards a "clinically-aware" design.
Higher scores indicate greater deviation from random assignment of subsets, suggesting a more structured arrangement of
admission-level representations is present within latent spaces. Higher scores may also suggest that models effectively learn
to differentiate between distinct clinical observations localized by time, indicating intermediate solutions towards modeling
longitudinal outcomes and serving as a strong foundation for downstream clinical tasks in predictive medicine. Conversely,
lower scores may indicate challenges in capturing meaningful structure within subregions of the latent space, highlighting
areas of high uncertainty where further model refinement should be done through supplementation with additional clinical
observations.

Admission-Level Classification Using Clusters Distance
To evaluate the hypothesis posited in the previous section, the performance on admission-level classification tasks was assessed
for each corpus manifold. If the hypothesis holds true, a positive relationship would be expected between the score of the corpus
manifold on the previously described implicit task and the performance of classifiers on explicit phenotypic and pseudotime
tasks.

Cluster-space vectors F l
m for each corpus manifold were utilized as input to classify admissions from patients with history

of OSA. Each admission was labeled by the diagnosis of OSA and its six associated comorbid diseases. Furthermore, these
admissions were labeled by outcomes for overall mortality used to predict death 1-year, 90-days, and 30-days after discharge.
Logistic regression with Elasticnet regularization45 was employed, using a combination of L1 and L2 penalties to prevent
overfitting and improve model interpretability with respect to which regions of the latent space contribute to classification.
Without prior knowledge of the needed complexity for each linear model, the regularization coefficient was set to a value of 1.0
and the L2 penalty term was set to 0.5 consistently across all classifiers per corpus manifold.

Logistic regression classifiers were fit on the 10 binary classification tasks per corpus manifold. K-fold validation on each
classifier was conducted, yielding the mean area under the ROC curve (AUC-ROC) over 16 folds. This approach ensured robust
evaluation of classifier performance across different subsets of the dataset as per-classifier heuristic optimization is absent at
this time. While more optimal classifiers can be constructed with hyperparameter search for each tasks, measuring the difficulty
of finding performant classifiers from intermediate solutions on the corpus manifold is the goal of this technique.

Dimensionality Reduction Using UMAP
Given the high-dimensionality of the admission-level embeddings, we explore employing the dimensionality reduction algorithm
UMAP to generate human-readable 2-dimensional plots of corpus manifolds for MIMIC-IV. The UMAP algorithm is known
for preserving local structure between points while also maintaining more global structure compared to other dimensionality
reduction methods like PCA46 and t-SNE47. This property renders UMAP a valuable technique for interpreting encodings or
embeddings of high-dimensional data and has been successfully applied in previous work to visualize biological datasets such
as transcriptomes of single-cell data48.

In the context of visualizing a corpus manifold E l
m, each admission-level vector is mapped to a coordinate (x,y) on a

2-dimensional plane. Each point in the resulting projection corresponds to a single admission within the healthcare system.
Through a grid search over UMAP parameters (such as number of nearest neighbors per high-dimensional point and minimum
distance between points in the projection), an adequate projection of the corpus manifolds was attained, neither tightly-packing
points nor dispersing points uniformly. However, it is important to note that there currently lacks a standardized method for
improving the quality of the projection, often relying heavily on trial and error. Additionally, distances along the projection do
not necessarily imply meaningful relations between points, but rather denote neighborhood proximity, as is also observed with
t-SNE. The cosine distance between admission-level cluster-space vectors F l

m were used to fit the UMAP projection.

Chart Review For Cases of OSA Patients With Concurrent HF
As a case study in using biomedical LLMs to characterize severe disease phenotypes, a chart review of discharge reports for
patients with history of OSA was performed to assess if comorbid diagnosis probability along the corpus manifold can be used
to index severe illness, and if mentions of severe OSA are enriched among regions of the corpus manifold with high probability
of HF diagnosed admissions.
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Matched stratified sampling was used in this study. OSA patients with concurrent HF were matched with OSA patients
with no history of HF along sex, race, and age at time of their first recorded diagnosis of OSA. After cases and their controls
were identified, admissions with similar age at time of admission (within a 5 year window) were gathered and 1 admission per
case-control match were randomly sampled. This was done as patients potentially have multiple admissions at varied times
over the collection period of the dataset. Its important to note that multiple rounds of chart review were conducted to update
exclusion criteria for admissions including: 1) removing non-relevant specialties like ’OBSTETRICS/GYNECOLOGY’ and
’ORTHOPAEDICS’, and 2) removing ’ELECTIVE’ admission types.

74 admissions were considered in the final chart review where reviewers were tasked with annotating evidence for severe
OSA (prolonged hypoxia or respiratory obstruction) as a mechanistic driver for HF including mentions of: 1) respiratory
distress such as hypoxia, dyspnea, shortness of breath, or related symptoms, 2) history of diagnosed OSA in the patient’s
medical history preceding current admission, 3) prescribed OSA treatment, such as CPAP devices or specific pharmacological
interventions, and 4) adherence/compliance to OSA treatment. After annotation was complete, the HF class probabilities were
merged for analysis to measure the odds-ratio of severe OSA or poorly managed OSA over strata of HF probability.

Results
Table 1 reports the cohort characteristics covered by the MIMIC-IV discharge report corpus. The cohort consists of 145,915
patients, with a close to even distribution of sex at 48.7% male and 51.3% female. The majority of patients (68.6%) identify
as White, followed by Black (11.98%); 4.8% of patient identifying as Hispanic. Notably, 18.7% of patients in the cohort
are marked as deceased with the majority of deaths occurring between the age 60 and 90. The majority of admissions were
categorized as emergency (87.8%) with the remaining considered as elective (12.2%). The average number of patient-days
summarized by a single discharge report is 4.92 patient-days.

A total of 14,327 patients were diagnosed with OSA with increased rates of males along sex, increased rates of whites and
blacks along race, and no discernable change in Hispanic ethnicity when compared to the overall population. While overall
mortality drops marginally when compared to non-OSA patients, OSA patients have much higher rates of the 6 comorbid
diseases than non-OSA patients. For OSA patients, age at time of admission tends towards an older population and shorter
lifespans for those patients with reported mortality outcomes. Subsequent sections are divided into results for quantitative and
qualitative assessments respectively followed by results from the chart review performed on OSA patients with concurrent HF.

Quantitative Assessment
Subsetting Clinical Admissions By Phenotype and Pseudotime
First, a linear regression analysis was conducted to investigate the potential positive relationship between the three architecture
characteristics gathered for each biomedical LLM and the surprise in observing implicit ordering by disease state, as defined
in the previous sections. Considering the best layer and subsetting of the corpus manifold per model, the regression model
indicates strong evidence that increased compute, compute-optimal training, and a widening context correlate with order among
subsetted latent spaces for our proposed implicit task. In other words, the regression model suggests that 60.3% of the variance
on the proposed task can be explained by decisions made at the architecture level.

Upper and lower bounds (95% CI) of compute-optimal ratios and context width help explain the underperformance of certain
models. Specifically, models with short context widths (512 tokens) underperform even when approaching compute-optimal
training, as seen in the publicly-available Gatortron-line models. Interestingly, plotting the trendline for compute-optimal
training at the maximum context-width in this sampling of biomedical LLMs retrodicts the field’s adherence to compute
optimal conventions. Both the large variant of BioGPT and Forge-bio reported results for their pretraining (October 2022 and
November 2023, respectively) after the preprint publication of Hoffman et al.’s paper (March 2022). Gatortron reported results
for pretraining in February 2022, one month before Hoffman et al.’s paper was posted on ArXiv. Results for this regression
analysis are plotted in Figure 2a.

Table 4 reports more granular measures over the top 10 subsetted corpus manifolds, with Forge-bio containing the highest
amount of surprise overall and across age at time of admission, weeks till death after discharge, ICD diagnosis, and CPT
services individually. Along demographic determinants, the fully-trained baseline Gatortron model marginally outperformed
Forge-bio. This may be a result of observing clinical data, but there are no other models of comparable size trained on clinical
data in this work to confirm that pretraining on clinical data allows for better discrimination of demographic determinants at
this time.

Second, two linear regression analyses were conducted on the potential positive relationships between the surprise in
observing implicit ordering by our proposed definition of disease state and the phenotypic/pseudotime tasks in the OSA case
study. Over all subsetted corpus manifolds sampled from the 13 biomedical LLMs, the regression models indicate moderate
to strong evidence that implicit ordering by disease state helps provide adequate intermediate solutions for classifiers on the
comorbid disease classification and overall mortality prediction tasks. Performance on overall mortality classification by
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AUC-ROC decreases as the time window widens from 30-day to 1-year mortality, with only weak evidence for correlation
between surprise and mortality prediction 30 days out.

Along phenotypic tasks, there is strong evidence of correlation between surprise and improvements in diagnosing admissions
for STRK and OSA. Even so, OSA classification only showed marginal improvements as a function of surprise when compared
to STRK. Moderate evidence was found for HF, CAD, AFIB, T2DB, and HTN, with HF classifiers performing highest
along AUC-ROC. Given that this sampling of classifiers is not heuristically optimized, the AUC-ROC scores reported along
these results are not conclusive on the limit of performance for any one classification problem, but we expect increasing the
computational budget to accommodate for hyperparameter search will help give better assessment on the limits of performance
per task while still indicating a positive correlation between surprise and discriminatory power. Results for these two regression
analyses are plotted in Figures 2b and 2c.

Qualitative Assessment
For the best subsetted corpus manifold (last layer of Forge-bio subsetted into 2048 clusters), Figure 3 plots the UMAP projection
of the corpus manifold. First, the subset assignment for each admission is shaded by cluster, with the color gradient indicating
proximity between the cluster centroids. While no clear separation is found to indicate independent groups of admissions, the
UMAP projection does preserve neighborhood proximity found in the higher-dimensional space with bands of admissions
expressing similar concentration of colors on the gradient. The overall structure of the projected corpus manifold resembles a
curved Y-shaped band centered at y = 0.55. A smaller independent patch can be seen towards the bottom left of plot, centered
at (0.25,0.20), and a small thin Y-shape band at y = 0.7. Second, plots are shaded by the per-cluster surprise, with the most
order following the core of the large Y-shaped band. One point of contention in interpretation of UMAP plots is the difficulty of
discriminating what structures in the projections are artifacts produced as side-effect of the algorithm. Even so, we observe
enough preservation of the high-dimensional space to proceed with interpreting results for ordering admissions by phenotype
and pseudotime.

Ordering By Pseudotime Variables
Figure 4 is divided into two sections, with the first shading the average age at time of admission per subset. Notably, the projected
Forge-bio corpus manifold show regions with concentrations of admissions with patients 35 years old and younger centered at
(0.175,0.175). The small thin Y-shaped band referenced in the previous section also concentrates admissions with relatively
younger patients (< 40 years). Concentrations of admissions with patients 65 years and older can be seen along the core of the
large Y-shaped band. The second section of the figure shades time till death after discharge by prevalence of 1-year, 90-day, and
30-day mortality per admission subsets. As shading moves towards 30-day mortality, we can see recession of prevalence along
the large Y-shape band with the strongest concentration remaining around the region at [(0.1,0.2),(0.4,0.5)]. Interestingly, the
thin section within that region, at the top of the independent patch at the bottom left of the plot, has overrepresentation of deaths
occurring during admissions to the ICU. In conjunction, these two views demonstrate the temporal ordering of admissions in
MIMIC-IV by age and life expectancy. However, its important to note that MIMIC-IV is temporally sparse along longitudinal
data and is predominently acute emergency admission to the ICU. A larger longitudinal dataset is needed to qualitatively assess
if these observations persist along wider windows of time.

Ordering By Phenotypic Variables
Figure 5 visualizes the prevalence of the 6 comorbid diseases of interest for the OSA case study. Visualizations for prevalence
of HTN and T2DB show moderate to high prevalence over the large Y-shaped band, the small thin Y-shape band and the
independent patch at the bottom left of the plot. Prevalence recedes over subregions that were previously referenced as having
higher concentrations of admissions for patients age 40 years and younger. The prevalence of AFIB and CAD concentrate
mainly along the large Y-shaped band, with increased concentration on the top of horizontal portion of the band at y = 0.6125.
Interestingly, this Forge-bio corpus manifold does show clear separation between regions with high concentrations of HF and
STRK. STRK admissions are found in abundance following thin bands at y = 0.675 and y = x+0.225. For HF, there is heavy
overlap with regions concentrating AFIB and OSA. Clear separation of the STRK phenotype may help in interpreting the sharp
increase in classification performance seen during quantitative assessment.

Trajectories Along Corpus Manifolds
Admissions for OSA patients with concurrent HF were traced through the corpus manifold to interpret how regions of the
projected manifold correspond to narratives found in the discharge reports. Patients whose trajectories terminate as deaths
during an admission were selected. Figure 6 visualizes admissions along the Forge-bio corpus manifold for patients with
diagnosed OSA. Plots on the left column shade the class probabilities of HF diagnosis from the logistic regression model
trained during quantitative assessment. Plots on the right column shade the class probability for 1-year Mortality. Each row in
the figure corresponds to a unique OSA patient where admissions with either OSA or HF diagnosis are represented by a cross.
Starting at the admission with the earliest recorded diagnosis of OSA, a numbered sequence is traced between admissions to
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determine if episodes of HF can be inferred by transitioning from regions with low class probability for HF to high probability
regions, and if migration towards areas of high-class probability for overall mortality occur as admissions get closer to time of
death.

Consider the first patient’s traced admission history (subject_id=18080257). We see 3 potential episodes of HF along their
path through the corpus manifold summarized in discharge reports as follows:

• First Episode: Initially, 6.17 years before death (hadm = 0), the patient, suffering from comorbid AFIB/CAD and on
anticoagulant medication, underwent an uneventful orthopedic surgery with no noted complications. The 4.86 years
before death (hadm = 1), the patient underwent another orthopedic procedure, tolerated it well, and resumed previously
prescribed medications. About two months later (hadm = 2), the patient began experiencing intermittent chest pain,
which occasionally woke him from sleep and was associated with dyspnea.

• Second Episode: Approximately 4.19 years before death (hadm = 3), the patient experienced significant right shoulder
pain following a proximal humerus fracture repair. Two years later (hadm = 4), the patient suffered a heart attack
necessitating stenting of a coronary artery, complicated by a groin hematoma. A little over four months after that
(hadm = 5), the patient presented with a fall, hypoxia, and angina, treated with sublingual nitroglycerin and antibiotics
for suspected pneumonia. Another 4 months pass (hadm = 6), the patient experienced another cardiac event with mild
troponin elevation. About 1.53 years before death (hadm = 7), the patient was hospitalized for severe bleeding and
hypotension, complicated by a non-ST elevation myocardial infarction (NSTEMI) requiring intensive care. Only 23 days
later (hadm = 8), the patient presented with rectal bleeding and unstable angina, with recurrent chest pain indicative of
non-ST elevation myocardial infarction amidst ongoing complex medical management.

• Third Episode: Just under 1 year before death (hadm = 9), the patient was admitted following a fall, complicated by a
small subarachnoid hemorrhage and reversal of INR. Thirty-three days before death (hadm = 10), the patient required
surgery for a periprosthetic joint infection of the right shoulder, managing postoperative pain and progressing well.
Four days later (hadm = 11), the patient returned with bleeding from the surgical site, complicating severe cardiac
issues including a non-ST elevation myocardial infarction (NSTEMI) and acute HF with pulmonary hypertension and
reduced ejection fraction. His condition deteriorated further with a subsequent stroke and ongoing fluid management
challenges. Six days before death (hadm = 12), the patient experienced a life-threatening rectus sheath hematoma
requiring embolization, followed by cardiac arrest with successful resuscitation but subsequent multi-system organ failure
and decision for palliative care. Chief cause of death was recorded as congestive HF.

Next, consider the second patient’s traced admission history (subject_id=16433543). Only 1 potential episode of HF is seen
along their path through the corpus manifold, ultimately terminating at a different subregion than the previously described
patient.

• First Episode: Starting 5.82 years before death (hadm = 0), the patient underwent a radical nephrectomy without
complications. 7 months before death (hadm = 1), the patient presented with acute HF with reduced ejection fraction
(HFrEF), managed with diuresis and cardiac catheterization showing non-contributory coronary lesions. The patient was
noted to have an underlying sleep disorder. Two months later (hadm = 2), worsening dyspnea, leading to a diagnosis
of HF attributed to hypertension and potential sleep disorder or stimulant medications. Ninety days before death
(hadm = 3), recurrent falls and declining functional status prompted hospitalization. OSA was referenced as an acute
active issue. Sixty-four days before death (hadm = 4), the patient was readmitted for acute-on-chronic HF exacerbation.
The final hospitalization (hadm = 5), ending in death from non-traumatic intracerebral hemorrhage, involved a decision
to transition to comfort measures only (CMO) due to irreversible neurologic decline and poor prognosis.

Characterizing Drivers of Severe Illness in Obstructive Sleep Apnea
Manual reading of discharge reports was conducted by reviewers (n=2) to observe the concentration of mentions for severe
symptoms of OSA over admissions indexed by the probability of HF diagnosis. The objective of the chart review was to
investigate whether these indexes enrich evidence for the relationship between indicators of severe or poorly managed OSA and
concurrent HF. Multiple rounds of chart review were conducted to ensure consensus between reviewers, using Cohen’s Kappa
statistic49 to assess inter-rater agreement along 4 categories of annotation. Over the 74 admissions covered in the final chart
review, the reviewers had substantial agreement (0.734 - 0.795 Cohen’s Kappa) when annotating for the presence of dyspnea,
previous history of OSA at time of admission, and evidence of treatment adherence. Near-perfect agreement (0.858 Cohen’s
Kappa) was attained when annotating presence of OSA treatment.

Considering a threshold of 0.52 along HF probability as the decision boundary for admission-level diagnosis, classification
of HF diagnosis over the 74 admissions results in a PPV of 0.926 and recall of 0.658. For those admissions classified as HF,
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a 427% increase in the odds of admissions referencing dyspnea (95% CI, [1.71, 17.33]) and a 245% increase in the odds of
admissions referencing ongoing treatments for OSA (95% CI, [1.16, 10.75]) were found. Less conclusive results were found
for enrichment of mentions of pre-existing OSA and non-adherence of OSA treatment showing a 67% (95% CI, [0.36, 10.75])
and 42% (95% CI, [0.26, 7.34]) increase, respectively.

The findings align with the medical hypothesis that OSA exacerbates cardiovascular comorbidities, specifically HF. As
surrogates for high doses of respiratory obstruction caused by OSA, the 4 indicators suggest an increase in prolonged exposure
of severe OSA among patients with concurrent HF. Dyspnea, a direct symptom of respiratory obstruction, significantly correlates
with HF diagnosis. The modest increase in pre-existing OSA suggests that persistence of OSA symptoms may contribute to HF
progression, but a wider longitudinal review is needed. Even with increased active management of OSA through CPAP or
supplemental oxygen treatment, non-adherence to OSA treatment underscores the critical role of consistent management in
mitigating OSA’s cardiovascular impact. However, a larger patient pool is necessary to determine the reliability of this indicator
for high doses of persisting respiratory obstruction given only 9 patients referenced non-adherence.

Discussion
A wealth of clinical predictive models apply ML methods on structured data from EHR to help physicians and decision makers
integrate large amounts of medical information. Even with the increased push towards automated triaging50 over the last few
years, most operationalized models do not fully utilize unstructured clinical text which often hold rich details of patient health
status over time. LLMs are trained at scale on broad data with a lower need of data cleaning and curation. Often termed
foundation models, we posit LLMs act as central, unifying storage, an impressive hash system that allows to efficiently organize
massive amounts of data into highly compressed representations. Once pretrained, they can be finetuned for a variety of
transfer-learning tasks using significantly smaller amounts of data. We believe foundation models have the potential to capture a
full range of associations within clinical corpuses, distill that information into multifaceted dense representations, and integrate
diverse modalities of data in medicine. Basic research into the representative capacities of pretrained LLMs for key health
indicators is necessary before wide-deployment of models into clinical practice, and insights into how information is stored in
LLMs may lead to more informed strategies for solving domain-specific clinical tasks.

Limitations of Analysis
In conjunction, we believe the three linear regression analyses offer researchers in computational medicine a working theory on
how the complexity of LLMs, influenced by engineers’ architectural decisions, determines the pretrained models’ capacity for
solving downstream clinical tasks. Such a theory would be invaluable for deciding which architecture to use, when to reproduce
pretraining on larger datasets, justifying the scale of pretraining over clinical text of healthcare systems, and identifying which
classes of clinical tasks are likely to perform well by finetuning.

Several limitations persist with this analysis. First, the architectural characteristics are our best estimations from literature
and supplementary materials. Second, there is a lack of understanding regarding the added explanatory power from considering
the composition of the pretraining datasets, although Forge-Bio’s performance suggests that a more diverse dataset produces
better results. Additionally, the Gatortron line of models give some weak evidence of improved discrimination of demographic
determinants when ingesting larger amounts of clinical text. Third, the sparsity of MIMIC-IV in terms of longitudinal data
makes it difficult to ascertain the consistency of trajectories in latent spaces. More work is needed to determine at what scale
LLMs begin to encode trajectories between subregions of the latent space. Lastly, this analysis does not consider any LLMs
pretrained on general-domain corpora, though the interest in applying general-domain LLMs in medicine warrants further
investigation.

There exists an opportunity for new information retrieval techniques like Retrieval-Augmented Generation (RAG)51 to
expedite the process of annotation for chart reviews. While the reported chart review finds some evidence for using textual
mentions as surrogate indicators for high dosages of severe OSA, inconclusive results over treatment non-adherence highlights
the need for methods to quickly automate the annotation of large patient pools to increase the sensitivity of exposures mentioned
in clinical text52. Even so, this demonstration shows an early attempt for how clinical experts may use the proposed framework
for testing medical hypotheses then develop domain-specific finetuning with insights derived from those investigations.

Future Work, Challenges and Potential
Theoretical vs Empirical Latent Space Analysis
A continued debate persists regarding the relationship between metrics in embedding spaces, concept localization, and semantic
relations. Notably, language embedding serves as a demonstration of how vector representations can infer analogies (e.g., king -
man = queen - woman), yet the extent of these properties remains an open problem in deep-learning-based NLP53. Several
attempts have been made to construct a semantic calculus out of token-level representations54, 55, leveraging learned invariants
in an embedding space (e.g., (store (not (gross food))) = restaurant). However, it remains unclear whether these invariants are
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globally consistent across an embedded manifold and how model pretraining influences their instantiations. The introduction
of LLMs further complicates the issue, as they demonstrate that many artifacts found in smaller models disappear simply by
increasing the number of trainable parameters and the size of the training corpus.

An alternative explanation of how these systems represent language posits that LLMs function as high-capacity locality-
sensitive hashes56. In essence, LLM parameters serve as a compression of the pretraining corpus. When predicting the next
word in a sentence, these models may execute a complex hierarchical lookup in an address space learned through stochastic
gradient descent. While the mechanics behind how these address spaces self-organize remain opaque, an empirical framework
like the analysis proposed in this work may serve as a sufficient first step in testing LLMs for clinically relevant representations
along this line of reasoning. We believe progress in contemporary artificial intelligence research through its persisting and
homogenizing coventions57 warrant the development of new empirical frameworks towards detecting synthesized designs.

The proposed approach is empirical in nature due to its reliance on real-world data and observable outcomes. By scoring
the underlying organization of LLM latent spaces with respect to observational data, researchers can empirically evaluate the
model’s ability to encode clinical phenotypic markers and mortality-related pseudotime. This stands in contrast to theoretical
approaches, which may rely more heavily on abstract formulations or theoretical assumptions about the structure of clinical
language in implementing bespoke retrieval methods. Through empirical analysis, researchers can gain practical insights into
the capabilities and limitations of LLMs in capturing clinically relevant information within their latent spaces and identify
domain-specific areas that need additional refinement as well as formulating new medical hypotheses.

Scaling Framework to High-Resolution Population-Wide Longitudinal Datasets
Our ultimate goal is to assess the utility of pretrained latent representations for modeling longitudinal trajectories of patients.
We demonstrate how measuring excess self-information over subregions of the latent space can effectively detect systematic
increase or decrease in organization concerning phenotypic variables such as diagnosis and healthcare services, as well as
time-dependent variables like patients’ age and life expectancy. However, the analysis over MIMIC-IV provides weak evidence
for trajectories due to the sparsity of admissions per patient. We anticipate observing stronger temporal ordering in a larger
population study with higher rates of healthcare utilization.

A positive finding would reveal corpus manifolds expressing attractors, where patients’ embedded clinical histories trace
paths through different phenotypic clusters, ultimately terminating at end-of-life phenotypic clusters (e.g., Major depressive
disorder -> alcohol abuse -> death by liver failure). If successful, this analysis will serve as a valuable stepping stone toward
understanding how clinical LLMs organize information, model disease progression, and how they may be used to evaluate
medical hypotheses related to disease progression pathways and the effect of medical interventions on those pathways.

We further hypothesize that the translation of general features learned by clinical LLMs during pretraining to fine-tuned
tasks is directly related to the quality of these clinical latent spaces in modeling phenotypes and temporal locality. Specifically,
we propose that implicit organization with respect to "clinically-aware"" designs improves proportionally with the total number
and temporal resolution of patient trajectories observed during pretraining.

However, significant roadblocks exist in confirming the emergence of trajectories along longitudinal datasets, particularly
in scaling to populations past tens of millions of patients. To contextualize the engineering feat required, consider the U.S.
Department of Veterans Affairs (VA) which houses one of the largest centralized repositories of clinical data in their Corporate
Data Warehouse (CDW) . As of 2023, the CDW has archived clinical documents for 4.18 B admissions from nationwide
inpatient and outpatient admissions for over 13.8 million patients spanning from January 1, 2000, to January 1, 2022. The
urgent need for scalable data analysis is underscored by the VA’s estimated growth rate for their clinical corpus, projected to
increase by X00 million documents per year. Even so, the high longitudinal resolution of the VA dataset makes it an important
dataset for foundation modeling with an average of 131.9 admissions per patient and over 4.98 M patient years worth of
observational data (3 orders of magnitude greater than the 4.47 K patient years covered in MIMIC-IV).

Maps Of Disease Progression
As advancements in computational medicine and artificial intelligence continue to unfold, we anticipate the detection of
disease progression will be enhanced through insights derived from large-scale longitudinal datasets and applied foundation
modeling, ranging from identifying predisposition for chronic conditions to precipitation of acute illnesses. Mapping disease
progression would revolutionize public health strategies enabling policymakers and healthcare professionals to implement
targeted interventions and preventive measures tailored to the specific stages of disease development. In identifying early
indicators and risk factors associated with disease progression, public health initiatives could be optimized to intervene at
critical junctures, thereby reducing the burden of illness on nationwide healthcare systems and improving population health
outcomes.

Given sufficient healthcare data, these maps may help understand the rapid collapse of health among frail or high comorbid
patients58. Additionally, maps may help disentangle the complex interplay between genetic predispositions, environmental
factors, and medical interventions through infusion with multiple healthcare modalities. Clinicians can gain insights into the
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dynamics of disease, allowing for early detection, risk stratification, and targeted interventions. Moreover, these maps could
serve as invaluable tools for predicting disease trajectories, optimizing treatment strategies, and identifying novel therapeutic
targets.

However, with these newfound repositories of clinical knowledge comes ethical considerations and societal responsibilities.
It’s imperative to ensure accuracy and reduced bias on downstream finetuning applications using foundation models, equitable
access to healthcare resources and interventions which employ these systems, and guards against the misuse of personal health
data. As tools for understanding the dynamics of disease, maps of disease progression may iteratively attain capabilities that
extend beyond traditional healthcare applications. The ability to predict disease trajectories, identify vulnerable populations, and
anticipate the spread of illnesses may hold implications for shaping societal well-being in positive or negative ways. Methods
of ascertaining clinical capability as a function model complexity need to be at the forefront of applied foundation modeling in
computational medicine.
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Table 1. Cohort Characteristics For MIMIC-IV Admissions with Discharge Report.

Overall (n=145,915) Non-OSA (n=131,588) OSA (n=14,327)
Sex

Male 71,016 (48.7%) 62,469 (47.5%) 8,547 (59.7%)
Female 74,899 (51.3%) 69,119 (52.5%) 5,780 (40.3%)

Race
White 100,085 (68.6%) 89,898 (68.3%) 10,187 (71.1%)
Black 17,475 (12.0%) 15,456 (11.7%) 2,019 (14.1%)
Other 20,929 (14.3%) 19,317 (14.7%) 1,612 (11.3%)
Unknown 7,426 (5.1%) 6,917 (5.3%) 509 (3.6%)

Hispanic Ethnicity
Yes 7,006 (4.8%) 6,322 (4.8%) 684 (4.8%)
No 131,483 (90.1%) 118,349 (89.9%) 13,134 (91.7%)
Unknown 7,426 (5.1%) 6,917 (5.3%) 509 (3.6%)

Age at Death
All 27,247 (18.7%) 24,700 (18.8%) 2,547 (17.8%)
< 20 9 (0.0%) 9 (0.0%) 0 (0.0%)
20-29 215 (0.1%) 204 (0.2%) 11 (0.1%)
30-39 415 (0.3%) 379 (0.3%) 36 (0.3%)
40-49 1,090 (0.7%) 995 (0.8%) 95 (0.7%)
50-59 2,960 (2.0%) 2,654 (2.0%) 306 (2.1%)
60-69 5,014 (3.4%) 4,343 (3.3%) 671 (4.7%)
70-79 6,128 (4.2%) 5,375 (4.1%) 753 (5.3%)
80-89 7,329 (5.0%) 6,787 (5.2%) 542 (3.8%)
> 89 4,087 (2.8%) 3,954 (3.0%) 133 (0.9%)

Diagnosis
Stroke (STRK) 18,719 (12.8%) 16,471 (12.5%) 2,248 (15.7%)
Heart Failure (HF) 23,835 (16.3%) 19,519 (14.8%) 4,316 (30.1%)
Coronary Artery Disease (CAD) 35,134 (24.1%) 29,891 (22.7%) 5,243 (36.6%)
Atrial Fibrillation (AFIB) 26,048 (17.9%) 22,179 (16.9%) 3,869 (27.0%)
Type-2 Diabetes Mellitus (T2DB) 32,752 (22.4%) 26,730 (20.3%) 6,022 (42.0%)
Hypertension (HTN) 81,640 (55.9%) 70,516 (53.6%) 11,124 (77.6%)

Text Corpus (MB) 3,338 2,781 557
Admitted Patient-Days 1,630,924 1,372,168 258,756

Admissions
All 331,794 280,229 51,565
Emergency 291,255 (87.8%) 247,634 (88.4%) 43,621 (84.6%)
Elective 40,539 (12.2%) 32,595 (11.6%) 7,944 (15.4%)

Admissions By Age
< 20 1,410 (0.4%) 1,402 (0.5%) 8 (0.0%)
20-29 18,821 (5.7%) 18,115 (6.5%) 706 (1.4%)
30-39 25,170 (7.6%) 22,999 (8.2%) 2,171 (4.2%)
40-49 35,634 (10.7%) 30,223 (10.8%) 5,411 (10.5%)
50-59 59,674 (18.0%) 47,971 (17.1%) 11,703 (22.7%)
60-69 70,549 (21.3%) 55,336 (19.7%) 15,213 (29.5%)
70-79 59,461 (17.9%) 48,681 (17.4%) 10,780 (20.9%)
80-89 45,347 (13.7%) 40,556 (14.5%) 4,791 (9.3%)
> 89 15,728 (4.7%) 14,946 (5.3%) 782 (1.5%)
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Table 2. ICD 9/10 Definitions For OSA and Comorbid Diseases.

Obstructive Sleep
Apnea (OSA)

Stroke (STRK) Heart Failure (HF) Coronary Artery
Disease (CAD)

Atrial Fibrillation
(AFIB)

Type-2 Diabetes
Mellitus (T2DB)

Hypertension (HTN)

ICD-9 - - - - - -
327.20, 327.23, 327.29,
780.51, 780.53, 780.57

362.3, 362.3[01234], 362.34,
431, 432.9, 433, 433.0,
433.0[01], 433.1, 433.1[01],
433.2, 433.2[01], 433.3,
433.3[01], 433.8, 433.8[01],
433.9, 433.9[01], 434, 434.0,
434.01, 434.1, 434.1[01],
434.9, 434.9[01], 435, 435.0,
435.1, 435.2, 435.3, 435.8,
435.9, 436, 437.0, 437.1,
437.8, 437.89, 437.9, 438,
438.0, 438.1, 438.1[012],
438.13, 438.14, 438.19, 438.2,
438.2[01], 438.21, 438.22,
438.3, 438.3[012], 438.4,
438.4[012], 438.5,
438.5[0123], 438.6, 438.7,
438.8, 438.8[123459], 438.9,
V12.54

402.01, 402.11, 402.91,
404.0[13], 404.1[13],
404.9[13], 428,
428.[01], 428.2,
428.2[0123], 428.3,
428.3[0123], 428.4,
428.4[0123], 428.9

410, 410.0, 410.0[012], 410.1,
410.1[012], 410.2,
410.2[012], 410.3,
410.3[012], 410.4,
410.4[012], 410.5, 410.5[02],
410.6, 410.6[012], 410.7,
410.7[012], 410.8,
410.8[012], 410.9,
410.9[012], 411, 411.0, 411.1,
411.8, 411.8[19], 412, 413,
413.[019], 414.0,
414.0[1234567], 414.3,
414.[489], 429.7, 429.79,
V45.8[12], 36, 36.0,
36.0[34679], 36.1,
36.1[012345679], 36.2, 36.3,
36.3[12349]

427.3, 427.3[12] 250, 250.0, 250.0[02],
250.1, 250.1[02],
250.2, 250.2[02],
250.3, 250.32, 250.4,
250.4[02], 250.5,
250.5[02], 250.6,
250.6[02], 250.7,
250.72, 250.8,
250.8[02], 250.9,
250.9[02], 357.2,
362.0, 362.0[1234567],
366.41

362.11, 437.2,
401.[019], 402, 402.0,
402.00, 402.1, 402.11,
402.9, 402.9[01], 403,
403.0, 403.0[01],
403.1, 403.11, 403.9,
403.9[01], 404, 404.0,
404.0[123], 404.1,
404.1[0123], 404.9,
404.9[0123]

ICD-10 - - - - - -
G4730, G4733, G4739 I61, I61.[012345689], I63, I63.0, I63.00,

I63.01, I63.01[1239], I63.02, I63.03,
I63.03[1239], I63.09, I63.1, I63.10,
I63.11, I63.11[1239], I63.12, I63.13,
I63.13[1239], I63.19, I63.2, I63.20,
I63.21, I63.21[1239], I63.22, I63.23,
I63.23[1239], I63.29, I63.3, I63.30,
I63.31, I63.31[1239], I63.32,
I63.32[1239], I63.33, I63.33[1239],
I63.34, I63.34[1239], I63.4, I63.40,
I63.41, I63.41[1239], I63.42,
I63.42[1239], I63.43, I63.43[1239],
I63.44, I63.44[1239], I63.49, I63.5,
I63.50, I63.51, I63.51[1239], I63.52,
I63.52[1239], I63.53, I63.53[1239],
I63.54, I63.54[1239], I63.59, I63.6, I63.8,
I63.8[19], I63.9, I65, I65.0, I65.0[1239],
I65.1, I65.2, I65.2[1239], I65.8, I65.9,
I66, I66.0, I66.01, I66.0[239], I66.1,
I66.1[1239], I66.2, I66.2[1239], I66.3,
I66.8, I66.9, I67.2, I67.4, I67.8[129],
I67.9, I68.0, I68.8, I69, I69.0, I69.00,
I69.01, I69.01[01234589], I69.02,
I69.02[1238], I69.03, I69.03[12349],
I69.04, I69.04[12349], I69.05,
I69.05[12349], I69.06, I69.06[123459],
I69.09, I69.09[01238], I69.1, I69.10,
I69.11[01234589], I69.12, I69.12[01238],
I69.13, I69.13[12349], I69.14,
I69.14[12349], I69.15, I69.15[1249],
I69.16, I69.16[123459], I69.19,
I69.19[01238], I69.2, I69.20, I69.21,
I69.21[01234589], I69.22, I69.22[01238],
I69.23, I69.23[12349], I69.24,
I69.24[12349], I69.25, I69.25[12349],
I69.26, I69.26[123459], I69.29, I69.290,
I69.29[1238], I69.3, I69.30, I69.31,
I69.31[0134589], I69.32, I69.32[01238],
I69.33, I69.33[1349], I69.34,
I69.34[12349], I69.35, I69.35[12349],
I69.36, I69.36[123459], I69.39,
I69.39[1238], I69.8, I69.80, I69.81,
I69.81[01234589], I69.82, I69.82[01238],
I69.83, I69.83[12349], I69.84,
I69.84[12349], I69.85, I69.85[12349],
I69.86, I69.86[123459], I69.89,
I69.89[01238], I69.9, I69.90, I69.91,
I69.91[01234589], I69.92, I69.92[01238],
I69.93, I69.93[12349], I69.94,
I69.94[12349], I69.95, I69.95[12349],
I69.96, I69.96[123459], I69.99,
I69.99[01238] G45, G45.[01238],
G46.[34], H34, H34.0, H34.0[0123],
H34.1, H34.1[012], H34.1[23], H34.2,
H34.21, H34.21[1239], H34.23,
H34.23[1239]

I11.0, I13.[02], R57.0,
I50, I50.1, I50.2,
I50.2[0123], I50.3,
I50.3[0123], I50.4,
I50.4[0123], I50.8,
I50.81, I50.81[01234],
I50.8[2349], I50.9

Z95.1, Z95.5, Z98.61,
I20, I20.[0129], I21,
I21.0, I21.0[129],
I21.1, I21.1[19], I21.2,
I21.2[19], I21.[349],
I21.A, I21.A[19], I22,
I22.[01289], I23,
I23.[012345678], I24,
I24.[0189], I25, I25.1,
I25.10, I25.11,
I25.11[01289],
I25.[2567], I25.70,
I25.70[01289], I25.71,
I25.71[01289], I25.72,
I25.72[01289], I25.73,
I25.73[01289], I25.75,
I25.75[01289], I25.76,
I25.76[01289], I25.79,
I25.79[01289], I25.8,
I25.81[012],
I25.8[2349], I25.9

I48, I48.0, I48.1,
I48.1[19], I48.2,
I48.21, I48.3, I48.4,
I48.9, I48.9[12]

E11, E11.0, E11.01,
E11.11, E11.2,
E11.2[129], E11.3,
E11.31, E11.31[19],
E11.32, E11.321,
E11.321[1239], E11.329,
E11.329[1239], E11.33,
E11.331, E11.331[239],
E11.339, E11.339[1239],
E11.34, E11.341,
E11.341[1239], E11.349,
E11.349[1239], E11.35,
E11.351, E11.351[1239],
E11.352, E11.352[239],
E11.353, E11.353[1239],
E11.354, E11.354[1239],
E11.355, E11.355[1239],
E11.36, E11.37,
E11.37X[1239], E11.39,
E11.4, E11.4[012349],
E11.5, E11.5[129], E11.6,
E11.61, E11.61[08],
E11.62, E11.62[0128],
E11.63, E11.63[08],
E11.64, E11.64[19],
E11.6[59], E11.[89]

H35.03[1239], I10,
I11, I11.[09], I12,
I12.[09], I13, I13.0,
I13.1, I13.1[01], I13.2,
I16.[019], I67.4
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Table 3. Pretraining Characteristics Across Biomedical Large Language Models

model parameters tokens context width seen MIMIC reported datasets

0 RadBERT_2m 109.5 M 466 M 512 No VHA Radiology Reports
1 Bio_ClinicalBERT 108.3 M 666 M 512 Yes MIMIC-III
2 BioBART_base 166.4 M 6 B 1024 No PubMed Abstracts
3 BioBART_large 442.3 M 6 B 1024 No PubMed Abstracts
4 BioMegatron_base 333.6 M 8.1 B 512 No PubMed Abstracts, PMC Full Text
5 BioBERT_base 108.3 M 28.4 B 512 No PubMed Abstracts, PMC Full Text, BooksCorpus US, English Wikipedia
6 BioGPT_base 346.8 M 14 B 1024 No PubMed Abstracts, PMC Full Text
7 BioBERT_large 364.4 M 28.4 B 512 No PubMed Abstracts, PMC Full Text, Books Corpus US, English Wikipedia
8 BioGPT_large 1.571 B 14 B 2048 No PubMed Abstracts, PMC Full Text
9 Gatortron_base 355.3 M 121.33 B 512 Yes UF Health IRD, MIMIC-III, PubMed Abstracts, PMC Full Text, English Wikipedia
10 Gatortron_s 355.3 M 121.33 B 512 Yes UF Health IRD, MIMIC-III, PubMed Abstracts, PMC Full Text, English Wikipedia
11 Forge_bio 1.440 B 38 B 2048 No SciBert Classified Biology/Medicine (Bio/Med) Abstracts From CORE, OAG, MAG, Aminer, ArXiv, and SCOPUS

12 Gatortron_medium 3.913 B 121.33 B 512 Yes UF Health IRD, MIMIC-III, PubMed Abstracts, PMC Full Text, English Wikipedia
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Table 4. Top Subsetted Latent Spaces by Proposed KLD-based Scoring Function

age at weeks till demographic dx cpt
model layer k sum admission death determinants phenotype phenotype

0 Forge_bio 0 2048 9.26 0.19 0.17 0.10 2.07 6.73
1 BioGPT_large 2 2048 8.72 0.18 0.16 0.09 2.00 6.29
2 BioGPT_large 1 2048 8.54 0.18 0.15 0.09 1.94 6.18
3 BioGPT_large 0 2048 8.37 0.17 0.15 0.09 1.91 6.06
4 Gatortron_base 0 2048 8.35 0.17 0.14 0.11 1.87 6.06
5 Gatortron_base 1 2048 8.30 0.17 0.13 0.09 1.89 6.01
6 Forge_bio 0 1024 8.29 0.15 0.14 0.07 1.80 6.12
7 Forge_bio 1 2048 8.15 0.17 0.16 0.08 1.91 5.83
8 Gatortron_base 2 2048 8.12 0.17 0.13 0.08 1.83 5.91
9 Gatortron_medium 1 2048 7.97 0.14 0.12 0.07 1.71 5.92
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Figure 1. A proposed explanatory framework for evaluating the capability of Large Language Models (LLMs) to represent
admission-level clinical text as "maps of disease progression". The framework employs a mixed-methods approach, combining
quantitative and qualitative assessments of latent spaces in LLMs. The process starts by mapping structured admission-level
variables to unstructured reports, embedding clinical text using various biomedical LLMs, and then partitioning the sampled
latent spaces. Admissions are assigned to subsets, corresponding to sub-regions of the latent space. Different classifiers are fit
to each intermediate representation to construct indexes of diseases. A qualitative evaluation of these indexes determines the
coherence between the trajectories found in low-dimensional projections of the latent spaces and the clinical narratives. This
framework aims to provide insights into how diseases and stages of disases are encoded in LLMs, offering a tool to understand
disease progression.
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(a) (b) OSA Cohort Phenotyping Tasks (c) OSA Cohort Mortality Prediction Tasks

Figure 2. Quantitative results across biomedical LLMs covered in the study. (a) Plots subsetted latent space surprise over the estimated compute needed to pretrain
each model with compute optimal conventions reported by Hoffman33 and Yin30 . Box plots show the distribution of scores per model over different layers and
subsettings. Compute, ratio between training tokens and parameter count, and context length of pretrained models explain 60.3% of variance when regressing against
scores. (b) Plots area under the ROC curve (ROC-AUC) performance on admission-level phenotyping tasks over subsetted latent space scores. Moderate to strong
relationships are found between performance on tasks and scores. (c) Plots ROC-AUC performance on admission-level overall mortality prediction over subsetted
latent space scores. Moderate to strong relationships are found between 90-day and 1-year mortality prediction and scores.
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(a) (b)

Figure 3. Qualitative evaluation of best subsetted latent space (Forge-bio, k=2048, penultimate layer). (a) UMAP visualization of admission-level corpus manifold.
Color gradient corresponds to proximity of K-Means clusters. (b) Per cluster KLD scores over corpus manifold. Intensity corresponds to higher amounts of order.

21/24

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted July 8, 2024. 

; 
https://doi.org/10.1101/2024.06.16.24308979

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.06.16.24308979


(a) (b) 1 Year (c) 90 Days (d) 30 Days

Figure 4. Prevalence of time-dependent variables over clusters on corpus manifold. (a) Plots mean age of patients at time of admission. Yellow regions correspond
to clusters with patients 35 years-old and younger. Red regions correspond to clusters with patients 65 years-old and older. (b,c,d) Plot 1-year, 90-day, and 30-day
overall mortality respectively. High prevalence clusters for overall mortality concentrate around center-left region at [(0.1,0.2),(0.4,0.5)].
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(a) Hypertension (b) Atrial Fibrillation (c) Heart Failure

(d) Stroke (e) Type-2 Diabetes Mellitus (f) Coronary Artery Disease

Figure 5. Prevalence of 6 OSA-related comorbid diseases over clusters on corpus manifold. (a, e) HTN and T2DB are prevalent across manifold with reduced
prevalence observed along clusters with younger average age at time of admission. (b, f) AFIB and CAD concentrate on clusters along y = 0.6125. (c, d) Seperation
between HF and STRK is observed. STRK concentrates on clusters following the bands at y = 0.675 and y = x+0.225. In contrast, HF overlaps heavily on regions
with concentrations of AFIB and CAD.
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(a) Heart Failure Dx (b) 1-Year Mortality

(c) Heart Failure Dx (d) 1-Year Mortality

Figure 6. Admissions for two expired OSA patients with concurrent HF traced over corpus manifold. Plots class
probabilities for HF diagnosis and 1-year mortality along cases of OSA (51,565 admissions) using logistic regression fit
on K-Means cluster distances. Crosses represent unique admissions and thier color gradient correspond the admissions’
class probability. (a, b) Plots follow admissions with diagnosed HF or OSA for sub ject_id = 18080257. Beginning at the
earliest admission with OSA diagnosis (hadm = 0), 3 episodes of HF can be inferred at hadm = 2, hadm = (4,8), and
hadm = (11,12). 1-year mortality probability increases with each episode, ultimately terminating with the patient’s
in-hospital death at t = 12. Chief cause of death, congestive HF. (c, d) For sub ject_id = 16433543, only 1 episode of HF
can be inferred at hadm = (1,4). 1-year mortality probability has a sudden increase at hadm = 4 with the patient dying in
the following admission (hadm = 5) from non-traumatic intracerebral hemorrhage.
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