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Abstract 

Available large-scale GWAS summary datasets predominantly stem from European populations, 

while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, 

etc. remain comparatively limited, which induces the low precision of causal effect estimation 

within these ethnicities using Mendelian Randomization (MR). In this paper, we propose a 

Trans-ethnic MR method called TEMR to improve statistical power and estimation precision of MR 

in the target population using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates 

trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference 

framework, producing calibrated p-values with substantially improved MR power. In the simulation 

study, TEMR exhibited superior precision and statistical power in the causal effects estimation 

within the target populations than other existing MR methods. Finally, we applied TEMR to infer 

causal relationships from 17 blood biomarkers to four diseases (hypertension, ischemic stroke, type 

2 diabetes and schizophrenia) in East Asian, African and Hispanic/Latino populations leveraging the 

biobank-scale GWAS summary data from European. We found that causal biomarkers were mostly 

validated by previous MR methods, and we also discovered 13 new causal relationships that were 

not identified using previously published MR methods. 

 

Keywords: trans-ethnic mendelian randomization, genetic correlation, GWAS summary data, 

statistical power 
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Introduction 

In recent years, the evolving landscape has witnessed a progressive expansion of large-scale 

Genome-Wide Association Studies (GWAS), leading to the widespread release and utilization of 

GWAS summary data among researchers. At the forefront of these developments is Mendelian 

Randomization (MR) [1-2], a method that hinges on the use of publicly available GWAS summary 

data for causal inference. MR uses genetic variants as instrumental variables (IVs) to infer causal 

effect of an exposure on an outcome. It requires three assumptions: Relevance, IVs are strongly 

associated with the exposure; Exchangeability, IVs are independent with confounders among the 

exposure and outcome; Exclusion restriction, IVs affect the outcome only through the exposure. 

However, a noteworthy challenge surfaces as the bulk of available large-scale datasets 

predominantly stem from European populations, such as the UK Biobank (UKB) [3-7] and FinnGen 

consortium [8], while sample sizes for other ethnicities, notably Central/South Asian, East Asian, 

African, Hispanic, etc. remain comparatively limited [9-12]. Take the East Asian population as an 

example, despite the substantial data provided by the BioBank Japan (BBJ) [11-12], Taiwan Biobank 

(TWB) [13] and China Kadoorie Biobank (CKB) [14] for the East Asian population (> 100,000 

individuals), it falls short of the extensive dataset available from the UKB (> 500,000 individuals) 

or FinnGen consortium (> 620,000 individuals). Moreover, the UKB incorporates a substantial 

amount of omics data, including imaging omics [4], exomes [5], proteomics [6] and metabolomics 

[7]—BBJ, TWB and CKB have significantly smaller sample sizes and may also lack some omics 

data [12]. Furthermore, omics databases dedicated to other ethnicities tend to exhibit relatively 

smaller sample sizes [15-21]. The potential inadequacy of GWAS summary data from smaller samples 

to furnish robust causal evidence for MR becomes apparent. Additionally, causal evidence derived 

from a substantial European population cannot be directly extrapolated to other ethnic groups due to 

diversity in the genetic structure between different ethnicities [22-23]. The unbalanced sample makeup 

across global populations may exacerbate the disparities in genetic studies of non-Europeans. 

Therefore, it is crucial to propose a methodology that leverages the genetic correlations [24-25] among 

different ethnicities, harnessing the advantages of large European datasets to enhance the accuracy 

and statistical power of MR in estimating causal effects within smaller populations. 

A number of trans-ethnic MR analyses has been published, predominantly featured in applied 

research articles [26-28]. The common approach in these studies involves conducting separate MR 

analyses within distinct ethnic groups and subsequently comparing the nuances in the MR results 

between these groups. This is unfair for ethnicities with small sample sizes, as its statistical power 

of MR is much lower than that of large sample sizes. For methodology, advancements have been 
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made in cross-ethnic approaches within GWAS meta-analysis and Polygenic Risk Score (PRS). The 

published trans-ethnic meta-analysis approaches take into account the similarity in allelic effects 

between the most closely related populations while allowing for heterogeneity between more 

diverse ethnic group [29-32]. While trans-ethnic GWAS meta-analysis has the potential to improve the 

efficiency of identifying new loci by merging populations of different ethnicities, it operates at a 

mixed-population level and may not necessarily contribute to the discovery of genetic loci specific 

to particular ethnic groups. Tans-ethnic PRS prediction methods leverage shared genetic effects 

across ancestries to increase the accuracy of predicting the genetic predisposition of complex 

phenotypes in non-European populations [33-35]. However, these methods highlight that improving 

the power to discovery new loci or disease prediction, a noticeable gap in the current literature lies 

in the lack of attention to methods facilitating the transfer of causal effects in MR across different 

ethnicities. Despite progress in various methodological aspects of trans-ethnic analysis, there 

remains an unexplored avenue concerning the migration of causal effects across ethnic groups in the 

context of MR. 

In this paper, we propose a MR method based on Trans-ethnic Population called TEMR to 

improve statistical power and estimation precision of MR in target population using trans-ethnic 

large-scale GWAS summary datasets. Under the framework of conditional likelihood-based 

inference framework, TEMR bridges the causal effects of different ethnics using a trans-ethnic 

genetic correlation coefficient, which is the correlation of Wald ratios for shared SNPs in different 

ethnic populations. In the simulation study, TEMR showed superior precision and power of causal 

effect estimation in the target population relative to other seven methods in the case of continuous 

and binary outcome variables. Finally, we apply TEMR to infer causal relationships from 17 blood 

biomarkers to four diseases (hypertension, ischemic stroke, type 2 diabetes (T2D) and 

schizophrenia) in East Asian, African and Hispanic/Latino populations leveraging the biobank-scale 

GWAS summary data from European. 

Results 

TEMR Method overview 

[please insert Figure 1 here] 

We consider a target dataset 1 1 1{ , , }G X Y  from an under-represented ancestry (e.g. East Asian, 

African and Hispanic/Latino population, etc) with small sample size, where 1G , 1X  and 1Y  

represent the Single Nucleotide Polymorphisms (SNPs), exposure and outcome, respectively. Now 
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suppose we have an auxiliary dataset 2 2 2{ , , }G X Y  (e.g. European population) with a biobank-scale 

sample size available. We assume the sample sizes of two datasets satisfy the condition 2 1N N� . 

We choose the p independent SNPs as IVs, which are associated with at least one of exposures in 

two ancestries ( 1X  and 2X ). The workflow of TEMR is shown in Figure 1. 

When the three core assumptions of MR are all satisfied, we can obtain the Wald ratio 

estimation for each SNP: 1̂ jβ  in the target population and 2
ˆ

jβ  in the target population, as well as 

their variances 
1

2ˆ
jβσ  and 

2

2ˆ
jβσ , respectively, using the summary-level data of p SNPs, including 

beta-coefficients (
1 1

ˆ ˆ,
j jY Xβ β  and 

2 2

ˆ ˆ,
j jY Xβ β ) and their standard error (

1 1

2 2ˆ ˆ,
j jY Xσ σ  and 

2 2

2 2ˆ ˆ,
j jY Xσ σ ). We 

set up the following multivariable normal distribution model for Wald ratios from two populations: 

1 1 2

1 2 2

2
1 1

2
22

ˆ ˆ ˆ ˆ
~ ,

ˆ ˆ ˆ ˆ

β β β β

β β β β

σ ρ σ σβ β
β ρ σ σ σβ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

j j j

j j j

j

j

N                     (1) 

where 1β  and 2β  are the causal effect of exposure on outcome in the target and auxiliary 

populations, respectively. βρ  is the trans-ethnic genetic correlation, which represents the 

correlation of the causal effects of one exposure on one outcome in two ancestries (e.g. East Asian 

and European). It bridges the causal effects of two ethnics to achieve our aim of improving the 

statistical power of causal effect ( 1β ) estimation in the target population. In terms of the conditional 

normal distribution of 1̂ jβ  given 2
ˆ

jβ , 

1 2 1 1

1 2 2 2
1 2 1 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ| ~ ( ( ), )
j j j jj j jN β β β β β ββ β β ρ σ σ β β σ ρ σ−+ − −              (2) 

we found that the variance of j-th Wald ratio estimation 1̂ jβ  conditional on 2̂ jβ  is smaller 

than its original variance as the trans-ethnic genetic correlation βρ  increasing 

(
1 1

2 2 2
1 2

ˆ ˆ ˆ ˆ( | ) 1
j jj jvar β β ββ β σ ρ σ= − <（ ） ). Then we obtain the causal effect ( 1β ) estimation in the target 

population by maximizing the log conditional likelihood function using Nelder-Mead method [38]. 

We use Likelihood-ratio test to perform hypothesis testing. 

When there is horizontal pleiotropy, the third assumption of MR is violated, the causal effect 

estimation using the traditional Wald ratio is biased and we model a new TEMR-Wald ratio by 

removing the impact of horizontal pleiotropy (
1 j

α ) from 
1

ˆ
jYβ . We propose a two-step process to 

estimate TEMR-Wald ratios for each SNP leveraging MR-Egger regression. Next, we use the new 

TEMR-Wald ratio to set up model (1), then infer the causal effect ( 1β ) in the target population, and 
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the remaining steps are the same as in the case of no pleiotropy. 

If there are multiple ancestries (E ancestries), the target dataset is { , , }T T TG X Y  and the 

auxiliary datasets are { , , }( 2,..., )a a aG X Y a E= , we can also set up the multivariable normal 

distribution model using Wald ratios from E ancestries 

2
1

1

ˆ
~ ,

ˆ
ββ σβ

ββ

⎛ ⎞ ⎛ ⎞⎛ ⎞Σ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

TjTj AT

A A AAAj

N                          (3) 

where 

2 (2, ) 2

( ) 2

2

2 2

2

ˆ ...

ˆ , , ...

ˆ ...

β β β β

β β β β

σ ρ σ σβ β
β β

β ρ σ σ σβ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = Σ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
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M M M M

j E j Ej

E,2 Ej j Ej

j
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EEj

, 

( )(1,2) 1 2 (1, ) 11 1 1... ,β β β β β βρ σ σ ρ σ σΣ = Σ = Σ
j j E j Ej

T
A A A  and 

( , ) ( , )m n n mβ βρ ρ= . Then we derive the 

conditional model and obtain the estimation of βT  by Maximum Likelihood Estimation.  

Simulation  

We conducted a series of simulation studies to evaluate the performance of TEMR, comprising with 

seven published MR methods. We vary with magnitudes of parameters: causal effect, trans-ethnic 

genetic correlation, sample size and the number of SNPs, in the scenarios of no pleiotropy and 

horizontal pleiotropy. We utilized boxplots to demonstrate the results of estimation bias and 

standard error, Q-Q plots to showcase the results of Type I error, and bar charts to depict the results 

of statistical power. 

When there is no pleiotropy, Figure 2 shows the simulation results of causal effect estimation 

in the target population when there is one auxiliary population in the case of continuous outcome. 

Simulation results demonstrated that TEMR showed nearly unbiased estimates of causal effects 

regardless of the alignment between causal effects in the auxiliary and target populations. TEMR 

also showed superior precision and power across a broad spectrum of scenarios relative to other 

seven methods, which was consistently observed for both continuous and binary outcome variables. 

The precision of TEMR incrementally improved as the βρ  increasing. When 0.4βρ < , the 

precision of TEMR was similar with the Inverse-variance weighted method (IVW) and the 

Weighted Median Estimation (WME) method. However, when 0.4βρ ≥ , the precision of TEMR 

surpassed that of other seven methods (Figure 2A, Figure S1). Additionally, TEMR exhibited stable 

Type I errors, unaffected by variations in βρ  or causal effects in the auxiliary population (Figure 

2B-C, Figure S2). Moreover, the statistical power of TEMR significantly increased with βρ  rising, 
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especially outperforming other seven methods when 0.4βρ ≥
 

(Figure 2D-E, Figure S3-S6). 

Specifically, when 0.6βρ = , there was a notable decrease in the standard error by approximately 

15-20%, and an increase in power by about 20%. At a higher βρ , the standard error could decrease 

by up to 50%, while the power could improve by 40% (Table S1). 

[please insert Figure 2 here] 

Then we extended our simulation to scenario where there is horizontal pleiotropy, both balance 

and directional, are present. In addition to achieving unbiased estimates of causal effects and stable 

Type I errors, TEMR also maintained the precision and power advantages as described above 

(Figure 3, Figure S7-18). In cases involving categorical outcome, we obtained results consistent 

with those for continuous variables (Figure S19-36, Table S2). Additionally, we also observed that 

the target population can also enhance the precision and test power of causal effect estimates in the 

auxiliary population, exemplified by scenarios directional horizontal pleiotropy (Figure S37, Table 

S3). These observations underscore the robustness and effectiveness of TEMR in various genetic 

correlation contexts. 

[please insert Figure 3 here] 

In order to investigate the impact of the number of SNPs (Figure 4, Table S4) and sample size 

(Figure S38-43, Table S5) on the causal effect estimates, firstly, we conducted a thorough 

exploration by varying the number of SNPs while maintaining other parameters at their initial 

settings. Simulation results indicated that an increase in the number of SNPs leads to higher 

precision and greater test power in the causal effect estimates derived from the TEMR. While other 

methods also demonstrated improvements with more SNPs, the enhancement was not as 

pronounced as that observed with TEMR.  

[please insert Figure 4 here] 

Additionally, we explored the causal effect estimates using the TEMR when there is a negative 

genetic correlation between ethnic groups. The results indicated that the precision and the statistical 

power significantly improved as the absolute value of the genetic correlation increased, which was 

consistent with the aforementioned findings (Figure S44-45, Table S6). 

Subsequently, we consider the case of multiple auxiliary populations, taking three auxiliary 

populations and one target population as an example, assuming uniform causal effects across 

different populations. In the absence of horizontal pleiotropy, TEMR produced nearly unbiased 

estimates of causal effects. And the precision and statistical power of TEMR also incrementally 

improved as the βρ  increased, when 0.4βρ ≥ , the precision and power of TEMR surpassed that 
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of other methods (Figure 5A). Specifically, when 0.6βρ = , there was a notable decrease in the 

standard error by approximately 15-20%, and an increase in power by about 20%. At a higher βρ , 

the standard error could decrease by up to 50%, while the power could improve by 40% (Figure 5C). 

Furthermore, TEMR exhibited stable Type I errors, unaffected by variations in βρ  (Figure 5B). In 

cases involving horizontal pleiotropy, we obtained results consistent with those (Figure S46-54, 

Table S7). And we also obtained consistent results when the genetic correlations were negative 

(Figure S55-56, Table S8). Moreover, compared to having only one auxiliary population, the 

precision (standard error) of the causal effect estimate obtained from three auxiliary populations 

also improved with the increase in genetic correlations, with an approximate 15% improvement 

when 0.9βρ = . 

[please insert Figure 5 here] 

Application 

In this section, we applied TEMR to infer the causal relationships between different biomarkers and 

four diseases (hypertension, ischemic stroke, T2D and schizophrenia) in the East Asian, African, 

Hispanic/Latino population, leveraging GWAS summary data from large European cohorts (Table 

S9). Initially, we identified 17 specific biomarkers that were significantly associated with at least 2 

SNPs from a multitude of biomarkers. Then we calculated the trans-ethnic genetic correlation for all 

pairs of biomarkers, results are shown in Figure 6 (Table S10). The results showed that there were 

trans-ethnic genetic correlations between the causal effects of all biomarkers and diseases in four 

populations, which could be analyzed by TEMR. Among these, the absolute value of correlation of 

14 pairs exhibited 0.5 (total 17×4=68 pairs), including basophil count to hypertension (between 

East Asian and Hispanic/Latino), neutrophil count to hypertension (between African, 

Hispanic/Latino and East Asian), mean corpuscular hemoglobin concentration (MCHC) to ischemic 

stroke (between East Asian, European and Hispanic/Latino, African and East Asian), eosinophil 

count to schizophrenia (between European and Hispanic/Latino), neutrophil count to schizophrenia 

(except between East Asian and Hispanic/Latino), platelet count to schizophrenia (between East 

Asian, Hispanic/Latino and African), body mass index (BMI) to schizophrenia (between European 

and East Asian), triglyceride (TG) to schizophrenia (between European and East Asian), 

lymphocyte count to T2D (between European, Hispanic/Latino and East Asian), BMI to T2D 

(between European and Hispanic/Latino), glucose to T2D (between European Hispanic/Latino and 

East Asian), neutrophil count to T2D (between European, African and East Asian), Total cholesterol 
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(TC) to T2D (between European and East Asian), TG to T2D (between European and East Asian). 

[please insert Figure 6 here] 

Then we perform trans-ethnic MR analysis using TEMR and other seven methods. The results 

indicated that TEMR identified a greater number of biomarker pairs with significant causal 

associations compared to the other seven methods (Figure 7). Among these, TEMR emerged as the 

method identifying the most significant biomarker pairs in each target population, with IVW 

following closely behind (Table S11), and most of the significant biomarker pairs identified by the 

other methods were also detected by TEMR with smaller P-values. Notably, there were several 

significant relationships across different ethnic groups that only TEMR identified as significant 

(P<0.0007(0.05/68)): three new causal relationships in East Asian, four new causal relationships in 

African and six in Hispanic/Latino population. 

[please insert Figure 7 here] 

In the East Asian population, significant causal associations including TC to schizophrenia 

(OR=2.30, P=0.019), HDL-cholesterol (HDL-C) to schizophrenia (OR=0.50, P=0.044) and 

neutrophil count to T2D (OR=0.89, P=0.038) were detected (Table S12). The association between 

TC and schizophrenia suggested that higher TC levels might influence the risk of developing 

schizophrenia. This connection could be through the alteration of cell membrane fluidity, which in 

turn may impact neurotransmitter signaling. Many studies supported that elevated serum TC levels 

could be linked to enhanced cognitive function in individuals with schizophrenia [39-41]. For the 

relationship between HDL-C and schizophrenia, the inverse association could indicate that higher 

levels of HDL-C, often considered good cholesterol, might have a protective effect against the 

development of schizophrenia. Studies corroborated these findings, indicating that patients with 

schizophrenia often have lower levels of HDL-C compared to those without the condition [40]. 

Finally, while the relationship between neutrophil count and the risk of T2D is complex and not 

fully understood, some studies have suggested that increased neutrophil activity may be associated 

with a reduced risk of the disease, potentially due to their role in modulating inflammatory 

responses [42-43]. 

Similarly, in the African population, the TEMR analysis revealed notable associations such as 

lymphocyte count to schizophrenia (OR=0.01, P<0.001) which might suggest a substantial 

protective role of higher lymphocyte counts against schizophrenia, potentially through immune 

regulation mechanisms [44]. The link between glucose levels and schizophrenia (OR=0.84, P<0.001) 

could reflect the metabolic disturbances that are often observed in patients with schizophrenia and 

might indicate a broader metabolic syndrome component of the disorder [45]. The causal relationship 

between TC and schizophrenia (OR=0.78, P=0.007) in this demographic implies a protective effect 
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of lower cholesterol levels, which contrasts with findings in the Asian population, suggesting the 

influence of genetic and environmental factors in different populations. Cholesterol is involved in 

the production of steroid hormones and neurosteroids, which neurosteroids have been found to 

modulate the central nervous system's activity and may influence symptoms of schizophrenia. They 

can also affect the immune system, which has been implicated in the pathophysiology of 

schizophrenia [46-47]. Higher TC levels could reflect more robust synthesis of such compounds, 

potentially contributing to more stable cellular functions and better disease outcomes [48]. 

Additionally, the significant association between TC and hypertension (OR=0.74, P<0.001) could 

hint at the complex interplay between lipid metabolism and blood pressure regulation. There have 

been suggestions that certain lipid components might have a role in immune defense systems and 

that some aspects of the inflammatory response may be influenced by lipid levels [49]. Cholesterol 

may also modulate cell membrane properties, affecting the reactivity of blood vessels and 

contributing to the regulation of blood pressure (BP) [50] (Table S13). 

In the Hispanic/Latino population, the TEMR method unveiled notable significant causal 

relationships, indicative of unique pathophysiological pathways. The association of TG to 

schizophrenia (OR=0.80, P<0.001) and TC to schizophrenia (OR=0.61, P<0.001) also suggested a 

link between metabolic dysregulation and the development of schizophrenia. The significant causal 

associations between basophil count (OR<0.01, P<0.001) and platelet count (OR=0.06, P<0.001) 

emphasized the role of the immune system in schizophrenia [51]. The association of LDL-cholesterol 

(LDL-C) with hypertension (OR=0.97, P<0.001) parallelled the findings of TC in the African 

population, adding to the evidence that lipid metabolism plays a complex role in BP regulation 

across different ethnicities. Finally, the associations between TG (OR=0.96, P<0.001) and ischemic 

stroke suggested a pathogenic role for blood components and lipid metabolism in vascular health. 

For TG, while high levels are typically considered a risk factor for atherosclerosis and thus ischemic 

strokes, However, very low TG levels might also not be ideal, as they can indicate an insufficient 

energy reserve for normal cellular functions, which could potentially affect overall health and 

cellular processes, including those in vascular cells [52] (Table S14). 

Discussion 

In this paper, we propose a trans-ethnic MR method called TEMR to improve statistical power and 

estimation accuracy of MR in the target population only using trans-ethnic large-scale GWAS 

summary datasets. TEMR showed superior precision and power of causal effect estimation in the 

target population relative to other published MR methods in the simulation study. Leveraging the 
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biobank-scale GWAS summary data from European, application of inferring causal relationships 

from 17 blood biomarkers to four diseases in East Asian, African population and Hispanic 

populations discover 13 new causal relationships that not found using published MR methods. 

TEMR bridges the causal effects of multiple ethnics using a trans-ethnic genetic correlation 

coefficient. With the increase of trans-ethnic genetic association, the statistical power of causal 

effect in the non-European population is significantly improved. Trans-ethnic genetic correlation 

measures the extent to which genetic variants influence phenotypes similarly across different 

populations. With the advent of genomic technologies, researchers were able to conduct 

genome-wide studies of large cohorts from different ethnicities. These studies revealed that while 

there is substantial genetic variation between different populations, certain variants have similar 

frequencies and effects across groups. Numerous studies showed that the genetic variants for many 

traits were highly correlated across different populations. Trans-ethnic genetic correlation is 

assessed using various methods, such as multi-ancestry GWAS, TWAS and PRS prediction, etc. It 

can be estimated by abundant methods including LD score regression [53], HDL [54], GCTA-GREML 
[55], BOLT-REML [56] and PAINTOR [57], etc. They can achieve much higher accuracy than z-score 

based method. In this paper, TEMR uses a simple Z-score method to get results quickly, and using 

these methods will make TEMR perform better. TEMR is suitable for traits with high genetic 

association between different ethnics. When the genetic association between traits is nearly zero, 

TEMR method behaves similar to traditional MR Method. 

There are several limitations in our study. The impact of pleiotropy is an important topic in MR 

study. Here we consider the case of no pleiotropy and horizontal pleiotropy. For the latter, we 

propose a two-step process to remove the pleiotropy effect from traditional Wald ratio using 

MR-Egger regression, and obtain the TEMR-Wald ratio estimation. The limitation of this process is 

that it also requires the InSIDE assumption and cannot remove the influence of correlated pleiotropy. 

Available solution is that detect outliers using published methods such as MR Radial and 

MR-PRESSO, etc, and then remove them before conducting TEMR. In addition, when there are 

multiple ethnics, TEMR can improve the statistical power of causal effect estimation only in one 

target population leveraging other target populations and European population. In the future, we 

will extend TEMR to implement that improving the statistical power of causal effect estimation in 

multiple target population leveraging only European population. The degree of improvement in 

statistical power is closely related to the number of IVs and the magnitude of trans-ethnic genetic 

correlations. 

In conclusion, we proposed a new method TEMR to improve statistical power and estimation 

accuracy of MR in the target population only using trans-ethnic large-scale GWAS summary dataset. 
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It has important guiding significance for the discovery of new disease-related factors. 

Methods 

TEMR model based on two ancestries 

Consider a target dataset 1 1 1{ , , }G X Y  from an under-represented ancestry (e.g. East Asian ancestry) 

with small sample size, where 1G  is an 1N p×  genotype matrix, 1X  and 1Y  are 1 1N ×  

phenotype/disease vectors, represent the exposure and outcome, respectively. Now we suppose a 

biobank-scale dataset 2 2 2{ , , }G X Y  (e.g. European ancestry) is also available, where 2G  is an 

2N p×  genotype matrix, 2X  and 2Y  are 2 1N ×  phenotype/disease vectors, represent exposure 

and outcome, respectively. We assume 2 1N N� . Since we are mainly interested in improving the 

statistical power of causal effect estimation in the target population leveraging biobank scale 

datasets from another ancestry. We choose the p independent IVs (SNPs) which are associated with 

at least one of exposures in two ancestries ( 1X  and 2X ). We can obtain the summary-level data of 

p SNPs from published GWAS studies, including the beta-coefficients (
1 1

ˆ ˆ,
j jY Xβ β  and 

2 2

ˆ ˆ,
j jY Xβ β ) 

and their standard error (
1 1

2 2ˆ ˆ,
j jY Xσ σ  and 

2 2

2 2ˆ ˆ,
j jY Xσ σ ).  

When the three core assumptions of MR are all satisfied, we can obtain the causal effect 

estimation using the Wald ratio for each SNP 

1 2

1 2

1 2

ˆ ˆ
ˆ ˆ, , 1,...,

ˆ ˆ
j j

j j

Y Y

j j

X X

j p
β β

β β
β β

= = = ,                         (4) 

with their variances 

1 1 1 2 2 2

1 2

1 1 2 2

2 2 2 2 2 2

2 2
4 2 4 2

ˆ ˆˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
j j j j j j

j j

j j j j

Y X Y Y X Y

X X X X
β β

β σ σ β σ σ
σ σ

σ σ σ σ
× ×

= =+ ， +

. 

The 1̂ jβ  and 2
ˆ

jβ  are the causal effect estimation of exposure on outcome using j -th SNPs 

in the target and auxiliary populations, respectively. We set up the following multivariable normal 

distribution model for Wald ratios from two populations 

1 1 2

1 2 2

2
1 1

2
22

ˆ ˆ ˆ ˆ
~ ,

ˆ ˆ ˆ ˆ

β β β β

β β β β

σ ρ σ σβ β
β ρ σ σ σβ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

j j j

j j j

j

j

N , 

where 1β  and 2β  are the causal effect of exposure on outcome in the target and auxiliary 
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populations, respectively. They can be the same or different. βρ  is the trans-ethnic genetic 

correlation, which represents the correlation of the causal effects of one exposure on one outcome in 

two ancestries (e.g. Chinese and European), and it can be calculated by the Pearson correlation 

1 2

1 2

( , )

( ) ( )

cov z z

var z var z
βρ =

⋅
, 

where 1z  and 2z  are the z-scores of p-dimensional Wald ratio vectors in two ancestries, 

respectively 

1 2

1 2
1 2

ˆ ˆ
, , 1,...,

ˆ ˆ
j j

j j
j jz z j p

β β

β β
σ σ

= = =
. 

We aim to improve the statistical power of causal effect ( 1β ) estimation in the target 

population using the trans-ethnic genetic correlation βρ , which connect the causal effects of two 

ethnics. Based on the model (1) and the conditional normal distribution formula [58], we have 

1 2 1 1

1 2 2 2
1 2 1 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ| ~ ( ( ), )
j j j jj j jN β β β β β ββ β β ρ σ σ β β σ ρ σ−+ − −

 

with its variance 

1 1

2 2 2
1 2

ˆ ˆ ˆ ˆ( | ) 1
j jj jvar β β ββ β σ ρ σ= − <（ ）

 

Therefore, the variance of j-th Wald ratio estimation 1̂ jβ  conditional on 2̂ jβ  is smaller than 

its original variance as the trans-ethnic genetic correlation βρ  increasing. Then we obtain the 

conditional log-likelihood function of model (2) 

1 2

1 1

1

1 2
1 1 2 22 2 2

1 2 2

ˆ ˆ ˆˆ ˆ( ( ))1 1
ˆ ˆ( ) ln(2 ) ln( )

ˆ2 2 (1 )
j j

j j

j

j j

j
Q p

β β β
β β β

β β

β β ρ σ σ β β
β π σ ρ σ

ρ σ

−− − −
= − − − −

−∑
.  (5) 

where 2β̂  is obtained by IVW or other effective MR methods using large-scale dataset in the 

auxiliary population. We aim to maximize the log conditional likelihood function using 

Nelder-Mead method [38] to obtain the estimation of 1β . Then we use Likelihood-ratio test to 

perform hypothesis testing, 

0 1: 0β =H  vs 1 1: 0β ≠H  

the testing statistics is 

2 21̂( )
2 ~ (1)

(0)

Q

Q

βχ χ= − ×  

When there is horizontal pleiotropy, the third assumption of MR is violated, the causal effect 
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estimation using the traditional Wald ratio is biased and we model the TEMR-Wald ratio as 

following 

1 1

1

1

ˆ

ˆ
j j

j

Y

j

X

β α
β

β

−
=

,

2 2

2

2

ˆ

ˆ
j j

j

Y

j

X

β α
β

β

−
=

                          (6) 

where 
1 j

α  represent the horizontal pleiotropy and it is unknown. Therefore, in the first step, we 

need to estimate 
1 j

α  and 
2 j

α  using MR-Egger regression 

(1) seperately estimate causal effect 1
Eggerβ  and 2

Eggerβ  in each ancestry using MR-Egger 

regression 

1 1 1

2 2 1

2
1 1 1 1

2
2 2 2 2

ˆ ˆ ˆ, ~ (0, )

ˆ ˆ ˆ, ~ (0, )

j j j

j j j

Egger
Y X j j Y

Egger
Y X j j Y

N

N

β β β α ε ε σ

β β β α ε ε σ

= ⋅ + +

= ⋅ + +
 

(2) seperately estimate horizontal pleiotropy 
1 j

α  and 
2 j

α  in each ancestry using 

1 1

2 2

1 1

2 2

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

j j

j j

Egger
j Y X

Egger
j Y X

α β β β

α β β β

= − ⋅

= − ⋅
 

Then we can obtain the estimations of new Wald ratio 1̂ jβ  and 2̂ jβ  by substituting 
1

ˆ
j

α  and 
2

ˆ
j

α  

into equation (6). Following we use models (1,2,4,5) to obtain the estimation of 1β . The difference 

is that the 2β̂  in model (5) is obtained by horizontal pleiotropy-robust MR methods using 

large-scale dataset in the auxiliary population. 

TEMR model based on multiple ancestries 

If there are 2E >  ancestries, the target dataset is { , , }T T TG X Y and the auxiliary datasets are 

{ , , }( 2,..., )a a aG X Y a E= , we set up the following multivariable normal distribution model using 

Wald ratios from E ancestries 

2
1

1

ˆ ˆ
~ ,

ˆ
ββ σβ

ββ

⎛ ⎞ ⎛ ⎞⎛ ⎞Σ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ Σ Σ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

TjTj AT

A A AAAj

N  

where 

2 (2, ) 2

( ) 2

2

2 2

2

ˆ ˆ ˆ ˆ...

ˆ , , ...

ˆ ˆ ˆ ˆ...

β β β β

β β β β

σ ρ σ σβ β
β β

β ρ σ σ σβ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = Σ = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

M M M M

j E j Ej

E,2 Ej j Ej

j

Aj A AA

EEj

, 

( )(1,2) 1 2 (1, ) 11 1 1ˆ ˆ ˆ ˆ... ,
j j E j Ej

T
A A Aβ β β β β βρ σ σ ρ σ σΣ = Σ = Σ  and 

( , ) ( , )m n n mβ βρ ρ= . The conditional distribution 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

of T̂jβ  given ˆ
Ajβ  is 

1 2 1
1 1 1

ˆ ˆ ˆ ˆ| ~ ( ( ), )
AA Tj AATj Aj T A Aj A A AN ββ β β β β σ− − −+ Σ Σ − −Σ Σ Σ

 

Then we obtain the estimation of βT  by Maximum Likelihood Estimation using Nelder-Mead 

method.  

Due to the predominant representation of European individuals in public GWAS summary 

dataset, with smaller sample sizes for other ethnicities, our aim is to utilize the information from the 

European population to improve the causal effect estimation precision and testing efficacy for 

smaller sample populations. Furthermore, if our focus is exclusively on the Asian population, the 

inclusion of other small-sample ethnicities could still contribute to enhancing the estimation 

performance of causal effects on the Asian population, although the contribution may not be as 

substantial as that from the European population.  

Simulation settings 

In our simulation study, we systematically evaluated the performance of TEMR through several key 

steps. Initially, we generated individual data for exposure ( eX ), outcome ( eY ) and genotypes ( jeG ,

1,...,j p= ) in multiple ethnicities ( 1,...,e E= ):  

~ ( , 2,0.3),

, ~ ( ,0,1)

, ~ ( ,0,1)

α ε ε

β γ ξ ξ

= +

= + +

∑

∑

je e

e je je e e ej

e e e je je e e ej

G B n

X G N n

Y X G N n

 

Subsequently, we obtain GWAS summary data (including the regression coefficients ( ˆ
ejXβ  

and ˆ
ejYβ ) and their standard errors ( 2ˆ

ejXσ  and 2ˆ
ejYσ )) by linear regressions of continuous variables 

on each SNP and logistic regressions of binary variables on each SNP, enabling the calculation of 

the Wald ratios’ standard errors for each SNP:  

2 2 2

2
4 2

ˆ ˆ ˆ ˆ( / )
ˆ

ˆ ˆ
ej ej ej ej

ej

ej ej

Y X X Y

X X
β

β β σ σ
σ

σ σ
×

= +

. 

The reason for initially generating individual-level data was to simulate the variation in the 

estimates and precision of the Wald ratio obtained with different sample sizes in real-world 

applications. While it is possible to directly simulate based on the observed Wald ratio from 

practical data, the limitation lies in the finite range of sample sizes in public GWAS summary 

datasets. This constraint prevents a comprehensive simulation of the performance of TEMR under 
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various sample size scenarios. Next, we generate the Wald ratios ( ˆ
ejβ ) for different ethnicities using 

trans-ethnic genetic correlation 
( )1 2e ,eβρ : 

1 (1, ) 1

( 1) 1

2

1 1

2

ˆ ˆ ˆ ˆ...

... ~ , ...

ˆ ˆ ˆ ˆ...

β β β β

β β β β

σ ρ σ σβ β

β ρ σ σ σβ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

M M M

j E j Ej

E, Ej j Ej

j

EEj

Mvrnorm  

We considered scenarios where the causal effects are the same or different across different 

ethnicities, as well as situations where the causal effects are either zero ( 0eβ = ) or non-zero 

( 0.05,0.1,0.15,0.2β =e ). We also explore various scenarios, including different trans-ethnic genetic 

correlation coefficients between ethnicities. We considered the number of ethnicities is E=2 or E=4, 

( )1 2e ,eβρ vary 
( )1 2e ,eβρ  with 0.1-0.9 as well as consider the trans-ethnic genetic correlations are the 

same or different across different race-pairs. Acknowledging the potential influence of genetic 

factors across diverse racial backgrounds, this exploration aimed to account for variations in genetic 

correlation. Furthermore, in an effort to optimize precision and statistical power, we systematically 

varied the number of SNPs (p=25, 50, 100 and 200) while keeping other parameters constant. This 

process allows us to determine how much the precision and statistical power of causal effect 

estimates can be significantly improved under different numbers of IVs. Finally, our simulation 

study was designed to encompass three distinct scenarios: one where pleiotropy was absent 

( 0jeγ = ), another where balanced horizontal pleiotropy was present( ~ ( 0.2, 0.2)γ −je U ), and a third 

scenario where directional horizontal pleiotropy was present ( ~ (0, 0.2)je Uγ ). We then applied our 

method TEMR to estimate causal effects in the target populations. To benchmark the performance 

of our approach, we conducted a comparative analysis with previously published MR methods [2] 

based on the Wald ratio, including IVW method [59], MR-Egger [60], Simple Median [61], Weighted 

Median [62], Simple Mode [63], Weighted Mode [64]. By thoroughly examining these scenarios, we 

aimed to provide a comprehensive assessment of TEMR's performance and robustness under 

diverse genetic and phenotypic conditions. 

The evaluation metrics include estimation bias, standard error, type I error for testing null 

causal effect and statistical power for testing non-null causal effect. We utilized boxplots to 

demonstrate the results of bias and standard error, Q-Q plots to showcase the results of Type I error, 

and bar charts to depict the results of statistical power. 
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Application 

We applied TEMR to estimate the causal effects between different biomarkers and four diseases 

(hypertension, ischemic stroke, T2D and schizophrenia) in the East Aisan, African, Hispanic/Latino 

population, leveraging data from large European cohorts. These diseases were chosen for their 

significant public health impact, high prevalence, and representative nature of the complex interplay 

between genetics and environment. The GWAS summary data for the Asian population was mainly 

sourced from the BBJ with a sample size of 170,000. For the African population, the data was 

mainly obtained from the Pan-UKB with a sample size of 6,000, and for the Hispanic population 

from the GWAS Catalog with a sample size of. The GWAS summary data of European population 

was derived from the UKB with a sample size of 500,000. Details of datasets information are shown 

in Supplementary Table S7. Firstly, for each trait, we chose SNPs based on the criterion of P-value 

less than 85 10−×  in at least one ethnicity and no linkage disequilibrium (
2r <0.001). The SNP 

satisfying above criterion in at least one of the ethnics are selected as IVs. Then, we applied TEMR 

and other six MR methods for trans-ethnic MR analysis using the 17 biomarkers and four diseases. 

For each target population, we use the other three datasets as auxiliary datasets. 
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Figure legends and Tables 

Figure 1. TEMR flowchart 

(A) The example of multiple ethnics, which also are the ethnics that we are interested in the applied 

example. (B) The aim of TEMR is to improve the statistical power and estimation accuracy of MR 

in target population only using trans-ethnic large-scale auxiliary dataset. (C) The flowchart of 

TEMR model, take two ethnics as example, one target population and one auxiliary population. 

Figure 2. Simulation results for causal effect estimation in the target population when there is 

one auxiliary population (no pleiotropy).  

Sample size of target population is 3,000 and the sample size of auxiliary population is 300,000. 

IVs include 100 common SNPs. A) Boxplots show the performances of causal effect estimation in 

target population; B-C) Q-Q plots show the performances of Type I error rates of zero causal effect 

estimation in target population when the causal effect of auxiliary population is 0 and 0.05, 

respectively; D-E) Bar chart plots show the performances of statistical power of non-zero causal 

effect estimation in target population when the causal effect of auxiliary population is 0 and 0.05, 

respectively. IVW, Inverse-variance weighted method.  

Figure 3. Simulation results for causal effect estimation in the target population when there is 

one auxiliary population (directional horizontal pleiotropy).  

Sample size of target population is 3,000, and the sample size of auxiliary population is 300,000. 

IVs include 100 common SNPs. A) Boxplots show the performances of causal effect estimation in 

target population; B-C) Q-Q plots show the performances of Type I error rates of zero causal effect 

estimation in target population when the causal effect of auxiliary population is 0 and 0.05, 

respectively; D-E) Bar chart plots show the performances of statistical power of non-zero causal 

effect estimation in target population when the causal effect of auxiliary population is 0 and 0.05, 

respectively. IVW, Inverse-variance weighted method. 

Figure 4. Simulation results for causal effect estimation in the target population with different 

number of SNPs.  

Continuous outcome, no horizontal pleiotropy. Sample size of target population is 3,000, and the 

sample size of auxiliary population is 300,000. A) Boxplots show the performances of causal effect 

estimation in target population; B-C) Bar chart plots show the performances of statistical power of 

non-zero causal effect estimation in target population. IVW, Inverse-variance weighted method.  

Figure 5. Simulation results for causal effect estimation in the target population when there 

are multiple auxiliary populations.  

Continuous outcome. No pleiotropy. Sample size of target population is 3,000, and the sample size 
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of auxiliary populations are 3,000, 3,000, 300,000. IVs include 100 common SNPs. A) Boxplots 

show the performances of causal effect estimation in target population; B) Q-Q plots show the 

performances of Type I error rates of zero causal effect estimation in target population; C) Bar chart 

plots show the performances of statistical power of non-zero causal effect estimation in target 

population. IVW, Inverse-variance weighted method. 

Figure 6. Heatmap of trans-ethnic genetic correlation for 22 biomarkers and four diseases.  

The color intensity indicates the strength of the correlation. Warmer colors, tending towards red, 

signify a correlation coefficient approaching 1, indicating a strong positive correlation. Conversely, 

cooler colors, leaning towards blue, denote a correlation coefficient nearing -1, suggesting a strong 

negative correlation.  

Figure 7. Results of trans-ethnic MR analysis for causal relationships from 22 biomarkers to 

four diseases.  

Different colors represent the -log10(P) calculated by different methods. The triangle points 

represent the significant relationships in TEMR results but not significant in other methods. The 

solid or dashed points indicate whether the causal effects are significant (P<0.05). In cases where 

the MR-Egger test suggests the presence of horizontal pleiotropy between biomarker pairs, the 

P-values presented are those adjusted for such pleiotropy.  

 

Supplementary File 

Supplementary Materials and Methods 

Details of methods and results of simulation. 

Supplementary Table 

GWAS summary datasets information and results of application. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


East Asian

European

African

Hispanic

1 11̂
ˆ ˆ/

j jj Y X  
2 22

ˆ ˆ ˆ/
j jj Y X  

1 1 2

1 2 2

2
1

2
1

22

ˆ ˆ ˆ ˆ
~ ( , )

ˆ ˆ ˆ ˆ
j j j

j j j

j

j

N
   

   

   

    

                

uTarget population 
(e.g. East Asian, African, 

Hispanic)

uAuxiliary population
(e.g. European)

1 2

1 2

ˆ( , ) , , 1, 2
ˆ( ) ( )

kj

kj
kj

cov z z z k
var z var z







  



1 2 1 1

1 2 2 2
1 2 1 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ| ~ ( ( ), )
j j j jj j jN                  

1X 1Y1G

U

1

ˆ
jX 1β

u Target population (    ) 

2X 2Y2G

U

2

ˆ
jX 2β

u Auxiliary population (    )

1 2N N Improve 
power 

(A)

(B)

(C)

Genome-Wide 
Association Study

(GWAS)

Wald Ratio

Trans-ethnic 
genetic correlation

Joint model

Conditional model

MRTP Model

1N

2N

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


The trans−ethnic genetic correlation between European and Asian
 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

**

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

−0.5

0

0.5

(A)

The trans−ethnic genetic correlation between European and African
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

(B)

The trans−ethnic genetic correlation between European and Hispanic/Latino
 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

(C)

The trans−ethnic genetic correlation between Asian and African
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

**

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

(D)

The trans−ethnic genetic correlation between Asian and Hispanic/Latino
**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

(E)

The trans−ethnic genetic correlation between African and Hispanic/Latino
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basophil count

Body m
ass index

Eosinophil count

Glucose

HDL−cholesterol

Height

LDL−cholestero

Lym
phocyte count

M
ean corpuscular hem

oglobin

M
ean corpuscular hem

oglobin concentration

M
ean corpuscular volum

e

Neutrophil count

Platelet count

Serum
 creatinine

Systolic blood pressure

Total cholesterol

Triglyceride

Hypertension

Ischemic stroke

Schizophrenia

Type 2 diabetes

(F)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/


Asian
(A)

LDL−cholestero to Type 2 diabetes

Glucose to Schizophrenia

Mean corpuscular hemoglobin concentration to Ischemic stroke

0

20

40

60

TEM
R

IV
W

W
eig

ht
ed

 m
ed

ian

Pen
ali

se
d 

m
ed

ian

Pen
ali

se
d 

m
od

e

Sim
ple

 m
ed

ian

Sim
ple

 m
od

e

W
eig

ht
ed

 m
od

e

Method

−
lo

g1
0(

P
)

African
(B)

Glucose to Schizophrenia

Triglyceride to Hypertension

Total cholesterol to Hypertension

Lymphocyte count to Schizophrenia

0

25

50

75

100

125

TEM
R

IV
W

W
eig

ht
ed

 m
ed

ian

Pen
ali

se
d 

m
ed

ian

Pen
ali

se
d 

m
od

e

Sim
ple

 m
ed

ian

Sim
ple

 m
od

e

W
eig

ht
ed

 m
od

e

Method

−
lo

g1
0(

P
)

Hispanic/Latino
(C)

LDL−cholestero to Hypertension

Total cholesterol to Schizophrenia

Triglyceride to Ischemic stroke

Platelet count to Schizophrenia

Basophil count to Schizophrenia

Triglyceride to Schizophrenia

0

25

50

75

100

125

TEM
R

IV
W

W
eig

ht
ed

 m
ed

ian

Pen
ali

se
d 

m
ed

ian

Pen
ali

se
d 

m
od

e

Sim
ple

 m
ed

ian

Sim
ple

 m
od

e

W
eig

ht
ed

 m
od

e

Method

−
lo

g1
0(

P
)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.24308874doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.16.24308874
http://creativecommons.org/licenses/by-nc-nd/4.0/

