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Highlight 23 

• Two AI- and neuroimaging-derived subtypes of schizophrenia (MAE-SCZ1 and MAE-24 
SCZ2) show lower polygenicity and weaker negative selection signatures than the disease 25 
endpoint/diagnosis of schizophrenia, supporting the endophenotype hypothesis.  26 

• Brain AI endophenotypes are more polygenic than other organ systems. 27 
• Most multi-organ AI endophenotypes exhibit negative selection signatures, whereas a 28 

small proportion of brain patterns of structural covariance networks exhibit positive 29 
selection signatures. 30 

• The 2024 multi-organ AI endophenotypes are genetically and causally associated with 31 
within-organ and cross-organ disease endpoints/diagnoses.  32 
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Graphical abstract 33 
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Summary 39 

Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide 40 
intermediate phenotypes (i.e., endophenotypes) that bridge the genetics and clinical 41 
manifestations of human disease. However, the genetic architecture of these AI endophenotypes 42 
remains largely unexplored in the context of human multi-organ system diseases. Using publicly 43 
available GWAS summary statistics from UK Biobank, FinnGen, and the Psychiatric Genomics 44 
Consortium, we comprehensively depicted the genetic architecture of 2024 multi-organ AI 45 
endophenotypes (MAEs). Two AI- and imaging-derived subtypes1 showed lower polygenicity 46 
and weaker negative selection effects than schizophrenia disease diagnoses2, supporting the 47 
endophenotype hypothesis3. Genetic correlation and Mendelian randomization analyses reveal 48 
both within-organ relationships and cross-organ interconnections. Bi-directional causal 49 
relationships were established between chronic human diseases and MAEs across multiple organ 50 
systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma 51 
for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived 52 
polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and 53 
returned these to the UK Biobank. Our findings underscore the promise of the MAEs as new 54 
instruments to ameliorate overall human health. All results are encapsulated into the MUTATE 55 
genetic atlas and are publicly available at https://labs-laboratory.com/mutate.  56 
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Introduction 57 

Multi-organ research1,4–11 represents a pivotal frontier in advancing our understanding of human 58 
aging and disease. In particular, integrating artificial intelligence (AI) into multi-organ imaging 59 
genetics1,4,12,6 has emerged as a novel approach, offering potential promise in advancing 60 
precision medicine13. This integration introduces a new array of endophenotypes14,15, serving as 61 
intermediate, often quantitative, phenotypes, potentially reshaping how we perceive and 62 
approach medical AI16 in imaging and genetic research. 63 

In recent years, three primary catalysts have significantly advanced the field of genetics. 64 
The first pivotal factor stems from the extensive collaborative efforts in consolidating large-scale 65 
multi-omics datasets, which has endowed researchers with unprecedented statistical power 66 
previously inaccessible. As an illustration, the UK Biobank (UKBB) study17 stands out for its 67 
comprehensive collection of multi-organ imaging18, genetics19, and proteomics20,21 data within 68 
the United Kingdom. Similarly, the FinnGen study22, conducted in Finland, has amassed 69 
extensive clinical and genetic data. Secondly, efforts toward open science have propelled the 70 
field, especially emphasizing the significance of publicly available resources, such as genome-71 
wide association study (GWAS) summary statistics and widespread scientific dissemination. 72 
Notably, the FinnGen study and Psychiatric Genomics Consortium (PGC23) have publicly made 73 
all the GWAS summary statistics accessible22. Public GWAS platforms such as the GWAS 74 
Catalog24, OpenGWAS25, and GWAS ATLAS26 have consolidated and harmonized vast GWAS 75 
datasets, rendering them suitable for subsequent genetic analyses. Likewise, such good practice 76 
was also employed in the newly burgeoning field of brain imaging genetics27, including the 77 
BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/), the BIG-KP (https://bigkp.org/), 78 
BRIDGEPORT (https://labs-laboratory.com/bridgeport), and MEDICINE (https://labs-79 
laboratory.com/medicine) knowledge portals. Finally, advanced computational genomics 80 
statistical methods using solely GWAS summary statistics, along with sufficient linkage 81 
disequilibrium information, have been developed, presenting an unparalleled chance to 82 
comprehend the genetic architecture of highly polygenic disease traits. For example, LDSC28 has 83 
been extensively utilized to estimate single-nucleotide polymorphism (SNP)-based heritability 84 
and genetic correlations. Mendelian randomization29 is a statistical method to dissect associations 85 
further, probing potential causal relationships among these complex human disease traits, 86 
although these methods often rely on several sensitive model assumptions30. 87 

Despite these advancements, the intricate genetic foundation shaping these AI 88 
endophenotypes in the context of pleiotropic human disease endpoints (DE) within multi-organ 89 
systems remains largely uncharted. We previously applied AI to imaging genetic data and 90 
derived 2024 multi-organ AI endophenotypes (MAE). These encompassed 2003 multi-scale 91 
brain patterns of structural covariance (PSC) networks generated through a deep learning-92 
analogy non-negative matrix factorization method12 (visualization for C32_1 encompassing deep 93 
subcortical structures: https://labs-laboratory.com/bridgeport/MuSIC/C32_1), 9 dimensional 94 
neuroimaging endophenotypes (DNE) quantifying neuroanatomical heterogeneity (also known as 95 
disease subtype) within 4 common brain diseases1, and 12 biological age gap (BAG) assessing 96 
the individual deviation in typical aging (i.e., acceleration or deceleration from the chronological 97 
age) across 9 human organ systems4,6 (Supplementary eTable 1a). To contribute to open 98 
science31, we made all the GWAS summary statistics derived from UKBB data publicly 99 
available at the MEDICINE knowledge portal: https://labs-laboratory.com/medicine. In addition, 100 
FinnGen analyzed genetic data for 2269 binary and 3 quantitative DEs from 377,277 individuals 101 
and 20,175,454 variants. They made these massive GWAS summary statistics publicly available 102 
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to the community at https://finngen.gitbook.io/documentation/ (Supplementary eTable 1b). 103 
Finally, PGC consolidated GWAS results focused on neurological disorders worldwide and 104 
made the GWAS summary statistics accessible to the research community (https://pgc.unc.edu/, 105 
Supplementary eTable 1c). 106 

This study harnesses the extensive GWAS summary resources made publicly available 107 
by us on behalf of UKBB, FinnGen, and PGC (Method 1), along with the utilization of several 108 
advanced computational genomics statistical methods (refer to Code Availability), to thoroughly 109 
depict the genetic architecture of the 2024 MAEs (Method 2) and 525 DEs (>5000 cases) in the 110 
context of multi-organ investigations. Importantly, our previous research explored the genetic 111 
foundation of the 2024 MAEs but did not systematically encompass the FinnGen or PGC data. 112 
Specifically, we included 521 DEs released by the FinnGen study, accessible at 113 
https://finngen.gitbook.io/documentation/v/r9/, and 4 brain DEs (Alzheimer’s disease (AD), 114 
Attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BIP), and schizophrenia 115 
(SCZ)) from PGC (https://pgc.unc.edu/). This study expanded on this by systematically 116 
benchmarking the genetic analyses and comprehensively comparing various statistical 117 
methodologies28,30,32–38 (Method 3). Specifically, we aimed to compute the SNP-based 118 
heritability (����

� ), polygenicity (�), the relationship between SNP effect size and minor allele 119 
frequency (S: signature of natural selection, genetic correlation (��), causality, and polygenic risk 120 
score (PRS) between the 2024 MAEs and 525 DEs. These findings were encapsulated within the 121 
MUTATE (MUlTi-organ AI endophenoTypE) genetic atlas, which is publicly available at 122 
https://labs-laboratory.com/mutate.  123 
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Results 124 

The genetic architecture of the 2024 MAEs and 525 DEs 125 
We computed three parameters to fully depict the genetic architecture of the 2024 MAEs 126 
(Method 3a). For the SNP-based heritability (����

� ), SBayesS39 obtained the highest ����
�  for the 127 

2016 brain MAEs (mean �����
� =0.13 [0.01, 0.38]), followed by the pulmonary BAG 128 

(0.16±0.004), the eye BAG (0.14±0.009), the cardiovascular BAG (0.12±0.003), the renal BAG 129 
(0.10±0.003), and the musculoskeletal BAG (0.10±0.003) (Fig. 1a and Supplementary eFile 1). 130 
It is worth noting that SNP-based heritability varies across methods and depends on the input 131 
data, i.e., summary data or individual-level genotype data used in the method40. We aimed to 132 
benchmark the summary data-based methods by comparing the results from SBayesS with those 133 
of LDSC28 and SumHer33. Overall, while the estimates from the three methods were highly 134 
correlated (r=0.97 between LDSC and SumHer; r=0.99 between SBayesS and SumHer; r=0.99 135 
between SBayesS and LDSC; Supplementary eFigure 1), SumHer (0.23±0.14) generally 136 
yielded larger ����

�  estimates than both LDSC (0.16±0.10) and SBayesS (0.13±0.08) 137 
(Supplementary eFile 1). We present the ����

�  estimate of the 525 DEs and 2024 MAEs in 138 
Supplementary eFigure 2. Supplementary eFile 2 presents the results of the 525 DEs. For the 139 
525 DEs, we converted the ����

�  estimates from the observed scales to the liability scales, 140 
following the recommendations of Ojavee et al41. It's important to clarify that we did not intend 141 
to compare the ����

�  estimates of the two data sources due to differences in genotype coverage, 142 
sample sizes, allele frequencies, and other factors. 143 
 We then computed the natural selection signature (S) for the 2024 MAEs. The metabolic 144 
BAG showed a strong negative selection (S=-0.82±0.10), followed by the pulmonary BAG (S=-145 
0.79±0.05), the hepatic BAG (S=-0.74±0.09), the renal BAG (S=-0.68±0.08), and the immune 146 
BAG (S=-0.66±0.11). For the brain MAEs (S=-0.33 [-1, 0.43]), the brain BAG and (S=-147 
0.70±0.12) the subtype (ASD1) for autism spectrum disorder42 (S=-0.90±0.11) showed strong 148 
negative selection effects (Fig. 1b and Supplementary eFile 3).  149 
 Finally, we calculated the polygenicity (�) for the 2024 MAEs. We found that brain 150 
MAEs (0.040 [0.003, 0.072]) showed higher polygenicity than other organ systems (t-151 
statistic=5.75; P-value=1.03x10-8), followed by the pulmonary BAG (0.018±0.001), the 152 
musculoskeletal BAG (0.013±0.001), and the cardiovascular BAG (0.011±0.001) (Fig. 1C and 153 
Supplementary eFile 4). The PSC (C128_115: https://labs-154 
laboratory.com/bridgeport/MuSIC/C128_115) showed the highest polygenicity estimate 155 
(0.072±0.002).  156 
 157 
Potential evidence for the endophenotype hypothesis 158 
Previous studies43,44 have found supporting evidence for the endophenotype hypothesis14,15 using 159 
traditional brain map-based signatures, showing that more genetic variants are associated with 160 
disease endpoints than imaging-derived signatures (i.e., endophenotypes). Of note, considering 161 
genetic differences between FinnGen and UKBB samples, SBayesS with the UKBB as LD 162 
reference may give biased estimates of S and � (LD from FinnGen not fully available; Method 163 
3a). Therefore, we used the GWAS summary data for PGC schizophrenia (SCZ2) and two 164 
subtypes of SCZ (SCZ1 and SCZ21) from our UKBB analysis to demonstrate this. The 165 
advantage of using PGC data is that the GWAS summary statistics are better powered (large 166 
sample sizes), and the data were from European ancestry groups across different countries. A 167 
data harmonization procedure is outlined in Supplementary eMethod 1 to ensure a fair 168 
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comparison of these estimates, which led to the utilization of a common set of SNPs and linkage 169 
disequilibrium information for computing the S and  parameters. Our results showed that MAE-170 
SCZ1 ( =0.048±0.002; S=-0.61±0.09) and MAE-SCZ2 ( =0.047±0.002; S=-0.54±0.12) had 171 
lower polygenicity signals and weaker negative selection effects than PGC-SCZ 172 
( =0.055±0.003; S=-0.82±0.04) (Fig. 1d). Supplementary eFigure 3 shows the Manhattan plot 173 
of the harmonized summary data for MAE-SCZ1, MAE-SCZ2, and PGC-SCZ. These findings 174 
potentially support the endophenotype hypothesis3, which suggests that intermediate phenotypes 175 
(e.g., SCZ subtype MAEs) reside inside the causal pathway from genetics to exo-phenotypes 176 
(e.g.,  SCZ binary diagnosis), making them closer to the underlying etiology43,44. 177 

 178 
Figure 1: The genetic architecture of the 2024 MAEs 179 
Three parameters are estimated by SBayesS to delineate the genetic architecture of the 2024 180 
MAEs, including (a) the SNP-based heritability ( ), (b) the relationship between MAF and 181 
effect size (S), and (c) polygenicity ( ). (d) We compared the  and S parameters using 182 
harmonized GWAS summary data for two AI- and imaging-derived subtypes (MAE-SCZ1 and 183 
MAE-SCZ21) from UKBB and the disease endpoint of schizophrenia (PGC-SCZ2) from PGC. 184 
FinnGen data was not used due to bias stemming from the unavailability of FinnGen-specific 185 
linkage disequilibrium data (Supplementary eMethod 1). We present the distribution of the 186 
estimated parameters for the 2016 brain MAEs using a violin plot; the mean value is denoted by 187 
the black horizontal line. These results should be interpreted cautiously for comparative purposes 188 
due to limitations stemming from the lack of individual genotype data from FinnGen and PGC, 189 
differing linkage disequilibrium structures, and varying sample sizes. 190 
 191 
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The genetic correlation shows organ-specific and cross-organ associations   192 
We found 132 (P-value < 0.05/2024) and 45 (P-value < 0.05/2024/525) commonly significant 193 
positive genetic correlations (rg) after applying two levels of Bonferroni correction (Fig. 2) for 194 
the LDSC28 and GNOVA34 methods (Method 3b, Supplementary eFile 5, and Supplementary 195 
eTable 2). We noted that HDL encountered convergence issues with the models, as detailed in 196 
Method 3b.  197 

Between these methods, the magnitude of the genetic correlations for the significant 198 
signals for both methods differed: mean �̂�=0.24[-0.40~0.52] with 213 significant signals for 199 
LDSC, mean �̂�=0.17[-0.30~0.62] for GNOVA with 428 significant signals (Fig. 2). The three 200 
sets of converged estimates showed a strong correlation: r=0.77 (P-value<1x10-10; N=1,062,577) 201 
between LDSC and GNOVA, r=0.81 (P-value<1x10-10; N=59,289) between LDSC and HDL, 202 
and r=0.82 (P-value<1x10-10; N=59,289) between GNOVA and HDL. Supplementary eFigure 203 
4 shows the correlation of the three sets of estimates. 204 
 Within the significant signals identified, we observed i) organ-specific associations, in 205 
which the MAE showed a genetic association with the DE originating from the respective organ 206 
system, and ii) cross-organ connections, in which the MAE and DE were primarily involved 207 
from different organ systems. For example, two brain PSCs showed significant negative genetic 208 
correlations with BIP from PGC (C512_368 vs. BIP: -0.16±0.03; C1024_114 vs. BIP: -209 
0.15±0.03). At a less stringent level, the brain MAEs were also genetically associated with DEs 210 
from other organ systems, including the positive correlation between C1024_808 and obesity 211 
(E4_OBESITY: ��=0.17±0.13). The cardiovascular BAG was positively correlated with several 212 
DEs related to the cardiovascular system, including ischemic heart disease (I9_IHD: 213 
��=0.26±0.03), coronary heart disease (I9_HEARTFAIL_AND_CHD: ��=0.26±0.03), angina 214 
(I9_ANGINA: ��=0.25±0.03) and atrial fibrillation (I9_AF: ��=0.22±0.04). Likewise, the 215 
pulmonary BAG was positively associated with multiple DEs related to the lung and respiratory 216 
system, including chronic obstructive pulmonary disease (COPD_EARLY: ��=0.47±0.04) and 217 
various forms of asthma (ASTHMA_NAS: ��=0.43±0.04). Cross-organ connections were 218 
established, such as between the pulmonary BAG and substance abuse 219 
(KRA_PSY_SUBSTANCE_EXMORE: ��=0.20±0.03) and hypertension (I9_HYPTENS: 220 
��=0.17±0.03). Lastly, the metabolic BAG was largely linked to different forms of diabetes 221 
(T2D: ��=0.40±0.04).  222 
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 223 
Figure 2: Genetic correlation between the 2024 MAEs and 525 DEs  224 
The significant genetic correlation estimates (rg) between 2024 MAEs and 525 DEs are depicted, 225 
considering two levels of corrections for multiple comparisons, considering the relatively smaller 226 
sample sizes (<40,000) for brain MAEs compared to other organ MAEs (>100,000). Initially, we 227 

d, 
ler 
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reveal significant results shared between LDSC and GNOVA, employing Bonferroni correction 228 
based solely on the number of MAEs (P-value<0.05/2024), uncovering 133 MAE-AE pairs. 229 
Subsequently, a stricter correction based on both the number of MAEs and DEs is applied, 230 
leading to 45 unique MAE-AE pairs marked as red squares; the numeric results are displayed 231 
using results from LDSC. The genetic correlation for non-significant results was set to 0 for 232 
visualization purposes. For the MAEs, readers can explore the BRIDGEPORT portal for a visual 233 
representation of the 2003 brain PSCs (e.g., C256_225: https://labs-234 
laboratory.com/bridgeport/MuSIC/C256_225) and the other BAGs at the MEDICINE portal: 235 
https://labs-laboratory.com/medicine. 236 
 237 
The brain, cardiovascular, and pulmonary MAEs are causally linked to DEs of multiple 238 
organ systems  239 
Employing five distinct two-sample Mendelian randomization estimators, we identified 39 (P-240 
value<0.05/633) and 15 (P-value<0.05/633/524) significant causal relationships, directed from 241 
the MAE to DE, that withstood the Bonferroni correction at two different levels of rigors, as per 242 
the inverse variance weighted (IVW) estimator and at least one of the other four estimators 243 
(Method 3c and Supplementary eTable 3). 244 
 Within the 15 significant causal relationships, the brain MAEs showed causal 245 
connections with DEs from the brain, as well as DEs from other organ systems. For example, the 246 
brain PSC (C1024_598) was causally linked to SCZ from PGC [P-value=9.89x10-8; OR (95% 247 
CI)=0.69 (0.59, 0.79); the number of IVs=7]. C1024_684 was causally linked to Ventral hernia 248 
from FinnGen [K11_VENTHER: P-value=1.09x10-7; OR (95% CI)=1.43 (1.25, 1.63); the 249 
number of IVs=18]. The pulmonary BAG was causally linked to multiple DEs related to the 250 
pulmonary system, including chronic obstructive pulmonary disease (COPD) [J10_COPD: P-251 
value=2.70x10-20; OR (95% CI)=1.77 (1.56, 2.00); the number of IVs=59] and asthma 252 
[ASTHMA_PNEUMONIA: P-value=1.51x10-14; OR (95% CI)=1.67 (1.41, 1.96); the number of 253 
IVs=59]. The cardiovascular BAG was causally linked to ischemic heart disease (IHD) 254 
[ASTHMA_PNEUMONIA: P-value=1.09x10-7; OR (95% CI)=1.64 (1.36, 1.96); the number of 255 
IVs=37] (Fig. 3). The quality check of the significant signals is presented in Supplementary 256 
eFolder 1. Supplementary eFile 6 presents the full set of results for the 521 FinnGen DEs and 4 257 
PGC DEs. 258 
 259 
  260 
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 261 
Figure 3: Causal relationship from the 2024 MAEs to the 525 DEs 262 
The causal relationship from the 2024 MAEs to the 525 DEs revealed 39 significant MAE-DE 263 
pairs, involving 633 MAEs as effective exposure variables (>8 instrumental variables before 264 
harmonization) and 525 DEs as outcomes. Bonferroni correction was applied to identify 265 
potential significant causal signals based on i) the 633 MAEs (P-value<0.05/633) and ii) the 633 266 
MAEs and 525 DEs (P-value<0.05/633/524, denoted by the 15 red rectangles). Furthermore, we 267 
verified that the statistical significance attained for the IVW estimator was consistent and 268 
persisted across at least one of the other four Mendelian randomization estimators (Egger, 269 
weighted median, simple mode, and weighted mode estimators). For visualization purposes, the 270 
odds ratios for non-significant results were set to 1 and were left blank. For the MAEs, readers 271 
can explore the BRIDGEPORT portal for a visual representation of the 2003 brain PSCs (e.g., 272 
C32_4: https://labs-laboratory.com/bridgeport/MuSIC/C32_4) and the other BAGs at the 273 
MEDICINE portal: https://labs-laboratory.com/medicine. 274 
 275 
The DEs involving Alzheimer’s disease, diabetes, asthma, and hypertension exert causal 276 
effects on multi-organ MAEs 277 
We then tested the inverse causality by employing the DEs as exposure and MAEs as outcome 278 
variables. We identified 47 (P-value<0.05/787) and 23 (P-value<0.05/787/214) significant causal 279 
relationships, directed from the DE to MAE, that survived the Bonferroni correction at two 280 
different levels of rigors (Method 3c and Supplementary eTable 4). 281 

Within the 23 significant causal relationships (P-value<0.05/787/214), various forms of 282 
Alzheimer’s disease were linked to the brain MAEs, including the brain BAG [G6_AD_WIDE: 283 
P-value=3.03x10-7; OR (95% CI)=1.10 (1.06, 1.13); the number of IVs=8] and metabolic BAG 284 
[G6_AD_WIDE: P-value=3.03x10-7; OR (95% CI)=1.07 (1.04, 1.09); the number of IVs=8]. 285 
Type 1 diabetes (E4_DM1NASCOMP) was also causally linked to multiple brain PSCs. In 286 
addition, the cardiovascular BAG was causally linked to multiple heart diseases, including 287 
hypertension [I9_HYPTENS: P-value=4.67x10-31; OR (95% CI)=1.23 (1.19, 1.27); the number 288 
of IVs=110]. Several forms of asthma were causally linked to the pulmonary BAG, such as 289 
allergic asthma [ALLERG_ASTHMA: P-value=2.38x10-9; OR (95% CI)=1.09 (1.06, 1.13); the 290 
number of IVs=14]. Finally, obesity was also linked to the renal BAG [E4_OBESITY: P-291 
value=2.74x10-8; OR (95% CI)=1.11 (1.07, 1.15); the number of IVs=19] (Fig. 4). 292 

 

al 
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Supplementary eFolder 2 presents the quality check results of the significant signals. 293 
Supplementary eFile 7 presents the full set of results for the 521 FinnGen DEs and 4 PGC DEs. 294 

 295 

 296 
Figure 4: Causal relationship from the 525 DEs to the 2024 MAEs 297 
The causal relationship from the 525 MAEs to the 2024 DEs revealed 47 significant DE-MAE 298 
pairs, involving 214 DEs as effective exposure variables (>8 instrumental variables before 299 
harmonization) and 787 DEs as effective outcomes after quality checks. Bonferroni correction 300 
was applied to identify potential significant causal signals based on i) the 787 MAEs (P-301 
value<0.05/787) and ii) the 787 MAEs and 214 DEs (P-value<0.05/787/214, denoted by the 23 302 
red rectangles). Furthermore, we verified that the statistical significance attained for the IVW 303 
estimator was consistent and persisted across at least one of the other four Mendelian 304 
randomization estimators (Egger, weighted median, simple mode, and weighted mode 305 
estimators). For visualization purposes, the odds ratios for non-significant results were set to 1 306 
and were left blank. For the MAEs, readers can explore the BRIDGEPORT portal for a visual 307 
representation of the 2003 brain PSCs (e.g., C128_13: https://labs-308 
laboratory.com/bridgeport/MuSIC/C128_13) and the other BAGs at the MEDICINE portal: 309 
https://labs-laboratory.com/medicine. 310 
 311 
The polygenic risk scores of the 2024 MAEs  312 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2024. ; https://doi.org/10.1101/2024.06.15.24308980doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.15.24308980
http://creativecommons.org/licenses/by-nd/4.0/


 

15 
 

Using the PRS-CS45 method, we derived the PRS of the 2024 MAEs. We found that the 1799 313 
MAEs could significantly (P-value<0.05/2024) predict the phenotypic BAGs in the test/target 314 
data (split2 GWAS; detailed in Method 3d). Among these, 1791 brain MAEs resulted in 315 
significant incremental R2 ranging from 0.11% to 10.70% to predict the phenotype of interest. 316 
For example, the PSC (C1024_593 for part of the cerebellum: https://labs-317 
laboratory.com/bridgeport/MuSIC/C1024_593) showed an incremental of R2 10.70%. The renal 318 
BAG showed an incremental R2 of 5.92%, followed by the metabolic (R2 = 5.67%) and 319 
pulmonary BAG (R2 = 3.86%) (Fig. 5a and (Supplementary eFile 8).  320 
 We then applied the model to the entire UKBB population and performed a PRS-wide 321 
association study (PWAS), where the 2024 PRS-MAEs were linked to the 59 phenotypes that 322 
were not initially used to compute the respective PRS, to avoid the circular bias46 323 
(Supplementary eTable 5). Refer to Method 3d for details. We found 388 significant 324 
associations (P-value<0.05/2024/59) between 7 PRS-MAEs and 41 phenotypes. Among these, 325 
PSC C32_1 showed the most associations (94%); the lifestyle factor for only fish intake (Field 326 
ID: 16) was highly linked to multiple PRS-MAEs (16%). These results were expected because 327 
the 59 phenotypes (e.g., cognitive and mental traits) are primarily linked to the brain, and 328 
lifestyle factors were largely linked to multiple organ systems (Fig. 5b and Supplementary 329 
eFile 9). All derived PRS will be returned to UKBB and made available to the community. 330 
 331 
  332 
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 333 
Figure 5: The polygenic risk score of the 2024 MAEs and PWAS  334 
(a) The incremental R2 of the PRS derived by PRC-CS to predict the 2024 MAEs in the 335 
target/test data (i.e., the split2 GWAS). The y-axis indicates the proportions of phenotypic 336 
variation that the PRS can significantly and additionally explain (i.e., incremental R2). The x-axis 337 
lists the 8 organ systems. For the brain, we showed the PRS distribution of the significant results 338 
from the 1791 brain PRS-MAEs; the other organ systems only have one PRS-MAE. (b) The 339 
PWAS links the PRS-MAEs to the 59 additional phenotypes not used to compute the PRS-MAE 340 
in the entire UKBB sample (P-value<0.05/2024/59).  341 
  342 

is 
ts 
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Discussion 343 

This study expands previously established genetic atlases47,32 by integrating AI-derived 344 
endophenotypes via the 2024 MAEs within the multi-organ framework solely through GWAS 345 
summary statistics. We demonstrate a promising avenue for advancing imaging genetic research 346 
in two key aspects: i) integrating AI in imaging genetics and ii) exploring human aging and 347 
disease through a multi-organ perspective. 348 
 By comprehensively depicting the genetic architecture of the 2024 MAEs, we showcased 349 
that AI endophenotypes supported the endophenotype hypothesis14,15, in which they showed 350 
lower polygenicity and weaker negative selection effects than the disease diagnosis. First, it may 351 
suggest that these intermediate phenotypes exist along the causal pathway, bridging the gap 352 
between underlying genetics and "exo-phenotypes" like cognitive decline or disease diagnoses in 353 
case/control studies, thus positioned closer to the core etiology and pathology. Secondly, many 354 
of these 2024 MAEs originated from in vivo imaging methodologies like magnetic resonance 355 
imaging (MRI). Consequently, they tend to exhibit reduced noise levels (i.e., a higher SNR) in 356 
capturing disease-related effects and are less susceptible to biases, such as misclassification48, 357 
case/control-covariate sample bias (e.g., studies matching comorbidities and other factors), and 358 
imbalanced case/control ratios, as evidenced in many GWASs in FinnGen. Especially for the 359 
former, binary traits have a threshold for disease classification, leading to the dichotomization of 360 
individuals into affected and unaffected categories. Thirdly, the 525 DEs often represent 361 
complex diseases highly influenced by multiple genetic and environmental factors. Their 362 
multifaceted nature, involving numerous genes with modest effects and environmental 363 
interactions49, can lead to a higher vulnerability to disease onset and clinical symptoms. 364 
Consistent with this observation, we previously also found that one AI- and imaging-derived 365 
subtype of Alzheimer’s disease50 (AD1), but not the binary disease diagnosis, was genetically 366 
correlated with brain age (GM- and WM-BAG)6. 367 

We observed that brain MAEs were overall more polygenic than MAEs from other organ 368 
systems. Brain disorders are highly polygenic51. First, the brain is a highly complex organ with 369 
intricate functions, and disorders affecting it are likely influenced by a larger number of genetic 370 
variants12,52. Second, many brain disorders are multifaceted, involving various aspects of brain 371 
structure, function, and connectivity, which can be influenced by various genetic factors19. 372 
Additionally, the brain regulates many physiological processes throughout the body, so 373 
disruptions in its function can have widespread effects, potentially involving interactions with 374 
multiple organ systems4. In addition, we found that most of the brain MAEs showed negative 375 
selection signatures, including the 9 disease subtype DNEs and 4 brain BAGs; some of the brain 376 
PSCs showed a positive S estimate (e.g., for the occipital lobe and subcortical structure, 377 
S=0.31±0.09: https://labs-laboratory.com/bridgeport/MuSIC/C32_18). The anticipated negative 378 
selection signatures of biological age across multiple organs and disease subtypes are expected to 379 
align with our prior findings, which revealed pervasive signatures of natural selection across a 380 
range of complex human traits and functional genomic categories. This negative selection 381 
signature prevents mutations with large deleterious effects from becoming frequent in the 382 
population53. The positive selection signatures identified in certain brain PSCs may suggest that 383 
positive selection may also play a role in shaping the genetic architecture of brain structural 384 
networks.  385 
 The MUTATE atlas uncovered both established and previously undiscovered interactions 386 
concerning human systemic diseases within individual organs and across diverse organ systems. 387 
For example, within the cardiovascular system, the AI-derived MAE, cardiovascular BAG 388 
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showed both substantial genetic correlation (Fig. 2) and bi-directional causality (Fig. 3 and 4) 389 
with multiple heart diseases, such as ischaemic heart disease54, heart failure55, and atrial 390 
fibrillation56. Similarly, pulmonary BAG was also causally linked to multiple diseases related to 391 
the lung and respiratory system, including COPD57 and various forms of asthma58. Another 392 
organ-specific connection was observed in neurologic diseases, encompassing conditions such as 393 
AD59 and various mental disorders60 linked to several MAEs associated with the brain, notably 394 
several PSCs and WM-BAG. Cross-organ interplay was evidenced for several novel 395 
connections. For instance, the brain PSCs exhibited causal connections to conditions extending 396 
beyond the brain, such as ventral hernia and vein diseases, as well as systemic conditions, like 397 
various forms of diabetes affecting the entire body. In contrast, AD appears to causally impact 398 
multiple BAGs across various human organ systems, including the renal, immune, and metabolic 399 
systems. It's widely recognized that AD, being a complex condition, triggers detrimental effects 400 
that influence several human organ systems59,61. Our previous study used imaging genetics to 401 
investigate this multi-organ involvement along the disease continuum62. These results highlight 402 
the clinical relevance and interpretation of these AI endophenotypes to quantify individual-level 403 
organ health.  404 
 Emphasizing preventative strategies for specific chronic diseases is crucial to enhancing 405 
overall multi-organ health. Our MAEs present opportunities as novel instruments for selecting 406 
populations in clinical trials and facilitating therapeutic development. AD and various forms of 407 
diabetes exemplify disease endpoints significantly impacting multiple human organ systems. AD 408 
stands as the leading cause of dementia in older adults, presenting a persistent challenge in 409 
medicine despite numerous pharmacotherapeutic clinical trials. These trials have included 410 
interventions, such as anti-amyloid drugs63,64 and anti-tau drugs.65. The complexity and 411 
multifaceted nature of the underlying neuropathological processes may account for the lack of 412 
effective treatments. We call on the scientific community to embrace various mechanistic 413 
hypotheses to elucidate AD pathogenesis beyond amyloid and tau66,67. Likewise, the complexity 414 
of diabetes, with its various contributing factors, renders prevention challenging68. Moreover, 415 
diabetes often coexists with other chronic conditions affecting multiple organ systems, such as 416 
cardiovascular diseases, hypertension, and dyslipidemia69. Successful prevention strategies 417 
require a holistic approach, encompassing lifestyle adjustments, education, healthcare access, 418 
and societal considerations.  419 
 420 
Limitation 421 

This study presents several limitations. Primarily, our analyses were centered solely on GWAS 422 
summary statistics derived from individuals of European ancestries. Future investigations should 423 
extend these findings to diverse ethnic groups, particularly those that are underrepresented, to 424 
ascertain broader applicability. This necessitates the research community's commitment to 425 
embracing open science in AI and genetics. Secondly, the computational genomics statistical 426 
methods utilized in this research rely on several underlying statistical assumptions, which could 427 
potentially be violated and introduce bias. We mitigated bias by employing multiple 428 
methodologies to compute heritability, genetic correlation, and causality to address this concern. 429 
Additionally, we conducted thorough sensitivity checks, and the detailed results are provided 430 
accordingly. Additionally, our analysis was limited by the lack of individual-level genotype data 431 
from FinnGen and PGC, highlighting the need for future studies utilizing individual-level data to 432 
validate our empirical findings. Finally, our study recognizes a tradeoff between clinical 433 
interpretability and the detection of genetic associations when using AI-derived phenotypes. 434 
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 435 
Outlook 436 

In summary, we introduced the MUTATE genetic atlas to comprehensively comprehend the 437 
genetic architecture of AI endophenotypes and chronic diseases in multi-organ science. This 438 
investigation underscores the potential of integrating AI into genetic research and supports a 439 
comprehensive approach to investigating human diseases within a multi-organ paradigm. 440 
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STAR * Methods 441 

Method 1: GWAS summary statistics  442 

The present study solely utilized GWAS summary statistics; no individual-level data were used. 443 
We downloaded the GWAS summary statistics from three web portals for the 2024 MAEs, 521 444 
DEs from FinnGen, and 4 DEs from PGC, respectively.  445 
 446 
UKBB 447 
UKBB is a population-based study of approximately 500,000 people recruited from the United 448 
Kingdom between 2006 and 2010. The UKBB study has ethical approval, and the ethics 449 
committee is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-450 
biobank/governance/ethics-advisory-committee. 451 

The GWAS summary statistics for all the 2024 MAEs are publicly available at the 452 
MEDICINE knowledge portal: https://labs-laboratory.com/medicine, which focuses on 453 
disseminating scientific findings on imaging genetics and AI methods in multi-organ science. 454 
Specifically, among the 2024 MAEs, 2003 PSCs – at varying scales from C32 to C1024 – were 455 
structural covariance networks derived via the sopNMF method12. 9 DNEs1 captured the 456 
neuroanatomical heterogeneity of four brain diseases (AD1-2, ASD1-3, LLD1-2, and SCZ1-2) 457 
using semi-supervised clustering or representation learning methods42,62,71,72. 12 multi-organ 458 
BAGs (GM, WM, FC6, multimodal brain BAGs, cardiovascular BAG, eye BAG, hepatic BAG, 459 
immune BAG, musculoskeletal BAG, metabolic BAG, pulmonary BAG, and renal BAG73) were 460 
derived from various machine learning models to quantify the individual-level deviation from 461 
typical brain aging due to various pathological effects. Detailed AI methodologies are presented 462 
in Method 2 for the MAEs, DNEs, and BAGs. All GWASs were performed within European 463 
ancestries and using the GRCh37 human genome assembly; the GWAS model (PLINK74 for 464 
linear model and fastGWA75 for linear mixed-effect model), sample sizes, and covariates 465 
included are detailed in the original papers and also in Supplementary eTable 1a.  466 

Harmonization of GWAS summary statistics across different models and consortia for 467 
various software is crucial, such as aligning the effect allele and the direction of the effect size. 468 
There's currently no established standard in the field for this process, although some advice has 469 
been proposed76. Certain software harmonizes data based on the allele frequency of the effect 470 
allele, such as the TwoSampleMR package77 for Mendelian randomization. In our UKBB MAE 471 
GWAS summary data, we harmonized the effect allele as the alternative allele from PLINK and 472 
A1 from fastGWA and provided its corresponding allele frequency. P-value, effect sizes (e.g., 473 
BETA value and SE), and sample sizes are indicated too. The variant identifier is based on the rs 474 
ID number, not the chromosome number and position number combination.  475 

 476 
FinnGen 477 
The FinnGen22 study is a research project based in Finland that explores combined genetics and 478 
health registry data to understand the underlying causes and mechanisms behind various disease 479 
endpoints. It particularly emphasizes the genetic basis of diseases in the Finnish population 480 
(>500,000) by conducting extensive GWAS and analyzing large-scale genomic data in 481 
collaboration with multiple research institutions and organizations. FinnGen has generously 482 
made their GWAS results publicly available to the community for research purposes 483 
(https://www.finngen.fi/en/access_results).  484 
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The present study used the GWAS summary statistics version R9 released to the public 485 
on May 11, 2022, after harmonization by the consortium. In the R9 release, FinnGen analyzed 486 
2269 binary and 3 quantitative endpoints from 377,277 individuals and 20,175,454 variants. 487 
Regenie78 was used to run the GWAS models, including sex, age, 10 PCs, and genotyping batch 488 
as covariates. Genotype imputation was done with the population-specific SISu v4.0 reference 489 
panel. In our analysis, we concentrated solely on binary DEs with case numbers exceeding 5000 490 
to ensure adequate statistical power, given the highly imbalanced case/control ratios. As the 491 
released data were based on the GRCh38 human genome assembly, we lifted the GWAS 492 
summary statistics to the GRCh37 version for all genetic analyses. Supplementary eTable 1b 493 
details the included 521 DEs. More details can be found at the FinnGen website: 494 
https://finngen.gitbook.io/documentation/v/r9/. 495 

The FinnGen team has systematically harmonized the GWAS summary data for the 521 496 
DEs involved. The alternative allele serves as the effect allele. The rsID number represents the 497 
SNP; the chromosome number and position are also shared. The data includes P-values, effect 498 
sizes, and allele frequencies for both the alternative and reference alleles. 499 
 500 
Psychiatric Genomics Consortium 501 
PGC23 is an international coalition of researchers exploring the genetic underpinnings of 502 
psychiatric disorders and beyond. This collaborative effort unites scientists globally to examine 503 
and decipher extensive genomic datasets concerning various brain diseases. The primary goal of 504 
PGC involves uncovering and comprehending the genetic elements that contribute to various 505 
psychiatric disorders, such as schizophrenia, bipolar disorder, and major depressive disorder. We 506 
downloaded GWAS summary statistics from the PGC website (https://pgc.unc.edu/for-507 
researchers/download-results/) and manually harmonized the data to our Mendelian 508 
randomization analyses to replicate the FinnGen findings.  509 
 PGC did not harmonize the GWAS summary statistics; the available data information 510 
depends on each study. Supplementary eTable 1c details the 4 DEs (AD, ADHD, bipolar 511 
disorder, and schizophrenia) included after the data filtering procedure. First, we ensured that the 512 
study population comprised individuals of European ancestry and, if necessary, lifted the data to 513 
the human genome build assembly GRCh37. Secondly, we excluded two studies where the allele 514 
frequency is unavailable because the TwoSampleMR package77 requires this information to 515 
harmonize the exposure and outcome data (e.g., flip the effect allele and effect size). Thirdly, we 516 
confirmed that the GWAS summary statistics didn't overlap with UKBB data. Specifically, the 517 
AD GWAS summary data79 explicitly offered a version that excluded participants from UKBB. 518 
In addition, the original dataset lacked a column for the rsID number. To deal with this, we 519 
employed a mapping approach using the chromosome number and position to the dpSNP 520 
database (version 150), which allowed us to obtain the corresponding rsID numbers. All 4 DE 521 
GWAS summary data went through the same harmonization procedure as FinnGen (Method 3c) 522 
 523 

 524 
Method 2: 2024 multi-organ AI endophenotypes  525 

(a): The 2003 patterns of structural covariance of the brain 526 
In our earlier study12, we utilized the sopNMF method on an extensive and varied brain imaging 527 
MRI dataset (N=50,699, including data from UKBB) to generate the multi-scale brain PSCs. The 528 
scale C ranges from 32 to 1024, progressively increasing by a factor of 2; 11 PSCs vanished 529 
during models.  530 
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Biologically, the 2003 PSCs represent data-driven structural networks that co-vary across 531 
brain regions and individuals in a coordinated fashion. Mathematically, the sopNMF method is a 532 
stochastic approximation ("deep learning-analogy") constructed and extended based on 533 
opNMF80,81. Consider an imaging dataset comprising � images, each containing d voxels. We 534 
represent the data as a matrix X, where each column corresponds to a flattened image: � �535 
 
��, ��, … , ���, � �  ��	


��. The method factorizes X into two low-rank matrices � �  ��	

�� and 536 

� �  ��	
���, subject to two important constraints: i) non-negativity and ii) column-wise 537 

orthonormality. More mathematical details can be referred to the original references12,80,81 and 538 
Supplementary eMethod 2a. 539 
 540 
(b): The 9 dimensional neuroimaging endophenotypes of the brain 541 
The nine DNEs captured the neuroanatomical heterogeneity of four brain diseases, including 542 
AD1-2 for AD62, ASD1-3 for autism spectrum disorder42, LLD1-2 for late-life depression71, and 543 
SCZ1-2 for schizophrenia72. The underlying AI methodologies involved two different semi-544 
supervised clustering or representation learning algorithms: Surreal-GAN82 and HYDRA83. Refer 545 
to a review for details of the semi-supervised learning84, which primarily seeks the so-called "1-546 
to-k" mapping patterns or transformations from reference domains (like healthy controls) to 547 
target domains (such as patients). 548 
 Surreal-GAN82 was used to derive AD1-262. It unravels the intrinsic heterogeneity 549 
associated with diseases through a deep representation learning approach. The methodological 550 
innovation, compared to its precentor Smile-GAN85, lies in how Surreal-GAN models disease 551 
heterogeneity: it interprets it as a continuous dimensional representation, ensures a consistent 552 
increase in disease severity within each dimension, and permits the simultaneous presence of 553 
multiple dimensions within the same participant without exclusivity. More mathematical details 554 
are presented in Supplementary eMethod 2b.  555 

HYDRA83 was employed to derive the other 7 DNEs. It utilizes a widely adopted 556 
discriminative technique, namely support vector machines (SVM), to establish the "1-to-k" 557 
mapping. The model extends multiple linear SVMs to the nonlinear domain by piecing them 558 
together. This approach serves the dual purpose of classification and clustering simultaneously. 559 
Specifically, it creates a convex polytope by amalgamating hyperplanes derived from k linear 560 
SVMs. This polytope separates the healthy control group from the k subpopulations within the 561 
patient group. Conceptually, each face of this convex polytope can be likened to encoding each 562 
subtype (categorical trait) or dimension (continuous trait), capturing distinctive disease effects 563 
(Refer to Supplementary eMethod 2c). 564 
 565 
(c): The 12 biological age gaps of nine human organ systems 566 
The nine multi-organ BAGs (brain, cardiovascular, eye, hepatic, immune, musculoskeletal, 567 
metabolic, pulmonary, and renal) were derived from a previous study5 that used AI to predict the 568 
chronological age of healthy individuals without chronic medical conditions: AI-predicted age – 569 
chronological age. Using a 20-fold cross-validation procedure, we applied the model for each 570 
organ system, employing a linear support vector machine. Before training each model iteration, 571 
standardization was applied to measures (excluding categorical variables) within the training set. 572 
The model was solved using sequential minimal optimization with a gap tolerance of 0.001. The 573 
support vector regression settings were adjusted for optimization, adhering to established 574 
principles in the field86. 575 
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Alongside the nine organ BAGs, we previously derived three multimodal brain BAGs 576 
(GM, WM, and FC-IDP) using features from gray matter (GM), white matter (WM), and 577 
functional connectivity (FC) in MRI scans6. We systematically compared four machine learning 578 
models: SVR, LASSO regression, multilayer perceptron, and a five-layer neural network. We 579 
employed nested cross-validation (CV) and included an independent test dataset87 for a fair 580 
comparison across different models and MRI modalities. This process involved an outer loop CV 581 
with 100 repeated random splits: 80% for training and validation and 20% for testing. Within the 582 
inner loop, a 10-fold CV was utilized for hyperparameter tuning. Furthermore, we reserved an 583 
independent test dataset, which was kept unseen until the fine-tuning of the machine learning 584 
models88 (e.g., hyperparameters for SVR) was completed.  585 
 586 

Method 3: Genetic analyses based on GWAS summary statistics  587 

(a): The genetic architecture of the 2024 MAEs and 525 DEs  588 
Primarily, we used SBayesS39 to estimate three sets of parameters that fully unveil the genetic 589 
architecture of the 2024 MAEs and 525 DEs. SBayesS is an expanded approach capable of 590 
estimating three essential parameters characterizing the genetic architecture of complex traits 591 
through a Bayesian mixed linear model89. This method only requires GWAS summary statistics 592 
of the SNPs and LD information from a reference sample. These parameters include SNP-based 593 
heritability (����

� ), polygenicity (π), and the relationship between minor allele frequency (MAF) 594 
and effect size (S). We used the software pre-computed sparse LD correlation matrix derived 595 
from the European ancestry by Zeng et al.39. More mathematical details can be found in the 596 
original paper from Zeng et al.39. We ran the gctb command89 using the argument --sbayes S, and 597 
left all other arguments by default. When applying SBayesS to the 2025 MAEs and 525 DEs 598 
summary data, we found that 18 DEs failed to converge in the MCMC sampling, which may be 599 
due to LD differences between FinnGen and UKBB samples (the latter was used as the LD 600 
reference in SBayesS). 601 

To benchmark different methods used in the field for SNP-based heritability estimates, 602 
we also employed two other methods based on GWAS summary data: i) LDSC28 and ii) 603 
SumHer33. LDSC relies on the principle that the correlation between SNP effect sizes and 604 
linkage disequilibrium with neighboring SNPs can be used to estimate the proportion of 605 
heritability explained by all SNPs using GWAS summary data. For LDSC, we used the 606 
precomputed LD scores from the 1000 Genomes of European ancestry. All other parameters 607 
were set to default in the software. After merging the GWAS summary statistics, we chose the 608 
1000 Genomes reference panel for fair comparisons between the two studies and ensured that 609 
most SNPs were included in the analyses. For example, for the DE 610 
(RX_PARACETAMOL_NSAID), after merging with the reference panel LD, 1,171,361 611 
remained. For the first MAE (C32_1), 1,092,510 SNPs remained after the same merging 612 
procedure. Furthermore, FinnGen didn't provide the original genotype data; they only shared the 613 
LD information via the LDstore software but did not provide the allele information. 614 
Consequently, we cannot generate in-sample LD scores using the LDSC software. Finally, a 615 
prior investigation90 showcased the robustness of LDSC concerning the selection of LD 616 
reference panels – multi-ethnic European, Finnish-only, non-Finnish European from 1000 617 
Genomes Phase 3 data, and FINRISK Finnish reference panel – regarding heritability estimates 618 
in four lipid traits within a Finnish population. 619 
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For SumHer, we used the BLD-LDAK model , as the software suggested. BLD-LDAK 620 
stands for "Bayesian LD-adjusted Kinship," where LD-adjusted kinship refers to the calculation 621 
of genetic relatedness between individuals using information about the correlation of alleles 622 
between nearby SNPs (linkage disequilibrium). We used the software-provided tagging file, 623 
generated from 2000 white British individuals, as a reference penal suggested by the software for 624 
European ancestry groups. The HapMap3 data (https://www.broadinstitute.org/medical-and-625 
population-genetics/hapmap-3) merged with the tested GWAS summary SNPs. Similarly, we 626 
ensured sufficient SNPs remained after merging with the reference panel. All other parameters 627 
were set to default. SumHer differs from LDSC in several ways: i) it models inflation 628 
multiplicatively, whereas LDSC uses an additive approach; ii) it accounts for uneven LD patterns 629 
and incorporates MAF on SNP effect; and iii) it utilizes a restricted maximum likelihood 630 
solver rather than regression to estimate the ����

� . 631 
 632 
(b): Genetic correlation: We used three different methods to compute the MAE-DE pairwise 633 
(N=2024x525=1,062,600) genetic correlations (��): i) LDSC28, ii) GNOVA34, and iii) HDL38.  634 

An earlier study92 highlighted the significance of selecting an appropriate LD score 635 
reference panel for genetic correlation estimates based on summary statistics. We generated the 636 
same reference panel for LD scores across the three software for a fair comparison. For LDSC, 637 
we used the precomputed LD scores from the 1000 Genomes of European ancestry provided by 638 
the software. All other parameters were set by default. To employ GNOVA, we created the LD 639 
scores utilizing the 1000 Genomes of European ancestry using the --save-ld argument within the 640 
gnova.py script. For HDL, we used the provided scripts from HDL to generate the LD scores 641 
using the same 1000 Genomes of European ancestry 642 
(https://github.com/zhenin/HDL/wiki/Build-a-reference-panel). 643 

Through our analysis, we found that the three packages have different levels of model 644 
convergence rates, which is critical for future applications as these open-source packages claim 645 
to advance genetic research. In particular, we found that LDSC (1,062,577/1,062,600) and 646 
GNOVA (1,062,600/1,062,600) converged for most of the tested MAE-DE pairs, whereas HDL 647 
failed a substantial proportion of the analyses, leading to only 59,291 out of the 1,062,600 MAE-648 
DE pairs (refer to the raised issue: https://github.com/zhenin/HDL/issues/30). Therefore, in Fig. 649 
2, we presented common significant results after Bonferroni corrections from the LDSC and 650 
GNOVA, resulting in 133 and 45 significant signals corrected on i) the number of MAEs and ii) 651 
the number of MAEs and DEs.  652 

 653 
(c): Two-sample bidirectional Mendelian randomization: We employed a bidirectional, two-654 
sample Mendelian randomization using the TwoSampleMR package77 to infer the causal 655 
relationships between the 2024 MAEs, 521 DEs from FinnGen, and 4 brain DEs from PGC.  656 

The forward Mendelian randomization examined causality from the 2024 MAEs to the 657 
525 DEs, while the inverse analysis investigated causality from the 525 DEs to the 2024 MAEs. 658 
The TwoSampleMR package77 applied five different Mendelian randomization methods. We 659 
presented the significant findings after the Bonferroni correction using the inverse variance 660 
weighted (IVW) estimator, verifying that the correction remained significant in at least one of 661 
the other four estimators (Egger, weighted median, simple mode, and weighted mode 662 
estimators). For the significant signals, we performed several sensitivity analyses. First, a 663 
heterogeneity test was performed to check for violating the IV assumptions. Horizontal 664 
pleiotropy was estimated to navigate the violation of the IV's exclusivity assumption93 using a 665 
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funnel plot, single-SNP Mendelian randomization approaches, and Mendelian randomization 666 
Egger estimator . Moreover, the leave-one-out analysis excluded one instrument (SNP) at a time 667 
and assessed the sensitivity of the results to individual SNP.  668 

Critically, to enhance transparency and reproducibility, we followed a systematic 669 
procedure guided by the STROBE-MR Statement94 in conducting all causality analyses. This 670 
comprehensive approach encompassed the selection of exposure and outcome variables, 671 
reporting full sets of statistics, and implementing sensitivity checks to identify potential 672 
violations of underlying assumptions. First, we performed an unbiased quality check on the 673 
GWAS summary statistics. Notably, the absence of population overlapping bias29 was 674 
confirmed, given that FinnGen and UKBB participants largely represent European ancestry 675 
populations without explicit overlap. For the four PGC DEs, we ensured that no UKBB 676 
participants were included in the GWAS summary data. Furthermore, all GWAS summary 677 
statistics were based on or lifted to GRCh37. Subsequently, we selected the effective exposure 678 
variables by assessing the statistical power of the exposure GWAS summary statistics in terms of 679 
instrumental variables (IVs), ensuring that the number of IVs exceeded 8 before harmonizing the 680 
data. Crucially, the function "clump_data" was applied to the exposure GWAS data, considering 681 
LD. The function "harmonise_data" was then used to harmonize the GWAS summary statistics 682 
of the exposure and outcome variables. This overall resulted in a smaller number (< 525 DEs or 683 
2024 MAEs) of effective exposure/outcome variables in both forward and inverse Mendelian 684 
randomization analyses, as certain GWAS summary data did not have enough IVs. 685 
 686 
(d): PRS calculation: PRS calculation used the GWAS summary statistics from the split-sample 687 
sensitivity analysis from our previous studies12,6,4,1. We established PRS weights using split1 688 
GWAS data as the base/training set, while the split2 GWAS summary statistics were used as the 689 
target/testing data. Details of the quality control (QC) procedures are shown in our previous 690 
studies12,6,4,1. Following the QC procedures, PRS for the split2 group was computed using PRS-691 
CS45. PRS-CS infers posterior SNP effect sizes under continuous shrinkage priors using GWAS 692 
summary statistics and an LD reference panel (i.e., UKBB reference). To ascertain the most 693 
suitable PRS, we conducted a linear regression encompassing different P-value thresholds 694 
(0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), while controlling for age, sex, intracranial volume (if 695 
applicable), and the forty genetic principal components. The optimal P-value threshold for PRS-696 
MAE was determined based on the highest incremental R2. 697 

After determining the optimal model, we applied the model to the entire UKBB sample 698 
(~500k individuals). We then performed a PWAS to link the 2024 PRS-MAEs and 59 additional 699 
phenotypes (Supplementary eTable 5) not used to compute the PRS-MAE to avoid the circular 700 
bias46. The 59 phenotypes include cognitive scores (e.g., fluid intelligence score; Field ID: 701 
20016, mental traits (e.g., fed-up feelings; Filed ID: 1960), and lifestyle factors (e.g., tea intake; 702 
Filed ID: 1488). A linear regression was built considering the following covariates: sex (Field 703 
ID: 31), smoking status (Field ID: 20116), weight (Field ID: 21002), standing height (Field ID: 704 
50), waist circumstance (Field ID: 48), age at recruitment (Field ID: 21022), and first 40 genetic 705 
principal components (Field ID: 22009).   706 
 707 
  708 
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Data Availability 709 

The results of the MUTATE atlas are disseminated at the MUTATE knowledge portal: 710 
https://labs-laboratory.com/mutate. The GWAS summary statistics for the 2024 MAEs can be 711 
accessed publicly through the MEDICINE knowledge portal: https://labs-712 
laboratory.com/medicine and the BRIDGEPORT knowledge portal: https://labs-713 
laboratory.com/bridgeport. The GWAS summary statistics for the 521 DEs from FinnGen are 714 
publicly available at: https://finngen.gitbook.io/documentation/v/r9/. The GWAS summary 715 
statistics for the 4 DEs from PGC are publicly available at: https://pgc.unc.edu/for-716 
researchers/download-results/. The study used only GWAS summary statistics rather than 717 
individual-level data from the UK Biobank. However, the 2024 MAE GWAS data was initially 718 
derived from previous studies conducted under Application Numbers 35148 and 60698 from the 719 
UK Biobank.   720 
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Code Availability 721 

The software and resources used in this study are all publicly available:  722 
• GCTB: https://cnsgenomics.com/software/gctb/#Overview, SNP-based heritability, 723 

polygenicity, and MAF/effect size ratio 724 
• LDSC: https://github.com/bulik/ldsc, SNP-based heritability and genetic correlation 725 
• SumHer: https://dougspeed.com/sumher/, SNP-based heritability 726 
• GNOVA: https://github.com/xtonyjiang/GNOVA, genetic correlation 727 
• HDL: https://github.com/zhenin/HDL, genetic correlation 728 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 729 

randomization 730 
• PRS-CS: https://github.com/getian107/PRScs, PRS 731 
• Surreal-GAN: https://github.com/zhijian-yang/SurrealGAN, to derive AD1 and AD2 732 
• HYDRA: https://github.com/anbai106/mlni, to derive LLD1-2, SCZ1-2, ASD1-3, and 733 

GM-, WM-, FC-BAG 734 
• sopNMF: https://github.com/anbai106/SOPNMF, to derive the 2003 brain PSCs 735 
• BioAge: https://github.com/yetianmed/BioAge, to derive the 9 multi-organ BAGs 736 

  737 
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