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Highlight 22 

• Two AI- and neuroimaging-derived subtypes of schizophrenia (SCZ1 and SCZ2) show 23 
lower polygenicity and weaker negative selection signatures than the disease 24 
endpoint/diagnosis of schizophrenia, supporting the endophenotype hypothesis.  25 

• Brain AI endophenotypes are more polygenic than other organ systems. 26 
• Most multi-organ AI endophenotypes exhibit negative selection signatures, whereas a 27 

small proportion of brain patterns of structural covariance networks exhibit positive 28 
selection signatures. 29 

• The 2024 multi-organ AI endophenotypes are genetically and causally associated with 30 
within-organ and cross-organ disease endpoints/diagnoses.  31 
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Summary 38 

Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide 39 
intermediate phenotypes (i.e., endophenotypes) that bridge the genetics and clinical 40 
manifestations of human disease. However, the genetic architecture of these AI endophenotypes 41 
remains largely unexplored in the context of human multi-organ system diseases. Using publicly 42 
available GWAS summary statistics from UK Biobank, FinnGen, and the Psychiatric Genomics 43 
Consortium, we comprehensively depicted the genetic architecture of 2024 multi-organ AI 44 
endophenotypes (MAEs). Two AI- and imaging-derived subtypes1 showed lower polygenicity 45 
and weaker negative selection effects than schizophrenia disease diagnoses2, supporting the 46 
endophenotype hypothesis3. Genetic correlation and Mendelian randomization results 47 
demonstrate both within-organ connections and cross-organ talk. Bi-directional causal 48 
relationships were established between chronic human diseases and MAEs across multiple organ 49 
systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma 50 
for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived 51 
the polygenic risk scores of the 2024 MAEs. Our findings underscore the promise of the MAEs 52 
as new instruments to ameliorate overall human health. All results are encapsulated into the 53 
MUTATE genetic atlas and are publicly available at https://labs-laboratory.com/mutate. 54 
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Introduction 55 

Multi-organ research1,4–11 represents a pivotal frontier in advancing our understanding of human 56 
aging and disease. In particular, integrating artificial intelligence (AI) into multi-organ imaging 57 
genetics1,4,12,6 has emerged as a novel approach, offering potential promise in advancing 58 
precision medicine13. This integration introduces a new array of endophenotypes14,15, serving as 59 
intermediate, often quantitative, phenotypes, potentially reshaping how we perceive and 60 
approach medical AI16 in imaging and genetic research. 61 

In recent years, three primary catalysts have significantly advanced the field of genetics. 62 
The first pivotal factor stems from the extensive collaborative efforts in consolidating large-scale 63 
multi-omics datasets, which has endowed researchers with unprecedented statistical power 64 
previously inaccessible. As an illustration, the UK Biobank (UKBB) study17 stands out for its 65 
comprehensive collection of multi-organ imaging18, genetics19, and proteomics20,21 data within 66 
the United Kingdom. Similarly, the FinnGen study22, conducted in Finland, has amassed 67 
extensive clinical and genetic data. Secondly, efforts toward open science have propelled the 68 
field, especially emphasizing the significance of publicly available resources, such as genome-69 
wide association study (GWAS) summary statistics and widespread scientific dissemination. 70 
Notably, the FinnGen study and Psychiatric Genomics Consortium (PGC23) have publicly made 71 
all the GWAS summary statistics accessible22. Public GWAS platforms such as the GWAS 72 
Catalog24, OpenGWAS25, and GWAS ATLAS26 have consolidated and harmonized vast GWAS 73 
datasets, rendering them suitable for subsequent genetic analyses. Likewise, such good practice 74 
was also employed in the newly burgeoning field of brain imaging genetics27, including the 75 
BIG40 (https://open.win.ox.ac.uk/ukbiobank/big40/), the BIG-KP (https://bigkp.org/), 76 
BRIDGEPORT (https://labs-laboratory.com/bridgeport), and MEDICINE (https://labs-77 
laboratory.com/medicine) knowledge portals. Finally, advanced computational genomics 78 
statistical methods using solely GWAS summary statistics, along with sufficient linkage 79 
disequilibrium information, have been developed, presenting an unparalleled chance to 80 
comprehend the genetic architecture of highly polygenic disease traits. For example, LDSC28 has 81 
been extensively utilized to estimate single-nucleotide polymorphism (SNP)-based heritability 82 
and genetic correlations. Mendelian randomization29 is a statistical method to dissect associations 83 
further, probing potential causal relationships among these complex human disease traits, 84 
although these methods often rely on several sensitive model assumptions30. 85 

Despite these advancements, the intricate genetic foundation shaping these AI 86 
endophenotypes in the context of pleiotropic human disease endpoints (DE) within multi-organ 87 
systems remains largely uncharted. We previously applied AI to imaging genetic data and 88 
derived 2024 multi-organ AI endophenotypes (MAE). These encompassed 2003 multi-scale 89 
brain patterns of structural covariance (PSC) networks generated through a deep learning-90 
analogy non-negative matrix factorization method12 (visualization for C32_1 encompassing deep 91 
subcortical structures: https://labs-laboratory.com/bridgeport/MuSIC/C32_1), 9 dimensional 92 
neuroimaging endophenotypes (DNE) quantifying neuroanatomical heterogeneity (also known as 93 
disease subtype) within 4 common brain diseases1, and 12 biological age gap (BAG) assessing 94 
the individual deviation in typical aging (i.e., acceleration or deceleration from the chronological 95 
age) across 9 human organ systems4,6 (Supplementary eTable 1a). To contribute to open 96 
science31, we made all the GWAS summary statistics derived from UKBB data publicly 97 
available at the MEDICINE knowledge portal: https://labs-laboratory.com/medicine. In addition, 98 
FinnGen analyzed genetic data for 2269 binary and 3 quantitative DEs from 377,277 individuals 99 
and 20,175,454 variants. They made these massive GWAS summary statistics publicly available 100 
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to the community at https://finngen.gitbook.io/documentation/ (Supplementary eTable 1b). 101 
Finally, PGC consolidated GWAS results focused on neurological disorders worldwide and 102 
made the GWAS summary statistics accessible to the research community (https://pgc.unc.edu/, 103 
Supplementary eTable 1c). 104 

This study harnesses the extensive GWAS summary resources made publicly available 105 
by us on behalf of UKBB, FinnGen, and PGC (Method 1), along with the utilization of several 106 
advanced computational genomics statistical methods (refer to Code Availability), to thoroughly 107 
depict the genetic architecture of the 2024 MAEs (Method 2) and 525 DEs (>5000 cases) in the 108 
context of multi-organ investigations. Importantly, our previous research explored the genetic 109 
foundation of the 2024 MAEs but did not systematically encompass the FinnGen or PGC data. 110 
Specifically, we included 521 DEs released by the FinnGen study, accessible at 111 
https://finngen.gitbook.io/documentation/v/r9/, and 4 brain DEs (Alzheimer’s disease (AD), 112 
Attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BIP), and schizophrenia 113 
(SCZ)) from PGC (https://pgc.unc.edu/). This study expanded on this by systematically 114 
benchmarking the genetic analyses and comprehensively comparing various statistical 115 
methodologies28,30,32–38 (Method 3). Specifically, we aimed to compute the SNP-based 116 
heritability (����

� ), polygenicity (�), the relationship between SNP effect size and minor allele 117 
frequency (S: signature of natural selection, genetic correlation (��), causality, and polygenic risk 118 
score (PRS) between the 2024 MAEs and 525 DEs. These findings were encapsulated within the 119 
MUTATE (MUlTi-organ AI endophenoTypE) genetic atlas, which is publicly available at 120 
https://labs-laboratory.com/mutate.  121 
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Results 122 

The genetic architecture of the 2024 MAEs and 525 DEs 123 
We computed three parameters to fully depict the genetic architecture of the 2024 MAEs 124 
(Method 3a). For the SNP-based heritability (����

� ), SBayesS39 obtained the highest ����
�  for the 125 

2016 brain MAEs (mean �����
� =0.13 [0.01, 0.38]), followed by the pulmonary BAG 126 

(0.16±0.004), the eye BAG (0.14±0.009), the cardiovascular BAG (0.12±0.003), the renal BAG 127 
(0.10±0.003), and the musculoskeletal BAG (0.10±0.003) (Fig. 1a and Supplementary eFile 1). 128 
It is worth noting that SNP-based heritability varies across methods and depends on the input 129 
data, i.e., summary data or individual-level genotype data used in the method40. We aimed to 130 
benchmark the summary data-based methods by comparing the results from SBayesS with those 131 
of LDSC28 and SumHer33. Overall, while the estimates from the three methods were highly 132 
correlated (r=0.97 between LDSC and SumHer; r=0.99 between SBayesS and SumHer; r=0.99 133 
between SBayesS and LDSC; Supplementary eFigure 1), SumHer (0.23±0.14) generally 134 
yielded larger ����

�  estimates than both LDSC (0.16±0.10) and SBayesS (0.13±0.08) 135 
(Supplementary eFile 1). We present the ����

�  estimate of the 525 DEs and 2024 MAEs in 136 
Supplementary eFigure 2. Supplementary eFile 2 presents the results of the 525 DEs. For the 137 
525 DEs, we converted the ����

�  estimates from the observed scales to the liability scales, 138 
following the recommendations of Ojavee et al41. It's important to clarify that we did not intend 139 
to compare the ����

�  estimates of the two data sources due to differences in genotype coverage, 140 
sample sizes, allele frequencies, and other factors. 141 
 We then computed the natural selection signature (S) for the 2024 MAEs. The metabolic 142 
BAG showed a strong negative selection (S=-0.82±0.10), followed by the pulmonary BAG (S=-143 
0.79±0.05), the hepatic BAG (S=-0.74±0.09), the renal BAG (S=-0.68±0.08), and the immune 144 
BAG (S=-0.66±0.11). For the brain MAEs (S=-0.33 [-1, 0.43]), the brain BAG and (S=-145 
0.70±0.12) the subtype (ASD1) for autism spectrum disorder42 (S=-0.90±0.11) showed strong 146 
negative selection effects (Fig. 1b and Supplementary eFile 3).  147 
 Finally, we calculated the polygenicity (�) for the 2024 MAEs. We found that brain 148 
MAEs (0.040 [0.003, 0.072]) showed higher polygenicity than other organ systems, followed by 149 
the pulmonary BAG (0.018±0.001), the musculoskeletal BAG (0.013±0.001), and the 150 
cardiovascular BAG (0.011±0.001) (Fig. 1C and Supplementary eFile 4). The PSC (C128_115: 151 
https://labs-laboratory.com/bridgeport/MuSIC/C128_115) showed the highest polygenicity 152 
estimate (0.072±0.002).  153 
 154 
Supporting evidence for the endophenotype hypothesis 155 
Previous studies43,44 have found supporting evidence for the endophenotype hypothesis14,15 using 156 
traditional brain map-based signatures, showing that more genes are associated with disease 157 
endpoints than imaging-derived signatures (i.e., endophenotypes). Of note, considering genetic 158 
differences between FinnGen and UKBB samples, SBayesS with the UKBB as LD reference 159 
may give biased estimates of S and � (LD from FinnGen not fully available; Method 3a). 160 
Therefore, we used the GWAS summary data for PGC schizophrenia (SCZ2) and two subtypes 161 
of SCZ (SCZ1 and SCZ21) from our UKBB analysis to demonstrate this. The advantage of using 162 
PGC data is that the GWAS summary statistics are better powered (large sample sizes), and the 163 
data were from European ancestry groups across different countries. A data harmonization 164 
procedure is outlined in Supplementary eMethod 1 to ensure a fair comparison of these 165 
estimates, which led to the utilization of a common set of SNPs and linkage disequilibrium 166 
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information for computing the S and  parameters. Our results showed that SCZ1 167 
( =0.048±0.002; S=-0.61±0.09) and SCZ2 ( =0.047±0.002; S=-0.54±0.12) had lower 168 
polygenicity signals and weaker negative selection effects than SZC ( =0.055±0.003; S=-169 
0.82±0.04) (Fig. 1d). Supplementary eFigure 3 shows the Manhattan plot of the harmonized 170 
summary data for SCZ1, SCZ2, and SCZ. These findings support the endophenotype 171 
hypothesis3, which suggests that intermediate phenotypes (such as SCZ subtype MAEs) are part 172 
of the causal pathway from genetics to exo-phenotypes (such as SCZ binary diagnosis), making 173 
them closer to the underlying etiology. Consequently, the SCZ subtypes were found to be less 174 
polygenic43,44. 175 

 176 
Figure 1: The genetic architecture of the 2024 MAEs 177 
Three parameters are estimated by SBayesS to delineate the genetic architecture of the 2024 178 
MAEs, including (a) the SNP-based heritability ( ), (b) the relationship between MAF and 179 
effect size (S), and (c) polygenicity ( ). (d) We compared the  and S parameters using 180 
harmonized GWAS summary data for two AI- and imaging-derived subtypes (SCZ1 and SCZ21) 181 
from UKBB and the disease endpoint of schizophrenia (SCZ2) from PGC. FinnGen data was not 182 
used due to bias stemming from the unavailability of FinnGen-specific linkage disequilibrium 183 
data (Supplementary eMethod 1). We present the distribution of the estimated parameters for 184 
the 2016 brain MAEs using a violin plot; the mean value is denoted by the black horizontal line. 185 
 186 
The genetic correlation shows organ-specific and cross-organ associations   187 
We found 132 (P-value < 0.05/2024) and 45 (P-value < 0.05/2024/525) commonly significant 188 
positive genetic correlations (rg) after applying two levels of Bonferroni correction (Fig. 2) for 189 
the LDSC28 and GNOVA34 methods (Method 3b, Supplementary eFile 5, and Supplementary 190 

) 
ot 
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eTable 2). We noted that HDL encountered convergence issues with the models, as detailed in 191 
Method 3b.  192 

Between these methods, the magnitude of the genetic correlations for the significant 193 
signals for both methods differed: mean �̂�=0.24[-0.40~0.52] with 213 significant signals for 194 
LDSC, mean �̂�=0.17[-0.30~0.62] for GNOVA with 428 significant signals (Fig. 2). The three 195 
sets of converged estimates showed a strong correlation: r=0.77 (P-value<1x10-10; N=1,062,577) 196 
between LDSC and GNOVA, r=0.81 (P-value<1x10-10; N=59,289) between LDSC and HDL, 197 
and r=0.82 (P-value<1x10-10; N=59,289) between GNOVA and HDL. Supplementary eFigure 198 
4 shows the correlation of the three sets of estimates. 199 
 Within the significant signals identified, we observed i) organ-specific associations, in 200 
which the MAE showed a genetic association with the DE originating from the respective organ 201 
system, and ii) cross-organ connections, in which the MAE and DE were primarily involved 202 
from different organ systems. For example, two brain PSCs showed significant negative genetic 203 
correlations with BIP from PGC (C512_368 vs. BIP: -0.16±0.03; C1024_114 vs. BIP: -204 
0.15±0.03). At a less stringent level, the brain MAEs were also genetically associated with DEs 205 
from other organ systems, including the positive correlation between C1024_808 and obesity 206 
(E4_OBESITY: ��=0.17±0.13). The cardiovascular BAG was positively correlated with several 207 
DEs related to the cardiovascular system, including ischemic heart disease (I9_IHD: 208 
��=0.26±0.03), coronary heart disease (I9_HEARTFAIL_AND_CHD: ��=0.26±0.03), angina 209 
(I9_ANGINA: ��=0.25±0.03) and atrial fibrillation (I9_AF: ��=0.22±0.04). Likewise, the 210 
pulmonary BAG was positively associated with multiple DEs related to the lung and respiratory 211 
system, including chronic obstructive pulmonary disease (COPD_EARLY: ��=0.47±0.04) and 212 
various forms of asthma (ASTHMA_NAS: ��=0.43±0.04). Cross-organ connections were 213 
established, such as between the pulmonary BAG and substance abuse 214 
(KRA_PSY_SUBSTANCE_EXMORE: ��=0.20±0.03) and hypertension (I9_HYPTENS: 215 
��=0.17±0.03). Lastly, the metabolic BAG was largely linked to different forms of diabetes 216 
(T2D: ��=0.40±0.04).  217 
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 218 
Figure 2: Genetic correlation between the 2024 MAEs and 525 DEs  219 
The significant genetic correlation estimates (rg) between 2024 MAEs and 525 DEs are depicted, 220 
considering two levels of corrections for multiple comparisons, considering the relatively smaller 221 
sample sizes (<40,000) for brain MAEs compared to other organ MAEs (>100,000). Initially, we 222 

d, 
ler 
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reveal significant results shared between LDSC and GNOVA, employing Bonferroni correction 223 
based solely on the number of MAEs (P-value<0.05/2024), uncovering 133 MAE-AE pairs. 224 
Subsequently, a stricter correction based on both the number of MAEs and DEs is applied, 225 
leading to 45 unique MAE-AE pairs marked as red squares; the numeric results are displayed 226 
using results from LDSC. The genetic correlation for non-significant results was set to 0 for 227 
visualization purposes. For the MAEs, readers can explore the BRIDGEPORT portal for a visual 228 
representation of the 2003 brain PSCs (e.g., C256_225: https://labs-229 
laboratory.com/bridgeport/MuSIC/C256_225) and the other BAGs at the MEDICINE portal: 230 
https://labs-laboratory.com/medicine. 231 
 232 
The brain, cardiovascular, and pulmonary MAEs are causally linked to DEs of multiple 233 
organ systems  234 
Employing five distinct two-sample Mendelian randomization estimators, we identified 39 (P-235 
value<0.05/633) and 15 (P-value<0.05/633/524) significant causal relationships, directed from 236 
the MAE to DE, that withstood the Bonferroni correction at two different levels of rigors, as per 237 
the inverse variance weighted (IVW) estimator and at least one of the other four estimators 238 
(Method 3c and Supplementary eTable 3). 239 
 Within the 15 significant causal relationships, the brain MAEs showed causal 240 
connections with DEs from the brain, as well as DEs from other organ systems. For example, the 241 
brain PSC (C1024_598) was causally linked to SCZ from PGC [P-value=9.89x10-8; OR (95% 242 
CI)=0.69 (0.59, 0.79); the number of IVs=7]. C1024_684 was causally linked to Ventral hernia 243 
from FinnGen [K11_VENTHER: P-value=1.09x10-7; OR (95% CI)=1.43 (1.25, 1.63); the 244 
number of IVs=18]. The pulmonary BAG was causally linked to multiple DEs related to the 245 
pulmonary system, including chronic obstructive pulmonary disease (COPD) [J10_COPD: P-246 
value=2.70x10-20; OR (95% CI)=1.77 (1.56, 2.00); the number of IVs=59] and asthma 247 
[ASTHMA_PNEUMONIA: P-value=1.51x10-14; OR (95% CI)=1.67 (1.41, 1.96); the number of 248 
IVs=59]. The cardiovascular BAG was causally linked to ischemic heart disease (IHD) 249 
[ASTHMA_PNEUMONIA: P-value=1.09x10-7; OR (95% CI)=1.64 (1.36, 1.96); the number of 250 
IVs=37] (Fig. 3). The quality check of the significant signals is presented in Supplementary 251 
eFolder 1. Supplementary eFile 6 presents the full set of results for the 521 FinnGen DEs and 4 252 
PGC DEs. 253 
 254 
  255 
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 256 
Figure 3: Causal relationship from the 2024 MAEs to the 525 DEs 257 
The causal relationship from the 2024 MAEs to the 525 DEs revealed 39 significant MAE-DE 258 
pairs, involving 633 MAEs as effective exposure variables (>8 instrumental variables before 259 
harmonization) and 525 DEs as outcomes. Bonferroni correction was applied to identify 260 
potential significant causal signals based on i) the 633 MAEs (P-value<0.05/633) and ii) the 633 261 
MAEs and 525 DEs (P-value<0.05/633/524, denoted by the 15 red rectangles). Furthermore, we 262 
verified that the statistical significance attained for the IVW estimator was consistent and 263 
persisted across at least one of the other four Mendelian randomization estimators (Egger, 264 
weighted median, simple mode, and weighted mode estimators). For visualization purposes, the 265 
odds ratios for non-significant results were set to 1 and were left blank. For the MAEs, readers 266 
can explore the BRIDGEPORT portal for a visual representation of the 2003 brain PSCs (e.g., 267 
C32_4: https://labs-laboratory.com/bridgeport/MuSIC/C32_4) and the other BAGs at the 268 
MEDICINE portal: https://labs-laboratory.com/medicine. 269 
 270 
The DEs involving Alzheimer’s disease, diabetes, asthma, and hypertension exert causal 271 
effects on multi-organ MAEs 272 
We then tested the inverse causality by employing the DEs as exposure and MAEs as outcome 273 
variables. We identified 47 (P-value<0.05/787) and 23 (P-value<0.05/787/214) significant causal 274 
relationships, directed from the DE to MAE, that survived the Bonferroni correction at two 275 
different levels of rigors (Method 3c and Supplementary eTable 4). 276 

Within the 23 significant causal relationships (P-value<0.05/787/214), various forms of 277 
Alzheimer’s disease were linked to the brain MAEs, including the brain BAG [G6_AD_WIDE: 278 
P-value=3.03x10-7; OR (95% CI)=1.10 (1.06, 1.13); the number of IVs=8] and metabolic BAG 279 
[G6_AD_WIDE: P-value=3.03x10-7; OR (95% CI)=1.07 (1.04, 1.09); the number of IVs=8]. 280 
Type 1 diabetes (E4_DM1NASCOMP) was also causally linked to multiple brain PSCs. In 281 
addition, the cardiovascular BAG was causally linked to multiple heart diseases, including 282 
hypertension [I9_HYPTENS: P-value=4.67x10-31; OR (95% CI)=1.23 (1.19, 1.27); the number 283 
of IVs=110]. Several forms of asthma were causally linked to the pulmonary BAG, such as 284 
allergic asthma [ALLERG_ASTHMA: P-value=2.38x10-9; OR (95% CI)=1.09 (1.06, 1.13); the 285 
number of IVs=14]. Finally, obesity was also linked to the renal BAG [E4_OBESITY: P-286 
value=2.74x10-8; OR (95% CI)=1.11 (1.07, 1.15); the number of IVs=19] (Fig. 4). 287 

 

al 
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Supplementary eFolder 2 presents the quality check results of the significant signals. 288 
Supplementary eFile 7 presents the full set of results for the 521 FinnGen DEs and 4 PGC DEs. 289 

 290 

 291 
Figure 4: Causal relationship from the 525 DEs to the 2024 MAEs 292 
The causal relationship from the 525 MAEs to the 2024 DEs revealed 47 significant DE-MAE 293 
pairs, involving 214 DEs as effective exposure variables (>8 instrumental variables before 294 
harmonization) and 787 DEs as effective outcomes after quality checks. Bonferroni correction 295 
was applied to identify potential significant causal signals based on i) the 787 MAEs (P-296 
value<0.05/787) and ii) the 787 MAEs and 214 DEs (P-value<0.05/787/214, denoted by the 23 297 
red rectangles). Furthermore, we verified that the statistical significance attained for the IVW 298 
estimator was consistent and persisted across at least one of the other four Mendelian 299 
randomization estimators (Egger, weighted median, simple mode, and weighted mode 300 
estimators). For visualization purposes, the odds ratios for non-significant results were set to 1 301 
and were left blank. For the MAEs, readers can explore the BRIDGEPORT portal for a visual 302 
representation of the 2003 brain PSCs (e.g., C128_13: https://labs-303 
laboratory.com/bridgeport/MuSIC/C128_13) and the other BAGs at the MEDICINE portal: 304 
https://labs-laboratory.com/medicine. 305 
 306 
The polygenic risk scores of the 2024 MAEs  307 
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Using the PRS-CS45 method, we derived the PRS of the 2024 MAEs. We found that the 1799 308 
MAEs could significantly (P-value<0.05/2024) predict the phenotypic BAGs in the test/target 309 
data (split2 GWAS; detailed in Method 3d). Among these, 1791 brain MAEs resulted in 310 
significant incremental R2 ranging from 0.11% to 10.70% to predict the phenotype of interest. 311 
For example, the PSC (C1024_593 for part of the cerebellum: https://labs-312 
laboratory.com/bridgeport/MuSIC/C1024_593) showed an incremental of R2 10.70%. The renal 313 
BAG showed an incremental R2 of 5.92%, followed by the metabolic (R2 = 5.67%) and 314 
pulmonary BAG (R2 = 3.86%) (Fig. 5a and (Supplementary eFile 8).  315 
 We then applied the model to the entire UKBB population and performed a PRS-wide 316 
association study (PWAS), where the 2024 PRS-MAEs were linked to the 59 phenotypes that 317 
were not initially used to compute the respective PRS, to avoid the circular bias46 318 
(Supplementary eTable 5). Refer to Method 3d for details. We found 388 significant 319 
associations (P-value<0.05/2024/59) between 7 PRS-MAEs and 41 phenotypes. Among these, 320 
PSC C32_1 showed the most associations (94%); the lifestyle factor for only fish intake (Field 321 
ID: 16) was highly linked to multiple PRS-MAEs (16%). These results were expected because 322 
the 59 phenotypes (e.g., cognitive and mental traits) are primarily linked to the brain, and 323 
lifestyle factors were largely linked to multiple organ systems (Fig. 5b and Supplementary 324 
eFile 9). All derived PRS will be returned to UKBB and made available to the community. 325 
 326 
  327 
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 328 
Figure 5: The polygenic risk score of the 2024 MAEs and PWAS  329 
(a) The incremental R2 of the PRS derived by PRC-CS to predict the 2024 MAEs in the 330 
target/test data (i.e., the split2 GWAS). The y-axis indicates the proportions of phenotypic 331 
variation that the PRS can significantly and additionally explain (i.e., incremental R2). The x-axis 332 
lists the 8 organ systems. For the brain, we showed the PRS distribution of the significant results 333 
from the 1791 brain PRS-MAEs; the other organ systems only have one PRS-MAE. (b) The 334 
PWAS links the PRS-MAEs to the 59 additional phenotypes not used to compute the PRS-MAE 335 
in the entire UKBB sample (P-value<0.05/2024/59).  336 
  337 

is 
ts 
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Discussion 338 

This study expands previously established genetic atlases47,32 by integrating AI-derived 339 
endophenotypes via the 2024 MAEs within the multi-organ framework solely through GWAS 340 
summary statistics. We demonstrate a promising avenue for advancing imaging genetic research 341 
in two key aspects: i) integrating AI in imaging genetics and ii) exploring human aging and 342 
disease through a multi-organ perspective. 343 
 By comprehensively depicting the genetic architecture of the 2024 MAEs, we showcased 344 
that AI endophenotypes supported the endophenotype hypothesis14,15, in which they showed 345 
lower polygenicity and weaker negative selection effects than the disease diagnosis. First, it may 346 
suggest that these intermediate phenotypes exist along the causal pathway, bridging the gap 347 
between underlying genetics and "exo-phenotypes" like cognitive decline or disease diagnoses in 348 
case/control studies, thus positioned closer to the core etiology and pathology. Secondly, many 349 
of these 2024 MAEs originated from in vivo imaging methodologies like magnetic resonance 350 
imaging (MRI). Consequently, they tend to exhibit reduced noise levels (i.e., a higher SNR) in 351 
capturing disease-related effects and are less susceptible to biases, such as misclassification48, 352 
case/control-covariate sample bias (e.g., studies matching comorbidities and other factors), and 353 
imbalanced case/control ratios, as evidenced in many GWASs in FinnGen. Especially for the 354 
former, binary traits have a threshold for disease classification, leading to the dichotomization of 355 
individuals into affected and unaffected categories. Thirdly, the 525 DEs often represent 356 
complex diseases highly influenced by multiple genetic and environmental factors. Their 357 
multifaceted nature, involving numerous genes with modest effects and environmental 358 
interactions49, can lead to a higher vulnerability to disease onset and clinical symptoms. 359 
Consistent with this observation, we previously also found that one AI- and imaging-derived 360 
subtype of Alzheimer’s disease50 (AD1), but not the binary disease diagnosis, was genetically 361 
correlated with brain age (GM- and WM-BAG)6. 362 

We observed that brain MAEs were overall more polygenic than MAEs from other organ 363 
systems. Brain disorders are highly polygenic51. First, the brain is a highly complex organ with 364 
intricate functions, and disorders affecting it are likely influenced by a larger number of genetic 365 
variants12,52. Second, many brain disorders are multifaceted, involving various aspects of brain 366 
structure, function, and connectivity, which can be influenced by various genetic factors19. 367 
Additionally, the brain regulates many physiological processes throughout the body, so 368 
disruptions in its function can have widespread effects, potentially involving interactions with 369 
multiple organ systems4. In addition, we found that most of the brain MAEs showed negative 370 
selection signatures, including the 9 disease subtype DNEs and 4 brain BAGs; some of the brain 371 
PSCs showed a positive S estimate (e.g., for the occipital lobe and subcortical structure, 372 
S=0.31±0.09: https://labs-laboratory.com/bridgeport/MuSIC/C32_18). The anticipated negative 373 
selection signatures of biological age across multiple organs and disease subtypes are expected to 374 
align with our prior findings, which revealed pervasive signatures of natural selection across a 375 
range of complex human traits and functional genomic categories. This negative selection 376 
signature prevents mutations with large deleterious effects from becoming frequent in the 377 
population53. The positive selection signatures identified in certain brain PSCs may suggest that 378 
positive selection may also play a role in shaping the genetic architecture of brain structural 379 
networks.  380 
 The MUTATE atlas uncovered both established and previously undiscovered interactions 381 
concerning human systemic diseases within individual organs and across diverse organ systems. 382 
For example, within the cardiovascular system, the AI-derived MAE, cardiovascular BAG 383 
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showed both substantial genetic correlation (Fig. 2) and bi-directional causality (Fig. 3 and 4) 384 
with multiple heart diseases, such as ischaemic heart disease54, heart failure55, and atrial 385 
fibrillation56. Similarly, pulmonary BAG was also causally linked to multiple diseases related to 386 
the lung and respiratory system, including COPD57 and various forms of asthma58. Another 387 
organ-specific connection was observed in neurologic diseases, encompassing conditions such as 388 
AD59 and various mental disorders60 linked to several MAEs associated with the brain, notably 389 
several PSCs and WM-BAG. Cross-organ interplay was evidenced for several novel 390 
connections. For instance, the brain PSCs exhibited causal connections to conditions extending 391 
beyond the brain, such as ventral hernia and vein diseases, as well as systemic conditions, like 392 
various forms of diabetes affecting the entire body. In contrast, AD appears to causally impact 393 
multiple BAGs across various human organ systems, including the renal, immune, and metabolic 394 
systems. It's widely recognized that AD, being a complex condition, triggers detrimental effects 395 
that influence several human organ systems59,61. Our previous study used imaging genetics to 396 
investigate this multi-organ involvement along the disease continuum62. These results highlight 397 
the clinical relevance and interpretation of these AI endophenotypes to quantify individual-level 398 
organ health.  399 
 Emphasizing preventative strategies for specific chronic diseases is crucial to enhancing 400 
overall multi-organ health. Our MAEs present opportunities as novel instruments for selecting 401 
populations in clinical trials and facilitating therapeutic development. AD and various forms of 402 
diabetes exemplify disease endpoints significantly impacting multiple human organ systems. AD 403 
stands as the leading cause of dementia in older adults, presenting a persistent challenge in 404 
medicine despite numerous pharmacotherapeutic clinical trials. These trials have included 405 
interventions, such as anti-amyloid drugs63,64 and anti-tau drugs.65. The complexity and 406 
multifaceted nature of the underlying neuropathological processes may account for the lack of 407 
effective treatments. We call on the scientific community to embrace various mechanistic 408 
hypotheses to elucidate AD pathogenesis beyond amyloid and tau66,67. Likewise, the complexity 409 
of diabetes, with its various contributing factors, renders prevention challenging68. Moreover, 410 
diabetes often coexists with other chronic conditions affecting multiple organ systems, such as 411 
cardiovascular diseases, hypertension, and dyslipidemia69. Successful prevention strategies 412 
require a holistic approach, encompassing lifestyle adjustments, education, healthcare access, 413 
and societal considerations.  414 
 415 
Limitation 416 

This study presents several limitations. Primarily, our analyses were centered solely on GWAS 417 
summary statistics derived from individuals of European ancestries. Future investigations should 418 
extend these findings to diverse ethnic groups, particularly those that are underrepresented, to 419 
ascertain broader applicability. This necessitates the research community's commitment to 420 
embracing open science in AI and genetics. Secondly, the computational genomics statistical 421 
methods utilized in this research rely on several underlying statistical assumptions, which could 422 
potentially be violated and introduce bias. We mitigated bias by employing multiple 423 
methodologies to compute heritability, genetic correlation, and causality to address this concern. 424 
Additionally, we conducted thorough sensitivity checks, and the detailed results are provided 425 
accordingly. Finally, these MAEs originated from a singular biomedical data modality, such as 426 
MRI. Future investigations should explore utilizing AI across multi-omics data, such as 427 
integrating imaging and genetics70, to capture underlying disease effects more comprehensively. 428 
 429 
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Outlook 430 

In summary, we introduced the MUTATE genetic atlas to comprehensively comprehend the 431 
genetic architecture of AI endophenotypes and chronic diseases in multi-organ science. This 432 
investigation underscores the potential of integrating AI into genetic research and supports a 433 
comprehensive approach to investigating human diseases within a multi-organ paradigm. 434 
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STAR * Methods 435 

Method 1: GWAS summary statistics  436 

The present study solely utilized GWAS summary statistics; no individual-level data were used. 437 
We downloaded the GWAS summary statistics from three web portals for the 2024 MAEs, 521 438 
DEs from FinnGen, and 4 DEs from PGC, respectively.  439 
 440 
UKBB 441 
UKBB is a population-based study of approximately 500,000 people recruited from the United 442 
Kingdom between 2006 and 2010. The UKBB study has ethical approval, and the ethics 443 
committee is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-444 
biobank/governance/ethics-advisory-committee. 445 

The GWAS summary statistics for all the 2024 MAEs are publicly available at the 446 
MEDICINE knowledge portal: https://labs-laboratory.com/medicine, which focuses on 447 
disseminating scientific findings on imaging genetics and AI methods in multi-organ science. 448 
Specifically, among the 2024 MAEs, 2003 PSCs – at varying scales from C32 to C1024 – were 449 
structural covariance networks derived via the sopNMF method12. 9 DNEs1 captured the 450 
neuroanatomical heterogeneity of four brain diseases (AD1-2, ASD1-3, LLD1-2, and SCZ1-2) 451 
using semi-supervised clustering or representation learning methods42,62,71,72. 12 multi-organ 452 
BAGs (GM, WM, FC6, multimodal brain BAGs, cardiovascular BAG, eye BAG, hepatic BAG, 453 
immune BAG, musculoskeletal BAG, metabolic BAG, pulmonary BAG, and renal BAG73) were 454 
derived from various machine learning models to quantify the individual-level deviation from 455 
typical brain aging due to various pathological effects. Detailed AI methodologies are presented 456 
in Method 2 for the MAEs, DNEs, and BAGs. All GWASs were performed within European 457 
ancestries and using the GRCh37 human genome assembly; the GWAS model (PLINK74 for 458 
linear model and fastGWA75 for linear mixed-effect model), sample sizes, and covariates 459 
included are detailed in the original papers and also in Supplementary eTable 1a.  460 

Harmonization of GWAS summary statistics across different models and consortia for 461 
various software is crucial, such as aligning the effect allele and the direction of the effect size. 462 
There's currently no established standard in the field for this process, although some advice has 463 
been proposed76. Certain software harmonizes data based on the allele frequency of the effect 464 
allele, such as the TwoSampleMR package77 for Mendelian randomization. In our UKBB MAE 465 
GWAS summary data, we harmonized the effect allele as the alternative allele from PLINK and 466 
A1 from fastGWA and provided its corresponding allele frequency. P-value, effect sizes (e.g., 467 
BETA value and SE), and sample sizes are indicated too. The variant identifier is based on the rs 468 
ID number, not the chromosome number and position number combination.  469 

 470 
FinnGen 471 
The FinnGen22 study is a research project based in Finland that explores combined genetics and 472 
health registry data to understand the underlying causes and mechanisms behind various disease 473 
endpoints. It particularly emphasizes the genetic basis of diseases in the Finnish population 474 
(>500,000) by conducting extensive GWAS and analyzing large-scale genomic data in 475 
collaboration with multiple research institutions and organizations. FinnGen has generously 476 
made their GWAS results publicly available to the community for research purposes 477 
(https://www.finngen.fi/en/access_results).  478 
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The present study used the GWAS summary statistics version R9 released to the public 479 
on May 11, 2022, after harmonization by the consortium. In the R9 release, FinnGen analyzed 480 
2269 binary and 3 quantitative endpoints from 377,277 individuals and 20,175,454 variants. 481 
Regenie78 was used to run the GWAS models, including sex, age, 10 PCs, and genotyping batch 482 
as covariates. Genotype imputation was done with the population-specific SISu v4.0 reference 483 
panel. In our analysis, we concentrated solely on binary DEs with case numbers exceeding 5000 484 
to ensure adequate statistical power, given the highly imbalanced case/control ratios. As the 485 
released data were based on the GRCh38 human genome assembly, we lifted the GWAS 486 
summary statistics to the GRCh37 version for all genetic analyses. Supplementary eTable 1b 487 
details the included 521 DEs. More details can be found at the FinnGen website: 488 
https://finngen.gitbook.io/documentation/v/r9/. 489 

The FinnGen team has systematically harmonized the GWAS summary data for the 521 490 
DEs involved. The alternative allele serves as the effect allele. The rsID number represents the 491 
SNP; the chromosome number and position are also shared. The data includes P-values, effect 492 
sizes, and allele frequencies for both the alternative and reference alleles. 493 
 494 
Psychiatric Genomics Consortium 495 
PGC23 is an international coalition of researchers exploring the genetic underpinnings of 496 
psychiatric disorders and beyond. This collaborative effort unites scientists globally to examine 497 
and decipher extensive genomic datasets concerning various brain diseases. The primary goal of 498 
PGC involves uncovering and comprehending the genetic elements that contribute to various 499 
psychiatric disorders, such as schizophrenia, bipolar disorder, and major depressive disorder. We 500 
downloaded GWAS summary statistics from the PGC website (https://pgc.unc.edu/for-501 
researchers/download-results/) and manually harmonized the data to our Mendelian 502 
randomization analyses to replicate the FinnGen findings.  503 
 PGC did not harmonize the GWAS summary statistics; the available data information 504 
depends on each study. Supplementary eTable 1c details the 4 DEs (AD, ADHD, bipolar 505 
disorder, and schizophrenia) included after the data filtering procedure. First, we ensured that the 506 
study population comprised individuals of European ancestry and, if necessary, lifted the data to 507 
the human genome build assembly GRCh37. Secondly, we excluded two studies where the allele 508 
frequency is unavailable because the TwoSampleMR package77 requires this information to 509 
harmonize the exposure and outcome data (e.g., flip the effect allele and effect size). Thirdly, we 510 
confirmed that the GWAS summary statistics didn't overlap with UKBB data. Specifically, the 511 
AD GWAS summary data79 explicitly offered a version that excluded participants from UKBB. 512 
In addition, the original dataset lacked a column for the rsID number. To deal with this, we 513 
employed a mapping approach using the chromosome number and position to the dpSNP 514 
database (version 150), which allowed us to obtain the corresponding rsID numbers. All 4 DE 515 
GWAS summary data went through the same harmonization procedure as FinnGen (Method 3c) 516 
 517 

 518 
Method 2: 2024 multi-organ AI endophenotypes  519 

(a): The 2003 patterns of structural covariance of the brain 520 
In our earlier study12, we utilized the sopNMF method on an extensive and varied brain imaging 521 
MRI dataset (N=50,699, including data from UKBB) to generate the multi-scale brain PSCs. The 522 
scale C ranges from 32 to 1024, progressively increasing by a factor of 2; 11 PSCs vanished 523 
during models.  524 
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Biologically, the 2003 PSCs represent data-driven structural networks that co-vary across 525 
brain regions and individuals in a coordinated fashion. Mathematically, the sopNMF method is a 526 
stochastic approximation ("deep learning-analogy") constructed and extended based on 527 
opNMF80,81. Consider an imaging dataset comprising � images, each containing d voxels. We 528 
represent the data as a matrix X, where each column corresponds to a flattened image: � �529 
 
��, ��, … , ���, � �  ��	


��. The method factorizes X into two low-rank matrices � �  ��	

�� and 530 

� �  ��	
���, subject to two important constraints: i) non-negativity and ii) column-wise 531 

orthonormality. More mathematical details can be referred to the original references12,80,81 and 532 
Supplementary eMethod 2a. 533 
 534 
(b): The 9 dimensional neuroimaging endophenotypes of the brain 535 
The nine DNEs captured the neuroanatomical heterogeneity of four brain diseases, including 536 
AD1-2 for AD62, ASD1-3 for autism spectrum disorder42, LLD1-2 for late-life depression71, and 537 
SCZ1-2 for schizophrenia72. The underlying AI methodologies involved two different semi-538 
supervised clustering or representation learning algorithms: Surreal-GAN82 and HYDRA83. Refer 539 
to a review for details of the semi-supervised learning84, which primarily seeks the so-called "1-540 
to-k" mapping patterns or transformations from reference domains (like healthy controls) to 541 
target domains (such as patients). 542 
 Surreal-GAN82 was used to derive AD1-262. It unravels the intrinsic heterogeneity 543 
associated with diseases through a deep representation learning approach. The methodological 544 
innovation, compared to its precentor Smile-GAN85, lies in how Surreal-GAN models disease 545 
heterogeneity: it interprets it as a continuous dimensional representation, ensures a consistent 546 
increase in disease severity within each dimension, and permits the simultaneous presence of 547 
multiple dimensions within the same participant without exclusivity. More mathematical details 548 
are presented in Supplementary eMethod 2b.  549 

HYDRA83 was employed to derive the other 7 DNEs. It utilizes a widely adopted 550 
discriminative technique, namely support vector machines (SVM), to establish the "1-to-k" 551 
mapping. The model extends multiple linear SVMs to the nonlinear domain by piecing them 552 
together. This approach serves the dual purpose of classification and clustering simultaneously. 553 
Specifically, it creates a convex polytope by amalgamating hyperplanes derived from k linear 554 
SVMs. This polytope separates the healthy control group from the k subpopulations within the 555 
patient group. Conceptually, each face of this convex polytope can be likened to encoding each 556 
subtype (categorical trait) or dimension (continuous trait), capturing distinctive disease effects 557 
(Refer to Supplementary eMethod 2c). 558 
 559 
(c): The 12 biological age gaps of nine human organ systems 560 
The nine multi-organ BAGs (brain, cardiovascular, eye, hepatic, immune, musculoskeletal, 561 
metabolic, pulmonary, and renal) were derived from a previous study5 that used AI to predict the 562 
chronological age of healthy individuals without chronic medical conditions: AI-predicted age – 563 
chronological age. Using a 20-fold cross-validation procedure, we applied the model for each 564 
organ system, employing a linear support vector machine. Before training each model iteration, 565 
standardization was applied to measures (excluding categorical variables) within the training set. 566 
The model was solved using sequential minimal optimization with a gap tolerance of 0.001. The 567 
support vector regression settings were adjusted for optimization, adhering to established 568 
principles in the field86. 569 
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Alongside the nine organ BAGs, we previously derived three multimodal brain BAGs 570 
(GM, WM, and FC-IDP) using features from gray matter (GM), white matter (WM), and 571 
functional connectivity (FC) in MRI scans6. We systematically compared four machine learning 572 
models: SVR, LASSO regression, multilayer perceptron, and a five-layer neural network. We 573 
employed nested cross-validation (CV) and included an independent test dataset87 for a fair 574 
comparison across different models and MRI modalities. This process involved an outer loop CV 575 
with 100 repeated random splits: 80% for training and validation and 20% for testing. Within the 576 
inner loop, a 10-fold CV was utilized for hyperparameter tuning. Furthermore, we reserved an 577 
independent test dataset, which was kept unseen until the fine-tuning of the machine learning 578 
models88 (e.g., hyperparameters for SVR) was completed.  579 
 580 

Method 3: Genetic analyses based on GWAS summary statistics  581 

(a): The genetic architecture of the 2024 MAEs and 525 DEs  582 
Primarily, we used SBayesS39 to estimate three sets of parameters that fully unveil the genetic 583 
architecture of the 2024 MAEs and 525 DEs. SBayesS is an expanded approach capable of 584 
estimating three essential parameters characterizing the genetic architecture of complex traits 585 
through a Bayesian mixed linear model89. This method only requires GWAS summary statistics 586 
of the SNPs and LD information from a reference sample. These parameters include SNP-based 587 
heritability (����

� ), polygenicity (π), and the relationship between minor allele frequency (MAF) 588 
and effect size (S). We used the software pre-computed sparse LD correlation matrix derived 589 
from the European ancestry by Zeng et al.39. More mathematical details can be found in the 590 
original paper from Zeng et al.39. We ran the gctb command89 using the argument --sbayes S, and 591 
left all other arguments by default. When applying SBayesS to the 2025 MAEs and 525 DEs 592 
summary data, we found that 18 DEs failed to converge in the MCMC sampling, which may be 593 
due to LD differences between FinnGen and UKBB samples (the latter was used as the LD 594 
reference in SBayesS). 595 

To benchmark different methods used in the field for SNP-based heritability estimates, 596 
we also employed two other methods based on GWAS summary data: i) LDSC28 and ii) 597 
SumHer33. LDSC relies on the principle that the correlation between SNP effect sizes and 598 
linkage disequilibrium with neighboring SNPs can be used to estimate the proportion of 599 
heritability explained by all SNPs using GWAS summary data. For LDSC, we used the 600 
precomputed LD scores from the 1000 Genomes of European ancestry. All other parameters 601 
were set to default in the software. After merging the GWAS summary statistics, we chose the 602 
1000 Genomes reference panel for fair comparisons between the two studies and ensured that 603 
most SNPs were included in the analyses. For example, for the DE 604 
(RX_PARACETAMOL_NSAID), after merging with the reference panel LD, 1,171,361 605 
remained. For the first MAE (C32_1), 1,092,510 SNPs remained after the same merging 606 
procedure. Furthermore, FinnGen didn't provide the original genotype data; they only shared the 607 
LD information via the LDstore software but did not provide the allele information. 608 
Consequently, we cannot generate in-sample LD scores using the LDSC software. Finally, a 609 
prior investigation90 showcased the robustness of LDSC concerning the selection of LD 610 
reference panels – multi-ethnic European, Finnish-only, non-Finnish European from 1000 611 
Genomes Phase 3 data, and FINRISK Finnish reference panel – regarding heritability estimates 612 
in four lipid traits within a Finnish population. 613 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2024. ; https://doi.org/10.1101/2024.06.15.24308980doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.15.24308980
http://creativecommons.org/licenses/by-nd/4.0/


 

24 
 

For SumHer, we used the BLD-LDAK model , as the software suggested. BLD-LDAK 614 
stands for "Bayesian LD-adjusted Kinship," where LD-adjusted kinship refers to the calculation 615 
of genetic relatedness between individuals using information about the correlation of alleles 616 
between nearby SNPs (linkage disequilibrium). We used the software-provided tagging file, 617 
generated from 2000 white British individuals, as a reference penal suggested by the software for 618 
European ancestry groups. The HapMap3 data (https://www.broadinstitute.org/medical-and-619 
population-genetics/hapmap-3) merged with the tested GWAS summary SNPs. Similarly, we 620 
ensured sufficient SNPs remained after merging with the reference panel. All other parameters 621 
were set to default. SumHer differs from LDSC in several ways: i) it models inflation 622 
multiplicatively, whereas LDSC uses an additive approach; ii) it accounts for uneven LD patterns 623 
and incorporates MAF on SNP effect; and iii) it utilizes a restricted maximum likelihood 624 
solver rather than regression to estimate the ����

� . 625 
 626 
(b): Genetic correlation: We used three different methods to compute the MAE-DE pairwise 627 
(N=2024x525=1,062,600) genetic correlations (��): i) LDSC28, ii) GNOVA34, and iii) HDL38.  628 

An earlier study92 highlighted the significance of selecting an appropriate LD score 629 
reference panel for genetic correlation estimates based on summary statistics. We generated the 630 
same reference panel for LD scores across the three software for a fair comparison. For LDSC, 631 
we used the precomputed LD scores from the 1000 Genomes of European ancestry provided by 632 
the software. All other parameters were set by default. To employ GNOVA, we created the LD 633 
scores utilizing the 1000 Genomes of European ancestry using the --save-ld argument within the 634 
gnova.py script. For HDL, we used the provided scripts from HDL to generate the LD scores 635 
using the same 1000 Genomes of European ancestry 636 
(https://github.com/zhenin/HDL/wiki/Build-a-reference-panel). 637 

Through our analysis, we found that the three packages have different levels of model 638 
convergence rates, which is critical for future applications as these open-source packages claim 639 
to advance genetic research. In particular, we found that LDSC (1,062,577/1,062,600) and 640 
GNOVA (1,062,600/1,062,600) converged for most of the tested MAE-DE pairs, whereas HDL 641 
failed a substantial proportion of the analyses, leading to only 59,291 out of the 1,062,600 MAE-642 
DE pairs (refer to the raised issue: https://github.com/zhenin/HDL/issues/30). Therefore, in Fig. 643 
2, we presented common significant results after Bonferroni corrections from the LDSC and 644 
GNOVA, resulting in 133 and 45 significant signals corrected on i) the number of MAEs and ii) 645 
the number of MAEs and DEs.  646 

 647 
(c): Two-sample bidirectional Mendelian randomization: We employed a bidirectional, two-648 
sample Mendelian randomization using the TwoSampleMR package77 to infer the causal 649 
relationships between the 2024 MAEs, 521 DEs from FinnGen, and 4 brain DEs from PGC.  650 

The forward Mendelian randomization examined causality from the 2024 MAEs to the 651 
525 DEs, while the inverse analysis investigated causality from the 525 DEs to the 2024 MAEs. 652 
The TwoSampleMR package77 applied five different Mendelian randomization methods. We 653 
presented the significant findings after the Bonferroni correction using the inverse variance 654 
weighted (IVW) estimator, verifying that the correction remained significant in at least one of 655 
the other four estimators (Egger, weighted median, simple mode, and weighted mode 656 
estimators). For the significant signals, we performed several sensitivity analyses. First, a 657 
heterogeneity test was performed to check for violating the IV assumptions. Horizontal 658 
pleiotropy was estimated to navigate the violation of the IV's exclusivity assumption93 using a 659 
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funnel plot, single-SNP Mendelian randomization approaches, and Mendelian randomization 660 
Egger estimator . Moreover, the leave-one-out analysis excluded one instrument (SNP) at a time 661 
and assessed the sensitivity of the results to individual SNP.  662 

Critically, to enhance transparency and reproducibility, we followed a systematic 663 
procedure guided by the STROBE-MR Statement94 in conducting all causality analyses. This 664 
comprehensive approach encompassed the selection of exposure and outcome variables, 665 
reporting full sets of statistics, and implementing sensitivity checks to identify potential 666 
violations of underlying assumptions. First, we performed an unbiased quality check on the 667 
GWAS summary statistics. Notably, the absence of population overlapping bias29 was 668 
confirmed, given that FinnGen and UKBB participants largely represent European ancestry 669 
populations without explicit overlap. For the four PGC DEs, we ensured that no UKBB 670 
participants were included in the GWAS summary data. Furthermore, all GWAS summary 671 
statistics were based on or lifted to GRCh37. Subsequently, we selected the effective exposure 672 
variables by assessing the statistical power of the exposure GWAS summary statistics in terms of 673 
instrumental variables (IVs), ensuring that the number of IVs exceeded 8 before harmonizing the 674 
data. Crucially, the function "clump_data" was applied to the exposure GWAS data, considering 675 
LD. The function "harmonise_data" was then used to harmonize the GWAS summary statistics 676 
of the exposure and outcome variables. This overall resulted in a smaller number (< 525 DEs or 677 
2024 MAEs) of effective exposure/outcome variables in both forward and inverse Mendelian 678 
randomization analyses, as certain GWAS summary data did not have enough IVs. 679 
 680 
(d): PRS calculation: PRS calculation used the GWAS summary statistics from the split-sample 681 
sensitivity analysis from our previous studies12,6,4,1. We established PRS weights using split1 682 
GWAS data as the base/training set, while the split2 GWAS summary statistics were used as the 683 
target/testing data. Details of the quality control (QC) procedures are shown in our previous 684 
studies12,6,4,1. Following the QC procedures, PRS for the split2 group was computed using PRS-685 
CS45. PRS-CS infers posterior SNP effect sizes under continuous shrinkage priors using GWAS 686 
summary statistics and an LD reference panel (i.e., UKBB reference). To ascertain the most 687 
suitable PRS, we conducted a linear regression encompassing different P-value thresholds 688 
(0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), while controlling for age, sex, intracranial volume (if 689 
applicable), and the forty genetic principal components. The optimal P-value threshold for PRS-690 
MAE was determined based on the highest incremental R2. 691 

After determining the optimal model, we applied the model to the entire UKBB sample 692 
(~500k individuals). We then performed a PWAS to link the 2024 PRS-MAEs and 59 additional 693 
phenotypes (Supplementary eTable 5) not used to compute the PRS-MAE to avoid the circular 694 
bias46. The 59 phenotypes include cognitive scores (e.g., fluid intelligence score; Field ID: 695 
20016, mental traits (e.g., fed-up feelings; Filed ID: 1960), and lifestyle factors (e.g., tea intake; 696 
Filed ID: 1488). A linear regression was built considering the following covariates: sex (Field 697 
ID: 31), smoking status (Field ID: 20116), weight (Field ID: 21002), standing height (Field ID: 698 
50), waist circumstance (Field ID: 48), age at recruitment (Field ID: 21022), and first 40 genetic 699 
principal components (Field ID: 22009).   700 
 701 
  702 
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Data Availability 703 

The results of the MUTATE atlas are disseminated at the MUTATE knowledge portal: 704 
https://labs-laboratory.com/mutate. The GWAS summary statistics for the 2024 MAEs can be 705 
accessed publicly through the MEDICINE knowledge portal: https://labs-706 
laboratory.com/medicine and the BRIDGEPORT knowledge portal: https://labs-707 
laboratory.com/bridgeport. The GWAS summary statistics for the 521 DEs from FinnGen are 708 
publicly available at: https://finngen.gitbook.io/documentation/v/r9/. The GWAS summary 709 
statistics for the 4 DEs from PGC are publicly available at: https://pgc.unc.edu/for-710 
researchers/download-results/. The study used only GWAS summary statistics rather than 711 
individual-level data from the UK Biobank. However, the 2024 MAE GWAS data was initially 712 
derived from previous studies conducted under Application Numbers 35148 and 60698 from the 713 
UK Biobank.   714 
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Code Availability 715 

The software and resources used in this study are all publicly available:  716 
• GCTB: https://cnsgenomics.com/software/gctb/#Overview, SNP-based heritability, 717 

polygenicity, and MAF/effect size ratio 718 
• LDSC: https://github.com/bulik/ldsc, SNP-based heritability and genetic correlation 719 
• SumHer: https://dougspeed.com/sumher/, SNP-based heritability 720 
• GNOVA: https://github.com/xtonyjiang/GNOVA, genetic correlation 721 
• HDL: https://github.com/zhenin/HDL, genetic correlation 722 
• TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 723 

randomization 724 
• PRS-CS: https://github.com/getian107/PRScs, PRS 725 

  726 
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