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ABSTRACT  1 

Background: Mass vaccination is a cornerstone of public health emergency 2 

preparedness and response. However, injudicious placement of vaccination sites can 3 

lead to the formation of long waiting lines or queues, which discourages individuals from 4 

waiting to be vaccinated and may thus jeopardize the achievement of public health 5 

targets. Queueing theory offers a framework for modeling queue formation at 6 

vaccination sites and its effect on vaccine uptake.  7 

 8 

Methods: We developed an algorithm that integrates queueing theory within a spatial 9 

optimization framework to optimize the placement of mass vaccination sites. The 10 

algorithm was built and tested using data from a mass canine rabies vaccination 11 

campaign in Arequipa, Peru. We compared expected vaccination coverage and losses 12 

from queueing (i.e., attrition) for sites optimized with our queue-conscious algorithm to 13 

those obtained from a queue-naive version of the same algorithm.  14 

 15 

Results: Sites placed by the queue-conscious algorithm resulted in 9-19% less attrition 16 

and 1-2% higher vaccination coverage compared to sites placed by the queue-naïve 17 

algorithm. Compared to the queue-naïve algorithm, the queue-conscious algorithm 18 

favored placing more sites in densely populated areas to offset high arrival volumes, 19 

thereby reducing losses due to excessive queueing. These results were not sensitive to 20 

misspecification of queueing parameters or relaxation of the constant arrival rate 21 

assumption. 22 

 23 
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Conclusion: One should consider losses from queueing to optimally place mass 24 

vaccination sites, even when empirically derived queueing parameters are not available. 25 

Due to the negative impacts of excessive wait times on participant satisfaction, reducing 26 

queueing attrition is also expected to yield downstream benefits and improve 27 

vaccination coverage in subsequent mass vaccination campaigns.   28 
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INTRODUCTION 29 

The expeditious and equitable distribution of vaccinations and other health services is a 30 

cornerstone of public health emergency preparedness. Queues, or waiting lines, result 31 

from scarce or misallocated resources and volatility in traffic and service patterns; they 32 

can hinder the delivery of critical services and thereby jeopardize the achievement of 33 

public health targets. Not only can long queues deter people from waiting to receive 34 

essential health services, they can erode individuals’ trust in health systems in certain 35 

contexts1,2 and can thus discourage participation in future programs. Long wait times 36 

was a major structural barrier to testing for COVID-19 during the early phase of the 37 

pandemic,3 and poor planning in some jurisdictions resulted in people waiting hours at 38 

some mass COVID-19 vaccination sites.4–6 Moreover, excessive queueing during 39 

pandemic emergencies also pose health risks, as long wait times may increase 40 

exposure to infectious pathogens.7 41 

 42 

Queueing theory is a branch of applied mathematics that offers a valuable framework 43 

for studying the behaviors and effects of waiting lines or queues.8 In brief, queueing 44 

models aim to capture how a customer population moves through a queueing system 45 

via a series of processes dictated by probabilistic rates: arriving at a service site, 46 

receiving service, waiting in a queue if the server is busy, or leaving the queue before 47 

service is rendered when waiting times exceed a customer’s willingness to wait. 48 

Queueing theory is foundational to operations research and has been applied to many 49 

facets of healthcare operations, including the triage process in emergency care 50 

departments,9 staffing needs in operating rooms,10 hospital bed management,11,12 and 51 
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outpatient scheduling.13 Additionally, it has been applied to COVID-19 vaccine 52 

distribution and capacity planning,7,14–18 as well as the containment of disease 53 

outbreaks, bioterrorist attacks, and other public health emergencies.19–22  54 

 55 

Mass dog vaccination campaigns (MDVCs) are held annually in Arequipa, Peru to 56 

address the re-emergence of canine rabies in the region;23 they have important parallels 57 

with early pandemic vaccination and testing programs in that success depends, in part, 58 

on strategically placing and optimally allocating resources across a discrete number of 59 

fixed-location facility sites.24 While the World Health Organization (WHO) and Pan 60 

American Health Organization (PAHO) recommends a minimum vaccination coverage 61 

of 70-80% sustained over multiple years to achieve control and eventual elimination of 62 

rabies, the MDVCs in Arequipa, which have relied on convenient or ad hoc placement of 63 

fixed-location vaccination sites, have continually fallen short of this goal.25,26  64 

 65 

We have previously developed a data-driven strategy to optimize the placement of 66 

fixed-location MDVC sites and found that spatially optimized vaccination sites improves 67 

both overall vaccination coverage and spatial evenness of coverage.26 However, 68 

optimization that addresses spatial accessibility without considering queueing is likely to 69 

result in an uneven volume of arrivals across facility sites, which may result in long 70 

waiting lines.26 Here, we incorporate queueing theory into our existing spatial 71 

optimization framework to improve canine rabies vaccine uptake by accounting for both 72 

the spatial accessibility of MDVC sites and losses resulting from dog owners who refuse 73 

to wait for service in the face of excessive queue lengths (i.e., queueing attrition). We 74 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.06.14.24308958doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308958
http://creativecommons.org/licenses/by-nc-nd/4.0/


compare the performance of our queue-conscious algorithm to the queue-naive 75 

algorithm in terms of expected vaccination coverage and queueing attrition and evaluate 76 

the sensitivity of our results to misspecification of queueing parameters and the 77 

assumption of a constant arrival rate within our queueing model. 78 

 79 

METHODS 80 

Estimating the relationship between MDVC participation probability and 81 

household distance to the nearest vaccination site  82 

Distance to the nearest vaccination site is an important predictor of a dog owner’s 83 

participation in an MDVC,23,24,26 and we quantified this relationship using previously 84 

described methods.26 Briefly, data on household participation in the most recent MDVC 85 

were obtained from post-MDVC surveys that were conducted annually in Arequipa, 86 

Peru from 2016-2019. Shortest walking distances between surveyed household 87 

residences and their nearest MDVC site were obtained using the Mapbox Directions 88 

API and Leaflet Routing Machine.26–28 We focused on walking distance instead of other 89 

distance metrics, because car-ownership rates are low, and transit options are limited in 90 

Arequipa. We fit a Poisson regression model that treated MDVC participation as the 91 

outcome variable and walking distance to the nearest MDVC site as the predictor 92 

variable; we fit the model by constructing 30-meter distance bins and predicting the 93 

number of participating households offset by the number of households per bin. We 94 

chose Poisson regression over other statistical models, as we have previously found 95 

that the Poisson model provided the best fit for these data.26 96 

 97 
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A queueing model for MDVCs 98 

We modeled queueing, vaccination, and attrition at each MDVC vaccination site 99 

according to an M/M/1 system with first-in-first-out (FIFO) service (figure 1). The M/M/1 100 

system is a widely used queueing model for single server systems and assumes that 101 

customer arrivals occur according to a Poisson process, and job service times are 102 

independent and identically distributed (iid) exponential random variables that are 103 

independent of the arrival process and queue length. Applied to MDVCs, the M/M/1 104 

queueing model assumes that dogs arrive with their owners to a vaccination site 105 

according to a Poisson process with arrival rate λ, meaning that the interarrival times 106 

are iid and follow an exponential distribution with parameter λ. The service times (i.e., 107 

the time it takes for a dog to get vaccinated) are iid exponential with parameter μ, such 108 

that the average service time is equal to 1/μ. The system is assumed to be FIFO, 109 

meaning that dogs are vaccinated in the order that their owners join the queue. Only 110 

one dog can get vaccinated at a time, as there is only one vaccinator per site, and dogs 111 

are assumed to leave the system as soon as they get vaccinated. 112 

 113 

The service rate μ was assumed to equal 30 hr-1 in accordance with the empirical 114 

observation that it takes two minutes on average to vaccinate a dog. The arrival rates 115 

were assumed to vary across MDVC sites and were determined as follows. First, the 116 

MDVC participation probability function described above was applied to all households 117 

falling within an MDVC site’s catchment (i.e., all houses closest to the given MDVC site 118 

in terms of travel distance) to determine the probability that each household would 119 

participate in the MDVC if the house were inhabited and owned dogs. These 120 
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probabilities were summed and then scaled by the habitability rate, household-dog-121 

ownership rate, and average number of dogs per dog-owning household that were 122 

estimated for the study area from post-MDVC surveys (57%, 40%, and 1.86, 123 

respectively) to obtain the total number of dogs arriving at MDVC site s. This number 124 

was then divided by the total operation time for the MDVC site to obtain λs, the arrival 125 

rate for site s. 126 

 127 

A dog enters the queueing system at site s after it arrives at the site and its owner elects 128 

to join the vaccination queue. However, some owners may decline to join the queue if 129 

they judge the queue to be too long. This first form of attrition is known as balking and 130 

was modeled by modifying the arrival rate λs so that it decreases by a discouragement 131 

factor e-αn/μ < 1.8 The modified arrival rate λs,n captures the rate that owners join the 132 

queue after accounting for those that balk and is given by: 133 

𝜆!,# = 𝑒$%#/' ⋅ 𝜆!										(1) 134 

where n is the number of dogs that are currently in the system (waiting in queue or 135 

being vaccinated), μ is equal to the service rate, and α is a parameter that scales with 136 

balking propensity.8  137 

 138 

The other form of attrition, known as reneging, occurs when an owner who has already 139 

joined the queue loses patience and exits the queue before their dogs are vaccinated. 140 

We modeled reneging by modifying the service rate μ to capture all those leaving the 141 

system - both those leaving after vaccination and those who renege. This exit rate μn is 142 

equal to: 143 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2024. ; https://doi.org/10.1101/2024.06.14.24308958doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308958
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝜇# = 𝜇 + (𝑛 − 1) ⋅ 𝛽										(2) 144 

where the second term captures the rate that each of the present n – 1 dogs in queue 145 

are reneging, and β scales with reneging propensity.8 Note that in the equations above, 146 

the rates of attrition (both balking and reneging) increases with the queue length n – 1, 147 

as expected. 148 

 149 

In order to calculate the expected number of dogs vaccinated during an MDVC, we 150 

need to find a closed-form expression for the vaccination rate at a given vaccination site 151 

that accounts for losses due to attrition. The derivation of these closed-form equations 152 

can be found in the electronic supplementary materials, text A, and are based on the 153 

stationary distribution of the queueing model, i.e., on 𝑝!,#, the probability of finding n 154 

dogs in the queueing system at MDVC site s with arrival rate λs: 155 

𝑝!,# =
(
!"#(#!%)

'( ))#*+
(
*,

-#*+#.(*,
𝑝!,/          (3) 156 

where 𝛤(𝑧) denotes the gamma function, i.e., 𝛤(𝑛) = (𝑛 − 1)! for any integer 𝑛 > 0 and 157 

𝛤(𝑧) = ∫ 𝑡0$1𝑒$2𝑑𝑡 interpolates the factorial function to non-integer values, and ps,0 is a 158 

normalizing constant given by: 159 

𝑝!,/ = 81 + ∑ ))#(
!"#(#!%)

'( +,(*-

-#*+#.(*,
3
#41 :

$1

          (4) 160 

 161 

The expected rate that dogs are vaccinated at site s is then equal to: 162 

𝑣! = ∑ 𝑝!,#𝜆!,#3
#4/ − ∑ 𝑝!,#(𝑛 − 1)𝛽3

#41           (5) 163 
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where the first term is equal to the rate that dog owners join the queue after accounting 164 

for balking, and the second term is equal to the rate that dog owners renege and thus 165 

leave the queue before their dogs are vaccinated. The expected number of dogs 166 

vaccinated during an MDVC is thus equal to: 167 

𝑉 = ∑ 𝑣!𝑡!56          (6) 168 

where S is the set of all selected vaccination sites and t is equal to the total operation 169 

time, which is assumed to be the same for all MDVC sites. 170 

 171 

In addition to the closed-form equations for the expected behavior of the MDVC 172 

queueing system, which were derived assuming the system had reached steady state, 173 

we also conducted stochastic simulations to study the behavior of the system in the 174 

absence of such assumptions. Simulations were conducted for low- and high-attrition 175 

parameter regimes (low: α = 0.01 and β = 0.02; high: α = 0.1 and β = 0.1) and for a 176 

range of arrival rates (0.5-37.5 dogs/hour in increments of 0.5 dogs/hour). An MDVC 177 

site operates for four weekend days (over two weekends) for about four hours per day (t 178 

= 16 total hours). To mimic these conditions, a single simulation consisted of four 179 

independent four-hour-long trials (days), each initialized with no dogs in the queue at 180 

time zero; the number of dogs vaccinated each day was summed across the four days 181 

to obtain the total dogs vaccinated at an MDVC site. The simulation was run for 1,000 182 

iterations per set of parameter values, and the simulation results were compared to the 183 

expected number of dogs vaccinated as determined via the closed-form equations to 184 

see how well the two approximated each other.  185 

 186 
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Optimizing the locations of vaccination sites 187 

We optimized the placement of MDVC sites for the Alto Selva Alegre district of 188 

Arequipa; no more than 20 sites can operate in this region during a campaign due to 189 

resource constraints, and 70 locations have been approved by the Ministry of Health for 190 

use as feasible MDVC sites (figure 2).26 We determined the optimal placement of k = 20 191 

sites among these 70 candidate sites by implementing a hybrid recursive interchange-192 

genetic algorithm (electronic supplementary materials, text B and figures S1-S2). The 193 

recursive interchange portion of our algorithm is similar to Teitz and Bart’s solution to 194 

the p-median problem that solves the facility location problem by minimizing the 195 

average distance traveled by all households to their nearest site,29 but instead of 196 

minimizing average walking distance, our algorithm aims to maximize total MDVC 197 

participation probability. Maximizing MDVC participation probability allows our algorithm 198 

to account for both distance between households and MDVC sites and queue-length-199 

dependent attrition rates.  200 

 201 

The general steps of the recursive interchange algorithm are as follows: 202 

1. Select a random subset of 20 vaccination sites and use the MDVC participation 203 

probability function to determine the expected arrival rate λ at each site. 204 

2. Calculate the expected number of dogs vaccinated at each site and sum across 205 

all sites to calculate the total number of dogs vaccinated. 206 

3. Exchange one selected site with all non-selected candidate locations and keep 207 

the one that maximizes the number of dogs vaccinated. 208 

4. Repeat step 3 with remaining sites to obtain a locally optimized set of sites. 209 
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5. Perform steps 1-4 over 1,000 iterations, initializing each iteration with a different 210 

random subset of sites.  211 

 212 

An animation showing a single iteration of the recursive interchange algorithm can be 213 

viewed as a video in the electronic supplementary materials. The recursive interchange 214 

algorithm was repeated over 1,000 iterations to increase performance, as the algorithm 215 

does not guarantee a globally optimal solution. Performance was further enhanced by 216 

combining the recursive interchange algorithm with a genetic algorithm that “mates” 217 

parental sets output by the recursive interchange algorithm, mimicking natural selection 218 

by introducing crossover and mutation and ultimately producing new starting sets on 219 

which to repeat the recursive interchange algorithm. The cycling between the recursive 220 

interchange and genetic algorithms were repeated until the expected number of dogs 221 

vaccinated did not increase over two subsequent rounds of optimization (stopping 222 

condition). A full description of the hybrid algorithm can be found in the electronic 223 

supplementary materials, text B. 224 

MDVC sites were optimized under three scenarios: no attrition (α = β = 0), low attrition 225 

(α = 0.01, β = 0.02), and high attrition (α = 0.1, β = 0.1). Note the no-attrition scenario is 226 

the least realistic, as some degree of balking and reneging is expected to occur in the 227 

real world. The low- and high-attrition queue-conscious solutions were compared to the 228 

queue-naive solution obtained under the assumption of no attrition (i.e., all dogs that 229 

arrive get vaccinated) to determine how the incorporation of queueing behaviors 230 

impacted the expected vaccination coverage and the amount of dogs lost to attrition. 231 

Note that although the queue-naive solution to the location problem was obtained 232 
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assuming no attrition, its performance was assessed under the assumption of a low- or 233 

high-attrition parameter regime. Additionally, the optimized sites were mapped along 234 

with their catchments to compare how site placement varied between the queue-235 

conscious and queue-naive solutions.  236 

Sensitivity analyses 237 

To determine how our results may have been impacted by misspecification of α and β, 238 

we considered four possible scenarios for true balking and reneging propensities. In 239 

addition to the low- and high-attrition scenarios discussed previously (α = 0.01/β = 0.02 240 

and α = 0.1/β = 0.1, respectively), we considered two additional scenarios for true 241 

balking and reneging propensities: (1) low balking and high reneging (α = 0.01, β = 0.1) 242 

and (2) high balking and low reneging (α = 0.1, β = 0.02). We applied the low- and high-243 

attrition solutions to these four scenarios to evaluate performance (in terms of number 244 

of vaccinations and losses to attrition) for situations in which α and β are correctly and 245 

incorrectly specified. For each scenario and queue-conscious solution applied, 246 

performance was evaluated using the number vaccinated and losses to attrition 247 

achieved by the queue-naive solution as a benchmark. 248 

The optimization methods detailed above rely on the use of the closed-form equations 249 

for the queueing system, which assumes a constant arrival rate λ. We considered how 250 

this assumption impacted our results by allowing λ to vary in a step-wise manner to 251 

approximate time-varying arrival rates that have been observed in the field (electronic 252 

supplementary materials, figure S3). Four time-varying arrival densities were 253 

considered: a) a steep unimodal peak density, b) a wide unimodal density that is 254 

skewed right, c) a wide unimodal density that is skewed left, and d) a bimodal density 255 
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distribution (supplementary materials, figure S4). Eight total scenarios were considered, 256 

representing all combinations of the four time-varying arrival densities and low- and 257 

high-attrition parameter regimes. Queueing simulations were performed for each 258 

scenario, and natural splines were used to summarize the behavior of the system over a 259 

range of arrival rates (electronic supplementary materials, text C). Once again, the 260 

performance of the low- and high-attrition solutions were assessed for each scenario, 261 

using performance under the queue-naive solution as a benchmark. Additionally, the 262 

different nonconstant arrival rate densities were compared to the baseline assumption 263 

of a constant arrival rate to determine how this assumption impacted estimations of the 264 

number of vaccinations and losses to attrition.  265 

 266 

RESULTS 267 

Relationship between MDVC participation probability and household distance to 268 

the nearest vaccination site  269 

The probability that a dog-owning household participated in an MDVC was inversely 270 

associated with the distance a householder had to walk to the nearest MDVC site 271 

(electronic supplementary materials, figure S5). The Poisson regression model 272 

determined that a household located in very close proximity to an MDVC site (walking 273 

distance < 30 m) had a participation probability of 75% compared to 38% for a 274 

household that would have to walk one kilometer to the nearest MDVC site .  275 

 276 

Queue-conscious optimization for MDVCs 277 
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As expected, the amount of balking and reneging was greater for higher arrival rates 278 

and for higher α and β values, representing greater attrition propensity (figure 3). 279 

Although the closed-form expression for the expected number of vaccinations (equation 280 

6) was derived under steady-state assumptions, the results of the stochastic simulations 281 

closely approximated results obtained using equation 6 across a range of arrival rates 282 

(electronic supplementary materials, figure S6). Thus, equation 6 was used as the 283 

objective function in the hybrid algorithm that was used to optimize MDVC site 284 

placement. 285 

 286 

Compared to the queue-naive algorithm, the queue-conscious algorithm favored a more 287 

even distribution in the number of arrivals across all selected sites (figure 4 and 288 

electronic supplementary materials, figure S7). The queue-conscious algorithm 289 

“flattens” the distribution of arrivals by placing more sites in densely populated areas to 290 

divide the higher vaccination workload across more vaccinators and placing fewer sites 291 

in less populous areas (figure 5 and electronic supplementary materials, figure S8). This 292 

difference in site distribution is expected, because too many arrivals at a site results in 293 

the formation of long queues and more losses from balking and reneging; these losses 294 

are accounted for (penalized) by the queue-conscious algorithm but not by the queue-295 

naive algorithm, which assumes that all arrivals get vaccinated.  296 

 297 

Within the low-attrition system (α = 0.01, β = 0.02), vaccination sites that were placed 298 

using the queue-conscious algorithm achieved an expected vaccination coverage of 299 

57.2% compared to 56.4% achieved by the queue-naive algorithm (figure 4). The 300 
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amount of queueing attrition (i.e. the expected number of dogs whose owners balked or 301 

reneged) was also lower for sites placed using the queue-conscious algorithm: 596 vs. 302 

733 for the queue-naive algorithm, representing a 19% reduction (figure 4). Trends were 303 

similar for the high-attrition system (α = 0.1, β = 0.1), in which the queue-conscious 304 

algorithm improved the expected vaccination coverage from 47.2% to 48% and reduced 305 

queueing attrition by 9% from 1,727 to 1,566 (electronic supplementary materials, figure 306 

S7). 307 

 308 

Sensitivity analyses 309 

These results were robust to misspecification of α and β, and the performance varied 310 

only slightly between the high- and low-attrition solutions for all combinations of α and β 311 

considered (figure 6). When the true values of α and β are low (α = 0.01 and β = 0.02), 312 

overestimating these parameters in the optimization did not result in a substantial loss in 313 

the number of dogs vaccinated compared to the correctly optimized solution (82 vs. 84 314 

more dogs vaccinated beyond the queue-naive solution). Similarly, when the true values 315 

of α and β are high (α = β = 0.1), underestimating these parameters in the optimization 316 

did not markedly impact the number of dogs vaccinated compared to the correctly 317 

optimized solution (83 vs. 85 more dogs vaccinated beyond the queue-naive solution). 318 

Moreover, applying the low- and high-attrition solutions resulted in a similar number of 319 

dogs vaccinated when the true value of α is low and the true value of β is high and vice-320 

versa (figure 6a). The high-attrition solution resulted in a greater reduction in queueing 321 

attrition than the low-attrition solution for all four attrition scenarios, though both 322 
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solutions resulted in substantially fewer losses compared to the queue-naive solution 323 

(figure 6b) 324 

 325 

The superior performance of the queue-conscious algorithm compared to the queue-326 

naive algorithm was also robust to relaxation of the constant arrival rate assumption. 327 

For all four time-varying arrival densities and attrition regimes, both low- and high-328 

attrition solutions substantially outperformed the queue-naive solution in terms of the 329 

numbers vaccinated and lost to attrition (electronic supplementary materials, figure S9). 330 

Interestingly, with the exception of arrival density D under a low-attrition regime, for 331 

which the low- and high-attrition solutions yielded roughly equal numbers of 332 

vaccinations, the high-attrition solution outperformed the low-attrition solution in terms of 333 

the numbers vaccinated. The high-attrition solution also resulted in less queueing 334 

attrition than the low-attrition solution for all scenarios considered. In addition, 335 

nonconstant arrival rates resulted in more queueing attrition and fewer dogs vaccinated 336 

compared to an otherwise equivalent scenario where the constant arrival rate 337 

assumption is met (electronic supplementary materials, figure S10). 338 

 339 

DISCUSSION 340 

We developed an optimization algorithm that integrates queueing theory into a spatial 341 

optimization framework to improve the placement of mass vaccination sites. We applied 342 

our algorithm to the MDVC in Arequipa, Peru by simultaneously minimizing travel 343 

distance to MDVC sites and queueing attrition resulting from large arrival volumes at 344 

some sites. Our queue-conscious algorithm decreased queueing attrition by 9-19% and 345 
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increased expected vaccination coverage by 1-2% compared to a queue-naive version 346 

of the same algorithm. MDVC site optimization that accounted for queueing placed 347 

more vaccination sites in densely populated areas to even out the number of expected 348 

arrivals across sites, and sensitivity analyses revealed that accounting for queueing 349 

resulted in improved MDVC performance, even in the absence of accurate parameter 350 

estimates. Moreover, the expected gains in vaccination coverage do not capture the 351 

indirect effects of excessive wait times and attrition. 352 

 353 

Longer wait times have been negatively associated with patient satisfaction in a variety 354 

of healthcare contexts, and patients report being less likely to repeatedly patronize a 355 

medical practice with long wait times compared to one with shorter wait times.1,30,31 In 356 

the context of canine rabies vaccination programs, individuals that have to wait a long 357 

time before receiving vaccinations for their dogs may be far less likely to participate in 358 

subsequent rabies vaccination campaigns. Furthermore, in light of the growing body of 359 

literature supporting the social contagion of vaccine hesitancy, vaccine uptake, and 360 

participation in public health campaigns,32–36 there is also potential for a negative 361 

cascade if dog owners who experience long wait times at an MDVC site tell friends and 362 

neighbors about their negative experiences and discourage turnout within their social 363 

networks. Taken together, the reduction of attrition resulting from well-placed 364 

vaccination sites may pay dividends in improving turnout and vaccination coverage in 365 

subsequent MDVCs; this is particularly important for canine rabies elimination, which 366 

requires sustained high levels of vaccination year after year.37–39  367 

 368 
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We assumed that owners arrived with their dogs to MDVC sites at time-invariant rates. 369 

The rationale behind this assumption was two-fold: (1) it ensured tractability of the 370 

queueing equations, and (2) it was unclear how to specify a nonconstant arrival rate in 371 

the face of heterogeneity in the trajectory of rates observed at MDVC sites (electronic 372 

supplementary materials, figure S3). While this simplifying assumption could raise 373 

concern about the validity of our results, our sensitivity analysis that probed this 374 

assumption indicated that the queue-conscious solutions outperformed the queue-naive 375 

solutions even when arrival rates varied over time (electronic supplementary materials, 376 

figure S9). We also found that nonconstant arrival rates resulted in more queueing 377 

attrition and fewer dogs vaccinated than the baseline assumption of a constant arrival 378 

rate (electronic supplementary materials, figure S10). This result is unsurprising 379 

because a time-varying arrival density would lead to swells of arrivals during peak 380 

intervals, when queue lengths would escalate and cause attrition to spike.  381 

 382 

Surprisingly, the high-attrition solution performed as well as or better than the low-383 

attrition solution for all time-varying arrival scenarios, even those in which the true 384 

attrition rates were low (electronic supplementary materials, figure S9). This result can 385 

be explained by the spikes in attrition that accompany time-varying arrival rates but are 386 

not captured by the low-attrition solution, which are obtained under the assumption of a 387 

constant arrival rate. As a result, even when α and β are low, the expected vaccination 388 

rate is higher with the high-attrition solution, as it favors a more even distribution in the 389 

number of arrivals across vaccination sites (compare figures 4-5 to electronic 390 

supplementary materials, figures S7-S8). These results suggest that applying MDVC 391 
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optimization in the real world is as much an art as it is a precise science. Even if the 392 

“true” balking and reneging rates could be determined, it may be beneficial to slightly 393 

overestimate these parameters to offset the reality of nonconstant arrival rates. 394 

 395 

The queue-conscious algorithm we employed decreases queue lengths across the 396 

study area, but some queueing is inevitable. Attrition can be minimized further by 397 

improving the waiting experience for queueing dog owners.40,41 In the context of 398 

MDVCs, accommodations should be made for aggressive dogs, whose presence in a 399 

queue can cause other owners to balk or renege. Some vaccinators may choose to 400 

deviate from FIFO principles and vaccinate aggressive dogs first regardless of when 401 

they arrive to remove them from the queue more quickly. This priority service approach 402 

(where aggressive dogs take priority over less aggressive dogs) is likely to minimize 403 

attrition in response to aggressive animals, but this rationale should be explained clearly 404 

to the owners present; violations of FIFO are generally perceived as being unfair and 405 

negatively impact the experience of those waiting in them.41,42 MDVC participant 406 

satisfaction should be prioritized wherever possible, as it impacts whether individuals 407 

will continue to participate in future MDVCs. Other behavioral interventions that can 408 

minimize queueing attrition is the use of messaging and incentives to flatten out the 409 

arrival rate. Field observations show arrival peaks, longer queue lengths, and greater 410 

attrition at midday (electronic supplementary materials, figure S3). Attrition during these 411 

peaks can be mitigated by communicating about shorter wait times early in the morning 412 

or incentivizing early arrivals by rewarding a limited quantity of “doorbuster” prizes (e.g., 413 

dog food or dewormer medication. 414 
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 415 

The expected vaccination coverage achieved by our optimization of fixed-location 416 

vaccination sites (57% and 48% for the low- and high-attrition scenarios, respectively) 417 

falls short of the 70-80% threshold recommended by WHO and PAHO.37,43 This gap can 418 

be met, in part, by combining fixed-location vaccination sites with mobile teams that 419 

deliver door-to-door vaccinations to areas with low penetration by the fixed-location 420 

campaign. This two-pronged approach has been leveraged successfully to achieve high 421 

vaccination coverage in other MDVCs44,45 as well as pandemic-era COVID-19 422 

vaccination programs.46,47 A benefit of combining door-to-door vaccination with fixed-423 

point vaccination is the ability to target high-risk or underserved areas, which not only 424 

increases total vaccine uptake but also promotes vaccine equity. We have previously 425 

found that the queue-naive algorithm increases the spatial evenness of vaccine 426 

coverage, a dimension of vaccine equity, even though it does not explicitly optimize for 427 

spatial equity.26 By placing more vaccination sites in more populous areas and limiting 428 

the placement of sites in less populous ones, the queue-conscious algorithm 429 

inadvertently decreases the spatial equity of fixed-point vaccinations compared to the 430 

queue-naive algorithm. In Arequipa, the less populous peri-urban areas also coincide 431 

with areas of greater socioeconomic disadvantage;23,24 thus, it is crucial for peri-urban 432 

areas to be prioritized by door-to-door campaigns following the deployment of fixed-433 

point vaccination sites to ensure vaccine equity. This type of door-to-door outreach is 434 

particularly important for disadvantaged groups, who face the greatest barriers in 435 

accessing health services and are thus least able to travel to vaccination sites and wait 436 

for service.48–50 They might benefit the most from this combined approach. 437 
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There are several limitations of our study. The balking and reneging parameters α and β 438 

were not estimated from data but selected to model two hypothetical parameter regimes 439 

that fell within the upper and lower bounds of values that could feasibly capture real-440 

world dynamics. While this lack of empirical estimation is a study limitation, our 441 

sensitivity analyses also indicated that the performance of our optimization algorithm 442 

was robust to misspecification of these parameters. In addition, the MDVC participation 443 

probability function that was used to optimize vaccination site locations included 444 

distance to the nearest site as a sole predictor and did not consider other household-445 

level factors such as socioeconomic status (SES) or local environment factors such as 446 

urban/peri-urban status. Future studies can investigate how travel distance to MDVC 447 

sites affect MDVC participation among different household SES levels and across urban 448 

and peri-urban areas to derive a more nuanced MDVC participation function. Doing so 449 

can also be a means of promoting vaccine equity; for example, if future investigations 450 

revealed that marginalized groups are less able to travel long distances to participate in 451 

the MDVC, then the algorithm using this “updated” function would favor placing more 452 

sites near marginalized populations. Finally, our algorithm assumed that all MDVC sites 453 

were operated by a single vaccinator (i.e., M/M/1).  As a result, the algorithm tended to 454 

place multiple, adjacent single-vaccinator sites in highly populous areas. There are 455 

generally efficiency gains associated with multi-server (i.e., multi-vaccinator) queueing 456 

systems (where multiple vaccinators serve a single queue) compared to single-server 457 

systems with designated queues.8 However, pooling vaccinators (i.e., placing k 458 

vaccinators across fewer than k sites) may also lead to performance loss, as reducing 459 

the number of sites could result in longer queues, which may increase perceived waiting 460 
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times and result in greater attrition;51 reducing the number of sites may also increase 461 

walking distances for some dog owners and thus decrease their probability of 462 

participation. A possible extension of our work would be to examine the tradeoff 463 

between gains from pooling vaccinators and losses due to slightly longer walking 464 

distances and potentially longer queue lengths. 465 

 466 

In summary, our spatial optimization framework that incorporates expected losses from 467 

queueing offers insights for current vaccine-preventable disease programs and for future 468 

pandemic preparedness efforts. We developed a spatial optimization algorithm that 469 

maximizes total vaccine uptake by enhancing the spatial accessibility of vaccination 470 

sites while accounting for losses due to queueing attrition. We found that explicitly 471 

modeling queueing behavior, even with imprecise parameter estimates, led to gains in 472 

vaccination coverage and fewer losses to attrition than optimization that ignores the 473 

effects of queueing. Combined with door-to-door outreach and targeted media 474 

campaigns, rational placement of fixed-point vaccination sites is expected to bring 475 

vaccine uptake closer to threshold levels recommended for the control and eventual 476 

elimination of canine rabies. Considering the impact of excessive wait times on other 477 

vaccination campaigns, including the early rollout of the COVID-19 vaccine, our spatial 478 

optimization framework that explicitly considers queueing attrition can be broadly 479 

adopted to support other mass vaccination programs.   480 
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FIGURES 
 

 
 
Figure 1. An M/M/1 first-in-first-out queueing model for an MDVC vaccination site. 
Panel a illustrates the processes captured by the queueing model, with the forms of 
queuing attrition highlighted by the red boxes. Panel b shows the transition-state 
diagram for the queueing model, where states, depicted by circles, are defined by the 
number of dogs in the system, and transitions between states, depicted with curved 
arrows, are labeled by their corresponding transition rates.  
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Figure 2. Potential vaccination site locations in Alto Selva Alegre. The boundaries 
of Alto Selva Alegre are depicted by the solid, black line. Candidate MDVC sites (N = 
70) are indicated by red diamonds, and the locations of houses are shaded brown. 
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Figure 3. Realized trials of the stochastic queueing model. Each trial of the 
stochastic queueing simulation represents a single four-hour day at an MDVC site. The 
gray-shaded portion of each plot tracks the queue length over the four-hour period, and 
the colored shapes in the white portion of each plot tracks the occurrences of balking 
(red triangles), reneging (red diamonds) and vaccination (blue circles). The number of 
balking events (B), reneging events (R), and vaccinations (V) are reported for each trial. 
Trials are shown for two different α/β parameter regimes (low: α = 0.01, β = 0.02 and 
high: α = 0.1, β = 0.1) and two different arrival rates (15 and 30 dogs per hour). 
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Figure 4. Arrivals histograms for sites selected by queue-naive vs. queue-
conscious optimization for the low-attrition system (α = 0.01, β = 0.02). The height 
of each stacked bar represents the expected number of dogs that arrive at a selected 
vaccination site. Bars are subdivided by color according to whether dogs ultimately get 
vaccinated (blue) or are lost to attrition, either through balking (dark red) or reneging 
(light red). The text above the bars give the total number of arrivals, total losses to 
attrition, and overall vaccination coverage achieved for each algorithm. While the 
queue-naive sites were obtained by the hybrid algorithm without considering attrition, 
the number of dogs vaccinated and the number of dogs lost to attrition for both queue-
naive and queue-conscious sites were determined assuming low-attrition parameter 
values using equation 6 and the equations outlined in the electronic supplementary 
materials, text A. 
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Figure 5. Locations of MDVC sites selected by the queue-naive vs. queue-
conscious algorithm for the low-attrition system (α = 0.01, β = 0.02). The locations 
of selected vaccination sites are indicated by white circles that are labeled and scaled 
according to the expected number of arriving dogs, which were calculated using 
equation 6. Houses in the study area are small dots colored according to their 
catchment, representing the area in which a MDVC site is the closest site for houses in 
terms of travel distance. Areas in which the queue-conscious algorithm placed a higher 
density of vaccination sites compared to the queue-naive algorithm are indicated by 
ellipses with solid lines, and areas in which the queue-conscious algorithm placed one 
fewer site are indicated by ellipses with dotted lines.  
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Figure 6. Sensitivity of results to misspecification of balking and reneging 
parameters. Panels a-b illustrate how misspecification of α and β impacts the expected 
number of dogs vaccinated (a) and the number of dogs lost to attrition (b). The 
performance of the low- and high-attrition solutions are provided with the queue-naive 
solution acting as a benchmark; thus, (a) shows the additional number of dogs 
vaccinated beyond the expected number achieved with the queue-naive solution, and 
(b) shows the reduction in attrition compared to the queue-naive solution. Bars outlined 
in bold represent scenarios in which the balking and reneging parameters are correctly 
estimated in the optimization. Panel c provides a legend with the values of α and β for 
the four balking/reneging scenarios considered. 
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