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Abstract

Aims: This study aimed to develop a deep-learning algorithm to enable a fully-
automated analysis and interpretation of optical coherence tomography (OCT) pull-
backs from patients after percutaneous coronary intervention (PCI).
Methods and results: In 1148 frames from 92 OCTs, neointima was manually classi-
fied as homogeneous, heterogenous, neoatherosclerosis, or not analyzable at quadrant
level by an experienced expert. Additionally, stent and lumen contours were annotated
in 90 frames to enable segmentation of lumen, stent struts and neointima. Annotated
frames were used to train “DeepNeo”, a deep learning tool for prediction of neointi-
mal tissue characteristics. Performance of DeepNeo was additionally evaluated in an
animal model of neoatherosclerosis, using co-registered histopathology images as the
gold-standard. DeepNeo demonstrated excellent classification performance of neointi-
mal tissue with an overall accuracy of 75%, comparable to manual classification ac-
curacy of two clinical experts (75%, 71%). The accurate performance of DeepNeo was
confirmed in an animal model of neoatherosclerosis, where an overall accuracy of 87%
was achieved. Segmentation of lumen, stent struts and neointima in human pullbacks
yielded very good performance with mean Dice overlap scores of 0.99, 0.66 and 0.86.
Conclusion: DeepNeo is the first deep learning algorithm allowing fully automated
segmentation and classification of neointimal tissue, with a performance comparable
to human experts. DeepNeo might ultimately help assess vascular healing after per-
cutaneous coronary intervention in a standardized, reliable and time-efficient manner,
support therapeutic decisions and improve the detection of patients at risk of future
cardiac events.
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1 Introduction

Interventional revascularization by percutaneous coronary intervention (PCI)
with stent implantation is an important treatment option for patients with ob-
structive coronary artery disease [1]. Despite significant advancements in the field
of PCI including refinement of contemporary drug-eluting stent (DES) technol-
ogy, a proportion of patients still experience stent-related events such as in-stent
restenosis or stent thrombosis in the long-term [2]. The development of mature
and healthy stent-covering neointima is critical to prevent these adverse events.
However, delayed vascular healing can impair neointimal development and con-
tribute to stent failure[3, 4]. Hence, immature or diseased neointima play a sig-
nificant role in a substantial portion of cases with stent failure [2, 5]. Optical
coherence tomography (OCT), as a high-resolution intravascular imaging modal-
ity, provides detailed visualization of the coronary vasculature and can be used to
assess the mode of stent failure [1, 6, 7]. Using OCT, neointima can be visualized
in vivo and characterized as either homogenous or heterogenous. Previous studies
have shown that homogenous neointimal tissue has a favorable phenotype, while
heterogenous neointimal tissue may be associated with de novo atherosclerosis
("neoatherosclerosis") and a worse clinical outcome [8, 9, 10, 11, 12, 13]. There-
fore, accurate detection and distinction of neointimal tissue is an important step
for identifying patients at risk for stent failure. However, manual evaluation of
OCT images is time-consuming and highly dependent on clinician experience,
which can limit clinical availability and transferability [13]. Moreover, the visual
interpretation of OCT images by clinicians in daily practice may result in miss-
ing or underestimating relevant pathological changes. Hence, more standardized
approaches to OCT image analysis are necessary. Deep learning has the potential
to greatly assist clinicians in accurately diagnosing patients through the analy-
sis of medical images [14, 15]. In intravascular OCT imaging, deep learning has
been successfully used to characterize native atherosclerotic lesions [16, 17]. In
this study, we present the first fully-automated deep learning-based algorithm
("DeepNeo") that enables quick and accurate automated segmentation and clas-
sification of neointimal tissue characteristics.

2 Methods

This study has been approved by the ethical board of Technical University of
Munich, Germany in accordance with local regulations (Nr. 2023-143-S-NP). A
patent application describing the technology has been filed with the European
Patent Office (Application 23 179 433).

2.1 Data Acquisition

1148 OCT images from 92 patients who underwent clinically-indicated coronary
angiography and in-stent intravascular imaging with OCT at the German Heart
Center Munich were collected. OCT imaging was performed according to current
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Fig. 1. DeepNeo provides neointimal tissue segmentation and classification
on quadrant level. A: OCT frames are divided into four 90° quadrants (Q1-Q4),
rotating clockwise from 12 o’clock and are individually classified to one of four classes
indicated by circular line color. Vessel lumen, neointima and stent struts are annotated
pixelwise. B: Representative example of homogenous, heterogenous, neoatherosclerosis
and not analyzable OCT frames used in the study. C: DeepNeo architecture: A frame
is given as input to a U-Net to get a segmentation mask. This allows the calculation
of the center of the lumen and the division of the OCT frame into 4 quadrants at the
center, which are then each resized before going through the classification network.
The coloured quarter-circles show the predicted class for each quadrant, line thickness
indicates model certainty (thick line = high certainty).
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guidelines [18] using a commercially available OCT system (Abbott Vascular,
Santa Clara, CA). The baseline characteristics of patients are provided in Table
1.

2.2 Segmentation of neointima, lumen and stent struts

Lumen contour and stent struts were manually annotated in 305 OCT frames
from a subset (40 of the 92 pullbacks) using the freeware tool LabelMe 1 to enable
automated segmentation of stent struts, lumen and neointimal area (see Figure
1 A). Segmentation allows analysis of patient characteristics such as average
neointima thickness, detection of areas of uncovered stent struts, or the local-
ization of the minimal lumen diameter in the stent. Also, segmentation masks
allow the calculation of the center of the lumen, which is used to cut frames into
quadrants. To assess the performance of DeepNeo for the segmentation of neoin-
tima, lumen, and stent struts, we employed a 5-fold cross-validation approach.
This involved randomly dividing the dataset of 305 OCT frames into five equal
parts ("folds"), with one fold used as a test set and the remaining four folds
split into three training sets and one validation set. We repeated this process
five times, with each fold used as the test set once. To prevent information leaks,
frames from any unique patient were assigned to the same fold. The validation
set was used to adjust hyperparameters that determine the model architecture
and training procedure and choose the most suitable model.

2.3 Neointima classification

Manual annotation every 1 mm (every fifth frame) was performed for all pull-
backs, or in adjacent suitable frames when image quality was insufficient. A total
of 1148 frames from 92 pullbacks were analyzed. Neointimal tissue was classi-
fied using a quadrant-based nominal character scoring system as previously de-
scribed [19]: clockwise and starting at 12 o’clock, every frame was divided into
four quadrants (see Figure 1 A), with the center of the lumen as the dividing
point. Each quadrant was then independently classified according to its pre-
dominant neointimal appearance into one of four classes: homogenous neointima
(uniform light reflection without localized areas of stronger or weaker backscat-
tering properties), heterogenous neointima (consisting of a focal variation of the
backscattering pattern, including patterns described as “layered”), neoatheroscle-
rosis (containing neointimal foam cells, fibroatheroma or calcifications)[20, 21]
or not analyzable (quadrants with uncovered struts or side-branch openings). In
quadrants with more than one tissue type, the most severe neointimal tissue type
was scored. Examples of neointimal tissue types are illustrated in Figure 1 B.
Expert A manually classified a total of 1148 frames (i.e., 4592 single quadrants)
from 92 pullbacks. From the total of 1148 OCT frames derived from 92 pullbacks,
we allocated 936 frames (originating from 66 pullbacks) to the training set. The
validation set comprised 108 frames from 9 pullbacks, while the test set included
1 labelme.csail.mit.edu/Release3.0
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104 frames from 17 pullbacks. This test set was specifically used to assess inter-
observer variability and the final performance of DeepNeo, with frames being
independently analyzed by experts B and C. The split was made by patient, e.g.
any patient’s frames are only contained in one of the train/validation/test splits.
The Fleiss Kappa score for the three independent experts was 0.654 for the test
set.

2.4 Animal model for neointima classification

As previously published, New Zealand White rabbits underwent stent implan-
tation in iliac arteries and repeated balloon denudation under a hypercholes-
terolemic diet, promoting early neoatherosclerotic lesion formation over 161 days
[22]. OCT imaging and histopathological analysis of stented segments were per-
formed using co-registration of both modalities, where OCT-frames were aligned
with matching histopathology frames. The co-registration process was based on
the lumen contour and the position of the stent struts in the corresponding
section, as previously described [22]. Histopathology frames were divided into
quadrants and scored according to the predominant tissue characteristic in each
quadrant. To ensure consistency and comparability across the scoring process,
we utilized a nominal character scoring system similar to that employed by Deep-
Neo. Specifically, a "homogeneous" score was assigned to frames demonstrating
healthy neointima with a predominance of smooth muscle cells, whereas frames
demonstrating infiltration with foam cells were assigned a "neoatherosclerosis"
score. Frames showing deposition of fibrin, hypocellular neointima, or peristrut
hemorrhage were assigned a "heterogeneous" score. It should be noted that the
rabbit dataset was entirely distinct from the human dataset. DeepNeo analyzed
OCT pullbacks from 12 rabbits (15 frames), and its neointimal tissue predictions
were compared to the co-registered histopathology findings.

2.5 Algorithm architecture

We employed two deep neural networks, trained separately and combined during
inference, to (i) segment lumen, stent struts, and neointima and (ii) classify the
neointima in each quadrant of an OCT frame (see Figure 1C). To segment stent
struts, neointima and lumen, a UNet++ was used [23]. For the classification of
the quadrants, a ResNet-18 network was used [24]. To train the classification
network, we divided each frame into four quadrants, using the segmentation
generated by the UNet++ to determine the center of the lumen and rescaled
them to a resolution of 224x224 pixels. Model calibration was achieved through
temperature sharpening and fusion of the surrounding quadrants’ predictions
[15]. The supplemental material provides details on augmentation techniques
and training specifications for both networks.
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Fig. 2. Comparison of DeepNeo predictions with manual expert classifica-
tions. Manual annotation of neointimal tissue type by three different observers is
visualized by three separate circular lines. Please note that in high interobserver agree-
ment corresponds to a high prediction certainty (c, a: quadrant 2 and 3, b: Q3) with
respective thick prediction line. In contrast, interobserver disagreement corresponds to
a lower certainty regarding tissue prediction, visualized by a thinner prediction line.
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Fig. 3. DeepNeo accurately segments lumen, stent and neointima.Beeswarm
plot with boxplot, with median values (central horizontal black line), boxes extend
from the 25th to the 75th percentile of scores generated by 5-fold cross-validation on
305 images from 40 patients. Good, average and low performing samples are shown
with respect to the average Dice score (dsc) of an image. The Dice score is calculated
as the area of overlap between labeled ground truth and prediction, ranging from 0
to 1 (0 indicating no overlap and 1 complete overlap between prediction and ground
truth).
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3 Results

3.1 Segmentation of neointima, lumen and stent struts

DeepNeo achieved high accuracy in segmentation of lumen, stent struts and
neointima with a Dice score of 0.99 (± 0.02), 0.66 (±0.10) and 0.86 (±0.14),
respectively. The evaluation was done in a 5-fold cross-validation as described
in the Materials and Methods section. The frames exhibiting inferior scoring
were observed solely in regions characterized by minimal or absent neointima,
thereby rendering precise annotation and prediction of the neointimal regions
challenging and susceptible to marginal annotation variability (see Figure 3, low
score sample).

3.2 Neointima classification

We compared the neointimal tissue classification performance of DeepNeo to
that of clinical experts by having two additional independent specialists (expert
B and expert C) manually label the test set in a blinded fashion. The labels an-
notated by the most experienced expert A were assumed as the ground truth and
compared to the labels predicted by DeepNeo. DeepNeo achieved an accuracy of
0.75 and a macro F1-Score of 0.74, while expert B had an accuracy of 0.75 with
a macro F1-Score of 0.75, and expert C had an accuracy of 0.71 with a macro
F1-Score of 0.69, highlighting a high agreement of DeepNeo with the experts,
which is similar to the inter-observer agreement. Figure 2 provides a comparison
of manual annotations by experts A, B, and C with the automated prediction by
DeepNeo. Note that frames with disagreement between experts (Fig. 2 A, B, D)
resulted in lower prediction certainty (thin prediction line) compared to frames
with agreement between observers (thick prediction line).

A robust correlation was observed between the model’s confidence in the
predicted class and the probability of a correct prediction (Figure 4), indicating
that DeepNeo is well-calibrated. This is of special importance, as it gives a no-
tion of confidence and thus interpretability that many other algorithms lack. In
supplemental figure 2 we show the need for calibration: the uncalibrated version
of our model tends to be overly confident, and the correlation between the (un-
calibrated) confidence and the true probability is poor.
Confusion matrices shown in Figure 4 demonstrate a performance of DeepNeo
similar to clinical experts. Notably, DeepNeo rarely misses diseased frames, indi-
cating its reliability in detecting heterogenous neointima and neoatherosclerosis.
Disagreement between DeepNeo and expert A, as well as inter-expert disagree-
ment, was highest for these challenging neointimal types, with expert B and
expert C sometimes leaning more towards homogenous labeling. Additional ex-
amples of DeepNeo’s automated analysis are shown in Figure 5. Analysis of failed
predictions revealed that shadowing and missing stent struts were the two major
sources of misclassification, as shown in Supplemental Figure 1.
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Fig. 4. DeepNeo vs. human expert performance. Figure 3: Performance of Deep-
Neo and human experts. A: Confusion matrices for performance of DeepNeo and expert
B and C with labels by expert A taken as ground truth. Note that automated analysis
by DeepNeo is similar to the inter-expert variability. N=420 (n.a.: 23, homog.: 186,
heterog.: 117, neoath.: 94). B: Calibration of DeepNeo: probability of predicted class
(x-axis) vs. true probability (y-axis).
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Fig. 5. Examples of DeepNeo’s automated analysis. E Upper row: Accurate
prediction of neointimal tissue characteristics on quadrant level. A: Predominant ho-
mogenous neointima with foam cells in Q3. B: Heterogenous neointima in Q1 and Q4
with foam cell infiltration in Q2 and Q3. C: No neointima present. D: Mixture of ho-
mogeneous and heterogenous neointima as well as possible neoatherosclerosis. Note the
low confidence in B (Q1 and Q3) and D (Q3), reflecting the difficulty to differentiate
heterogeneous neointima form neoatherosclerosis in some cases. Lower row: automated
segmentation of lumen, neointima and stent struts.
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Fig. 6. Correlation of tissue prediction by DeepNeo with histopathologi-
cal findings in rabbits. A: Confusion matrix of DeepNeo with histopathological
based labels. B: Representative examples from a rabbit model of neoatherosclerosis
with hematoxylin-eosin (H.E.) staining, revealing underlying neointimal tissue char-
acteristics. DeepNeo-based analysis of co-registered OCT frames showed overall good
agreement between histopathological findings (marked by red asterisks) and AI-based
tissue prediction.

3.3 Animal model for neointima classification

Co-registered histopathology demonstrated a high degree of concordance be-
tween DeepNeo’s predictions and the underlying tissue characteristics, as illus-
trated in Figure 6. DeepNeo achieved an accuracy of 0.87 and a macro F1-Score
of 0.78. Specifically, DeepNeo accurately identified neointimal foam cells and fib-
rin deposition as neoatherosclerosis or heterogeneous, while categorizing healthy
neointima with an abundance of smooth muscle cells as homogeneous. It is worth
noting that DeepNeo achieved these results despite never being trained on rab-
bit images, demonstrating its robustness and applicability across species and
acquisition setups.

3.4 Clinical cases

Figure 7 displays how DeepNeo is applied in two clinical cases of patients who
underwent clinically-indicated OCT imaging after PCI at German Heart Center.
Neointimal thickness and lumen radius are quantified in a standardized manner
by DeepNeo, along with the neointimal tissue composition at pullback level. The
visualizations provided by DeepNeo can guide clinicians to identify critical parts
of the OCT pullback, which in turn enables a reliable and prompt first impression
of the patients. The application of DeepNeo in these clinical cases highlights its
potential in improving the standardization and efficiency of intravascular OCT
imaging.
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patient age range 76-80
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Fig. 7. Clinical cases. 3D reconstruction of neointima, lumen and stents (1) as well
as 3D reconstruction of neointimal tissue prediction (2) and sample frames (3) from
two clinical cases with quantitative statistics derived from DeepNeo. A: male with PCI
of RCA. OCT 12 months after PCI reveals predominately neoatherosclerotic neoin-
tima. During follow-up, the patient underwent TLR due in-stent restenosis with un-
stable angina. B: male with PCI of LAD. OCT 12 months after PCI reveals predomi-
nantly homogenous neointima. During follow-up, no adverse events occurred. Note how
neoatherosclerosis can lead to a loss of signal leading to undetected stent struts (white
box in A.1 and A.2). Note also the correct classification of uncovered stent struts as
“not analyzable” (blue line in B.1 and B.2) and detection of a side-branch (white circle
in B.1).
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3.5 DeepNeo as an open-access tool

We released DeepNeo as a cloud-based open-access tool, providing a valuable re-
source for researchers and clinicians to rapidly analyze intravascular OCT images
of stented patients. With a quick and reliable analysis time of only 2-3 minutes
for a pullback, DeepNeo has the potential to greatly improve efficiency in the
diagnosis. By making this freeware tool accessible to all, regardless of geographic
location or financial resources, we hope to promote collaboration and accelerate
progress towards better patient outcomes. The tool is built using Gradio [25],
a freeware software, and hosted on Amazon Web Services Servers in Frankfurt,
Germany. As demonstrated in Figure 8, DeepNeo offers a user-friendly interface
that allows for easy access and analysis of intravascular OCT images. Users can
simply upload their anonymized OCT pullback as a DICOM image or .zip file,
with the tool providing accurate and reliable analysis. A detailed quadrant-level
analysis as well as aggregated statistics over the whole pullback can be down-
loaded. Furthermore, the tool has the capability to determine the starting and
ending points of the stent through predicted segmentation masks and subsequent
postprocessing techniques. This functionality increases the degree of automation
in the analysis process and reduces the need for manual intervention, ultimately
decreasing the workload of clinicians and researchers.

4 Discussion

To the best of our knowledge, DeepNeo is the first fully-automated deep learning-
based algorithm for characterization of vascular healing after PCI using OCT
imaging. The main components and findings are:

1. Segmentation of vessel lumen, neointimal area and stent struts, which allows
further automated morphometric analysis as well as quick detection and
quantification of uncovered stent struts.

2. Classification of neointimal tissue into healthy (homogenous), diseased (het-
erogenous or neoatherosclerosis), or not analyzable with high accuracy, com-
parable to performance by human observers.

3. Confirmed accuracy of prediction when using DeepNeo for analyzing OCT-
pullbacks with co-registered histopathology from an animal model of neoatheroscle-
rosis.

With millions of PCIs performed globally every year [26], there is a pressing
need for effective diagnostic and therapeutic strategies to ensure optimal pa-
tient outcomes in the long term. Intravascular imaging with optical coherence
tomography enables high-resolution imaging of stented lesions with detailed visu-
alization of the neointima. Several studies have demonstrated that subjects with
neointima characterized as heterogenous have a higher risk of clinical events com-
pared to subjects with homogenous neointima [13, 27]. Additionally, heteroge-
nous neointima might also reflect a more atherogenic milieu per se as it is associ-
ated with progression of native atherosclerosis as well [28]. Hence, heterogenous
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Fig. 8. DeepNeo webinterface. The user-friendly interface is designed with several
features to facilitate accurate and efficient analysis, including an upload mask (A),
which allows users to upload OCT pullback images (DICOM or .zip), a visual repre-
sentation of the current OCT frame with segmentation and neointima prediction, a
schematic view of quadrants (C1) (top row represents quadrant I, bottom row quad-
rant IV) and neointima and lumen (C2) that provides a visual representation of the
tissue characteristics, including a slider (C3) that enables users to move through the
pullback. In addition, the interface includes a pullback analysis (D) that provides a
detailed analysis of the OCT images and a manual correction feature (E) to correct
beginning and end of the stent if necessary. The webtool also allows users to download
a detailed analysis of their results and provides an information tab (F) for additional
guidance. Users are required to accept the research-only use on the welcome page (G)
before accessing the tool.
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neointima following stent implantation could be regarded as a surrogate marker
for poor arterial healing and adverse clinical outcome over time. Neoatheroscle-
rosis presents an even more unstable condition [20], being detected in up to one
third of drug-eluting stents [29]. Using OCT, neoatherosclerotic plaque rupture
was recently identified as the major underlying cause in patients presenting with
very-late stent thrombosis [30, 31]. Recently, Xhepa et al. demonstrated that
detailed assessment of neointimal tissue characteristics may aid in selection of
dedicated treatment strategies in patients with in-stent restenosis, showing an
advantage of DES over DCB in patients with high amount of non-homogenous
frames [32]. Thus, intracoronary imaging with OCT is crucial for following up
on patients after PCI with stent implantation, detecting and triaging patients
at higher risk of device-related events. However, interpretation of OCT images
requires significant clinical expertise, and analyzing several hundred OCT frames
is time-consuming and impractical in busy clinical settings. With an aging pop-
ulation requiring medical attention, use of deep learning-based algorithms for
clinical decision support and hence reduced workload is reasonable and has al-
ready been demonstrated in different fields of medicine [33, 34]. Previous works
have demonstrated the ability to segment and characterize native atheroscle-
rotic lesions using artificial intelligence-enhanced OCT [16, 17, 35, 36]. However,
to the best of our knowledge, no study so far has investigated the potential
of deep learning to facilitate OCT-based characterization of neointima. We be-
lieve that DeepNeo, which allows quick and intuitive, fully-automated character-
ization of the underlying neointima without requiring additional human input,
would be useful in following up on vulnerable patients. DeepNeo, in combina-
tion with DeepAD [17], our previously published work on the detection of native
atherosclerotic lesions, provides interventional cardiologists with a useful toolbox
for facilitating OCT interpretation on native as well as stented segments.

As a limitation of our study, we did not differentiate between layered neoin-
tima and heterogenous neointima, as such distinction would have reduced the
sample size for each tissue class and adversely affected the performance of Deep-
Neo. While cross-validation would have been advantageous for classification as
well, we are pleased to have 416 labels annotated by three independent experts,
which we believe are sufficient for a robust evaluation. The high performance
of the model on animal frames may be influenced by the limited data available
for evaluation. The accuracy of DeepNeo in classifying neoatherosclerosis and
heterogenous versus homogeneous neointima (71% and 62% versus 85%) may
be partly explained by the increasing complexity of neointimal tissue. Homoge-
nous neointima typically displays a simple and uniform appearance, whereas
neoatherosclerosis, characterized by foam cells, calcification, or fibroatheroma,
exhibits a more diverse and complex aspect that poses a challenge for accurate
classification. It is worth emphasizing that a comparable reduction in perfor-
mance is observed in human experts, indicating that the task of distinguishing
between different types of neointimal tissue is inherently challenging. This ob-
servation suggests that the reduction in the accuracy of DeepNeo is mainly not
due to a failure of the algorithm but rather a reflection of the complexity of the
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task. Additionally, splitting a frame into four quadrants might create ambiguous
cases, such as when portions of a quadrant are more severely diseased, making
classification challenging. However, it is noteworthy that misclassifications of
neoatherosclerosis as heterogenous neointima or vice versa may still be consid-
ered acceptable, as both conditions are indicative of diseased tissue that requires
further attention. Moreover, the identification of any diseased tissue through au-
tomated analysis can help alert clinicians to potential issues, prompting further
investigation and intervention where necessary. In rare circumstances, such as
inadequate contrast medium or highly atypical cases, the model may encounter
difficulties; however, due to the calibrated model, those cases should result in low
confidence predictions and could be flagged for further inspection. Thus, even
with some degree of misclassification, DeepNeo is a valuable tool in the detection
and characterization of neointimal tissue in patients after PCI.
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Table 1. Baseline data of OCT data set Data is N/n (%) or mean (±SD)

N 92/92 (100.0)
Age (years) 67.3 (9.3)

Gender F 13/92 (16.3)
M 77/92 (83.7)

CVFR

Smoker 17/92 (18.5)
Hypercholesterolemia 65/92 (70.7)
Hypertension 88/92 (95.7)
Diabetes mellitus 40/92 (43.5)

LV function (EF)

normal 53/92 (57.6)
Mildly reduced 20/92 (21.7)
Reduced 18/92 (19.6)
Severely reduced 1/92 (1.1)

CAD
1V-CAD 12/92 (13.0)
2V-CAD 17/92 (18.5)
3V-CAD 63/92 (68.5)

Clinical presentation

Stable Angina 53/92 (57.6)
Silent ischemia 21/92 (22.8)
NSTEMI 7/92 (7.6)
unstable Angina 10/92 (10.9)
STEMI 1/92 (1.1)

Target vessel

LAD 42/92 (45.7)
LCA 2/92 (2.2)
LCx 26/92 (31.5)
RCA 22/92 (23.9)

Restenosis Morphology

Complete occlusion 3/92 (3.3)
Diffuse beyond stent 1/92 (1.1)
Diffuse intrastent 25/92 (27.2)
Focal body 43/92 (46.7)
Focal margin 6/92 (6.5)
Multifocal 6/92 (6.5)
No restenosis 8/92 (8.7)

Index stent interval (days) 1,356.6 (1,477.4)

Index stent type

BES 5/92 (5.4)
BMS 4/92 (4.3)
BP-SES 8/92 (8.7)
DES 4/92 (4.3)
EES 46/92 (50.0)
PF-SES 3/92 (3.3)
SES 3/92 (3.3)
ZES 3/92 (3.3)
unknown 16/92 (17.4)

Lesion length (mm) 11.5 (6.2)
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SUPPLEMENT

1 Supplemental Material and methods

1.1 Details of segmentation network

As the segmentation networks, we evaluate a standard Unet[1], Unet++[2] and
DeepLabv3[3]. We observe that Unet++ performs slightly better on average than
Unet, which both perform better than DeepLabv3 as can be seen in supplemen-
tary table 1. As the best model, the Unet++ with Resnet18[4] backbone is used
as the segmentation network; the network implementation in Python is taken
from Iakubovskii[5]. To train the Unet++, an Adam optimizer with standard
parameters is used. The initial learning rate is 0.001, to regulate learning rate, a
training rate scheduler by PyTorch[6] is used which reduces the learning rate by
multiplying it with a factor of 0.3 if for 5 epochs the validation loss is not decreas-
ing. The input image resolution is 512x512 with one input channel. A batch size
of 8 is used with 100 training epochs. We use the Albumentations library[7] to
augment images during training. Following augmentation techniques are used:
Rotate, GridDistortion, ElasticTransform, HorizontalFlip, RandomBrightness-
Contrast, GaussNoise, RandomGamma. As the loss function, the unweighted
sum of dice loss [8], cross-entropy loss and IoU loss [9] is used.

We make use of test time augmentation to increase accuracy and make the
segmentation mask invariant to rotations by 90,180 and 270 degrees as well as
horizontal flipping. We do so by predicting segmentation masks for not only the
initial frame but also on 90, 180 and 270 degree rotated frames on the initial as
well as the horizontally flipped frame. This gives a total of eight predictions per
frame, and thus eight probability distributions for each pixel of a frame, which
are then fused using the mean of the distributions.

Lumen Stent Neointima Average

Unet 0.986± 0.025 0.658± 0.101 0.863± 0.135 0.837
Unet++ 0.986± 0.021 0.660± 0.100 0.863± 0.138 0.838

DeepLabv3 0.986± 0.014 0.603± 0.110 0.868± 0.138 0.820

Table 1. Comparison between segmentation performance of state-of-the art segmen-
tation models.

1.2 Details of classification network

We found that for the classification task small models suffice. Among those,
a torchvision [10] Resnet18[4] showed the best performance compared to other
state-of-the art networks with the same or more parameters, implemented in the
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torchvision library. Namely, we compare the performance to ViT-B[11] (smallest
torchvision vision transformer) and Swin-T[12] (smallest torchvision Swin trans-
former) as can be seen in supplementary table 2. Note that for this comparison
we measure the basic performance without test time augmentation, temperature
sharpening, and without considering neighboring frames. As Resnet18 showed
the best performance, it was selected as the network for DeepNeo.

Accuracy F1-Score

Resnet18 0.690 0.697
ViT-B 0.557 0.574
Swin-S 0.443 0.272

Table 2. Comparison between classification performance of state-of-the art classifica-
tion models.

To train the Resnet18, an AdamW optimizer with standard parameters is
used [2]. The initial learning rate is 0.001, to regulate learning rate, a training
rate scheduler by PyTorch [6] is used which reduces the learning rate by multi-
plying it with a factor of 0.3 if for 5 epochs the validation loss is not decreasing.
The input image resolution is 224x224 with one input channel. A batch size of
32 is used with 100 training epochs. We use the Albumentations library[7] to
augment images during training. Following augmentation techniques are used:
GridDistortion, ElasticTransform, HorizontalFlip, RandomBrightnessContrast,
GaussNoise, RandomGamma. As the loss function, cross-entropy loss is used.
We also make use of test time augmentation here in a similar fashion as in the
segmentation network: The same test-time augmentations are also used to gen-
erate eight class predictions per quadrant. The resulting distributions are fused
using temperature sharpening and then normalizing, which yields slightly better
results compared to mean aggregation and produces more meaningful confidence
scores [13]. To account for spatial dependencies in a straightforward manner, in
a final step we average the predictions over the surrounding quadrants:

For each quadrant k in a frame n, the final distribution dfinal
k,n is computed:

dfinal
k,n =

α(dk,n−1 + dk,n+1) + dk,n
2α+ 1

(1)

If frame n+ 1 or n− 1 does not exist or is outside the stented region of the
pullback, the corresponding distribution gets removed in the above equation. For
example, the equation would change to:

dfinal
k,n =

αdk,n−1 + dk,n
α+ 1

(2)

without frame n+ 1.
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The best value for was determined via grid search on the validation set and
ist set to 0.75. Accounting for surrounding frames in this manner yielded a 5.7%
improvement in accuracy on the test set. The resulting confidences are well
calibrated as shown in Figure 4.

DeepNeo

prediction

homogenous

heterogenous

neoatherosclerosis

not analyzable

DeepNeo confidence

1 0.25

A B C D

Fig. S1. Examples for prediction failure by DeepNeo. Upper row: manual an-
notation by three independent observers marked by three separate lines. Lower row:
automated prediction by DeepNeo. A and B: Q1 is misclassified as homogenous. C: Q4
is misclassified as homogenous. D: Q4 is misclassified as neoatherosclerosis.
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DeepNeo confidence
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Fig. S2. Model calibration improves correlation between confidence and true
probability. Uncalibrated model (left) vs calibrated model used in DeepNeo (right).
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