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Abstract—Seizure detection stands as a critical aspect of
epilepsy management, which requires continuous monitoring to
improve patient care. However, existing monitoring systems face
challenges in providing reliable, long-term, portable solutions due
to the computational expense and power demands of continuous
processing and data transmission. Edge computing offers a viable
solution by enabling efficient processing locally, close to the sensors
and without having to transmit the sensory signals to remote
computing platforms. In this work, we present a mixed-signal
hardware implementation of a biologically realistic Spiking Neural
Network (SNN) for always-on monitoring with on-line seizure
detection. We validated the hardware system with wideband
Electroencephalography (EEG) signal recordings with over 122
continuous hours of data, without pre-filtering. The network
was tested with a cohort of 5 patients and a total number of
22 seizures including generalized and focal onsets. Our system
effectively captures spatiotemporal features based on synchronized
multichannel intracranial EEG activity, achieving 100% sensitivity
across all patients and near zero false alarms. Remarkably,
inference across patients required only calibrating the parameters
of the network’s output layer on a single recorded seizure from
the patient.

Index Terms—EEG, seizure detection, event-based processing,
spiking neural networks, neuromorphic processor, edge computing

I. Introduction
Epilepsy is one of the most prevalent neurological disorders

that affects millions of people worldwide, with an estimated
5 million individuals diagnosed each year [1]. Approximately
one-third of patients do not respond to existing pharmacological
treatments and continue to suffer from uncontrolled seizures [2].
These recurrent episodes can significantly influence the quality
of life of patients, increase the risk of accidents, and even lead
to Sudden Unexpected Death in Epilepsy (SUDEP) [3].

In clinical practice, EEG and video surveillance remain
the gold standard diagnostic tools. Drug-resistant patients
may need to undergo invasive channel implantation when
routine EEG findings are insufficient for surgical planning.
In Epilepsy Monitoring Unit (EMU), patients need to stay
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Fig. 1: Conventional and alternative neuromorphic System-On-Chip (SoC)
approaches for EEG-based seizure detection.

restricted for several days connected to bulky machinery with
many wires. Both invasive and noninvasive systems require
significant hospital resource investments, extensive expertise,
and time for manual EEG annotation. In addition, routine
practice involves patients or caregivers filling out seizure
diaries, which can, however, lead to misreporting and inaccurate
records [4]. These challenges underscore the need for more
efficient and patient-friendly embedded monitoring solutions.
Recently, the market for remote epilepsy monitoring devices has
experienced substantial growth. The development of wearable
and implantable technologies addresses many limitations asso-
ciated with traditional restrictive monitoring systems, including
the physical constraints of wired EEG setups, accessibility,
and the high costs associated with prolonged hospital stays. In
general, the design of such battery-powered systems should
be optimized in resource-controlled environments, where size,
algorithmic complexity, and energy play a crucial role. State-of-
the-art EEG devices [5]–[8] are equipped with various sensors
that measure physiological signals such as accelerometry, heart
rate variability, electrodermal or Electromyography (EMG)
activity, while integrated Machine Learning has opened a new
avenue for non-invasive real-time monitoring [9]–[11].

In the literature, most of the reported seizure detection
devices are still in the early stages of development. Currently,
there are only a few Food and Drug Administration (FDA) or
EU-cleared devices in class II; these are capable of detecting
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Fig. 2: Pipeline for spike-based electrographic seizure detection with a full-SNN architecture implemented on a neuromorphic processor.

Generalized Tonic-Clonic Seizure (GTCS) in real time with non-
EEG modalities [8]–[11]. There are EEG-based devices that
detect specific types of seizures, including focal seizures [12]
or absence seizures [13]. Two primary challenges are associated
with high computational demands that reduce battery life and
sub-optimal performances characterized by high False-Alarm-
Rate (FAR). The need for frequent battery recharges disrupts
continuous monitoring and adds a layer of inconvenience and
stress to the patient. In addition, elevated FAR can lead to
desensitization and reduced compliance.

Event-based neuromorphic devices have emerged as promis-
ing candidates for enabling energy-efficient biosignal moni-
toring and computation at the edge [14], [15] (Fig. 1). In
particular, SNNs implemented in mixed-signal analog/digital
neuromorphic processors have already been reported to perform
spatiotemporal tasks that involve noisy electrophysiological
signals efficiently [16]–[19]. In [20], an ultra-low-power
Complementary Metal-Oxide-Semiconductor (CMOS)-based
seizure detection approach is applied to in vitro Local Field
Potential (LFP) signals, but shows very limited robustness
against interictal periods carrying artifacts.

In this paper, we present and validate a robust spike-based
hardware setup that enables long-term seizure monitoring
from intracranial EEG signals using a low-power mixed-signal
neuromorphic processor, with very low sensitivity to artifacts
and false-alarm rates.

II. Materials and methods

A. Delta-modulation scheme and adaptive encoding
As the neuromorphic chip expects inputs in the form of

asynchronous events, the EEG signals in the input data streams
must first be converted to an event-based representation. One
of the most prevalent interfacing devices used for this purpose
is the Asynchronous Delta Modulator (ADM) circuit [21]. The
ADM operates by encoding the changes or “delta” in the input
signal asynchronously, generating events whenever the signal

crosses predefined delta-thresholds. If the amplitude change in
the continuous time signal since the previous event increases by
a delta threshold, the ADM produces an event labeled "UP",
and if the signal decreases by a delta threshold the circuit
produces a "DOWN" event. A common challenge is to establish
the value of the delta threshold parameter in a way that does
not significantly affect biomarker detection performance based
on different noise levels: if the delta parameter is too small,
the ADM will produce many events, increasing bandwidth
usage and power consumption. If it is set too high, the ADM
will produce too few events, and loose relevant information in
the original signal. Previous applications relied on baseline-
heuristics for calibrating the ADM circuits [16], [19], [22].

Recently, a novel adaptive thresholding circuit for the ADM
was introduced, ideal for always-on biomedical signal process-
ing tasks, where the encoding threshold parameter adaptively
changes in real time based on the amplitude of the incoming
signals [23]. This adaptive ADM circuit can dynamically
adjust the delta threshold parameter to amplitude changes that
may occur during long recording sessions and minimize the
generation of events in background activity while retaining the
information related to large anomalous fluctuations. In this work
we made a hardware-aware behavioral simulation of the circuit,
employing an equivalent structure to reproduce its features for
implementing such adaptive thresholding feature in our long-
recording data-set sessions. To reduce the computational cost
of the software simulation, the adaptive delta threshold values
were calculated only during a calibration period of 10 s for each
channel at the start of the first interictal recording session. After
this calibration phase, the delta threshold voltage values were
kept fixed for each signal and the subsequent hour segments for
each patient. The other ADM free parameter is its refractory
period [21]. In our simulation we set this to 10 µs. The original
event-based Intracranial Electroencephalography (iEEG) signal
streams, which encapsulate the temporal dynamics of the brain’s
electrical activity were therefore converted to a compressed
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stream of events “UP” and “DN” that was then transmitted to
the neuromorphic spiking neural network chip.

B. Mixed-signal neuromorphic processor
The SNN was configured on the mixed-signal Dynamic

Neuromorphic Asynchronous Processor (DYNAP)-SE neuro-
morphic processor [24] as a prototype of an “always on”
spike-based real-time seizure detection system. Each chips
comprises 1024 Adaptive Exponential Leaky Integrate-and-
fire (AdEx I&F) neurons, with 64 input synapse circuits each.
The prototype SNN was designed to be scalable and employ a
limited number of neurons (up to 106 neurons) on a single chip,
for a maximum number of input EEG channels of 60, due to
fan-in hardware constraints. As the synapse and neuron circuits
are analog, the chip is affected by device mismatch, which
can however be mitigated, using population coding and other
bio-inspired processing strategies [25]. In this work, only the
neuronal and synaptic parameters of two cores on the chip had
to be tuned, to achieve the desired network behavior. In addition,
we configured the synapse circuits to implement excitatory
fast-𝛼-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
(AMPA), slow-N-Methyl-d-aspartate (NMDA), and inhibitory
shunting-𝛾-Aminobutanoic Acid (GABA)-A and subtractive-
GABA-B type dynamics.

C. The SNN architecture
The hardware SNN was designed by following strategies that

could help overcome the device mismatch and the noisy nature
of subthreshold analog circuits, such as ensemble averaging and
feedforward inhibition. The architecture is a shallow network
which consists of interconnected neuron ensembles, organized
into two simple successive feedforward layers as described in
Fig. 2, where only a subset of 12 channels is depicted, for
sake of clarity. The encoded input channels are grouped into
triplets that simultaneously stimulate the adjacent excitatory
and inhibitory neuron ensembles of the hidden layer with feed-
forward AMPA connections. Each triplet represents a subset
of encoded input EEG channels whose grouping can vary
depending on the number of inputs. Each hidden neuronal
ensemble comprises five neurons. The inhibitory clusters send
inhibitory connections to all the hidden groups of neurons
except the one that was excited from the same input triplet.
From the hidden layer to the output, all hidden groups project
NMDA excitatory connections to an additional inhibitory
cluster, and excitatory AMPA connections to the read-out
neuron. The cluster of inhibitory interneurons with slower
inhibitory connections in the second layer plays a normalizing
regulatory role, curtailing overexcitation that could otherwise
lead to mis-classification. The weights and time constants of
the neuron populations in the hidden layer were uniform and
tuned based on two target seizure events with focal (10 seconds)
and generalized onset (40 seconds). After this tuning process,
the parameters were kept fixed for all subject recordings in
the hidden layer. The output layer (weights and time constants)
were further fine-tuned, for each subject, based on one single
seizure onset from their corresponding data.

Fig. 3: Firing rates of the ADM encoded input channels, SNN neuron groups
and output during one hour of recording.

D. Human Long-term iEEG dataset

We tested our network on continuous long-term recordings
from the publicly available SWEC-ETHZ iEEG database [26].
The database includes hourly segmented recordings from drug-
resistant patients who were monitored intracranially using grid,
strip, or depth electrodes. After converting the analog signals to
16-bit digital format, median referencing and digital bandpass
filtering between 0.5 Hz and 120 Hz, were applied. Expert
annotations (onset and offset of the seizure) are provided for
each ictal hour. We tested recordings of 5 patients with up to
60 input channels and 22 seizures with generalized and focal
onsets. The analysis involves continuous event-based processing,
allowing observation and detection of epileptic seizure events
in their entirety.

III. Results

A. The SNN behavior

Figure 3 shows the average firing rates of the ADM encoded
input channels (top plot) and hidden excitatory and inhibitory
neuron groups (bottom plot) during one hour. As shown,
feedforward inhibition leads to a reduced firing rate in the
hidden layer, while the read-out neuron in the output layer
responds to sustained synchronized activity with a rapid
increase in the firing rate shortly after the marked seizure
onset. Interictal periods are characterized by near-zero firing
rates in all patients, highlighting the output neuron’s inactivity
or minimal activity in the absence of seizures. Based on this
behavior, the estimated average power consumption of the
chip, averaged across all configurations adapted to the varying
number of channels for each patient is P=12.48 µW (see [27]
for the details on the formula used to estimate the power
consumption of each circuit component in the chip).
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Fig. 4: Averaged Synchronization scores within groups based on Coincidence
Index (CI).

B. Synchronization scores and correlation matrices

The degree of synchronization in different stages, from the
original EEG to the encoded ADM input and hidden activity
of the SNN, was quantified using group-specific correlation
matrices and averaged synchronization scores (see in Fig. 4).
The correlation matrices illustrate the similarity between the
amplitude envelopes of different original EEG channel sets,
while the synchronization scores, calculated with a coincidence
window of 100 ms, indicate the ratio of observed coincidences
to those expected by chance, providing a normalized measure of
synchrony. These results indicate a consistent trend across both
measures, suggesting that the amplitude synchronization of the
EEG signals is mirrored in the temporal synchrony of the spike
trains during an ictal period. Higher synchronization scores
from ADM-encoded inputs correlate with higher CIs in the
SNN hidden layers, demonstrating that the network effectively
captures the relevant synchronization features to accurately
detect seizure activity.

C. Patient-specific seizure detection

We investigated the average firing rate of the output neuron
during the ictal and interictal periods to minimize false alarms.
This analysis aimed to determine the feasibility of using an
optimal universal temporal window to calculate performance
metrics. Figure 5 highlights the variability in firing rates
between ictal patterns and patients, reflecting differences in
seizure dynamics and characteristics. Sensitivity was defined

TABLE I: Performance Metrics

Patient ID Sensitivity (%) FAR (h−1) Delay (s)

This Work [28] This Work [28] This Work [28]

ID11 100.0 100.0 0.0 0.0 14.0 19.5
ID12 100.0 100.0 0.0 0.0 34.4 36.3
ID14 100.0 0.0 0.23 0.0 2.38 -
ID17 100.0 100.0 0.12 0.0 28.0 19.0
ID18 100.0 75.0 0.0 0.0 15.5 25.7

Mean 100.0 75.0 0.07 0.0 18.8 25.1

Fig. 5: Mean firing rate during ictal and interictal periods for each patient.

as the proportion of detected seizures in the test set, and delay
was calculated as the time from annotated seizure onset to the
first 2-second detected interval that met the detection threshold
of six spikes. The FAR was measured by counting 2-second
intervals with six or more spikes during non-seizure periods
and normalizing by the total duration of 20 interictal recording
hours per patient. Table I summarizes for each patient the
sensitivity, FAR, mean onset delay, and comparison with other
works. In 3 out of 5 patients, the SNN achieved zero false
alarms and accurately identified all seizure events.

IV. Discussion and Conclusions
We demonstrated that long-term reliable seizure monitoring

and detection on a resource-constrained CMOS neuromorphic
chip is feasible using population averaging and E-I balance
mechanisms. Our proposed solution effectively addressed two
common challenges: high FAR and power consumption. The
hardware SNN successfully detected all seizure events in 5
patients. Future work aims at the realization of a dedicated ultra-
low power ASIC with an Analog Front-End (AFE), an adaptive
ADM encoding circuit and the corresponding SNN in one
single device. New generations and advancements in specialized
devices, particularly with AFE integration and online learning,
hold the potential to provide a complete end-to-end solution for
low-power implantable and wearable on-edge seizure detection
devices. Although the implemented system operates in real time
and the chip delivers very low latency, the network currently
detects seizure onset activity with a mean delay of 18.8 seconds.
Despite this delay, the significant reduction in latency achieved
by the system, combined with clinically low FAR, paves the way
for closed-loop neuromodulation SoC. Future work will aim to
accomplish earlier detection delays to allow the development of
closed-loop feedback strategies for real-time seizure suppression
and dynamic neuromodulation.
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