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 2 

Abstract 27 

 28 

Background: Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and 29 

molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by 30 

omic technologies. Deep learning captures complex non-linear associations within multimodal 31 

data but, to date, has not been used for multi-omic-based endotyping of KOA patients. We 32 

developed a novel multimodal deep learning framework for clustering of multi-omic data from 33 

three subject-matched biofluids to identify distinct KOA endotypes and classify one-year post-34 

total knee arthroplasty (TKA) pain/function responses. 35 

 36 

Materials and Methods: In 414 KOA patients, subject-matched plasma, synovial fluid and urine 37 

were analyzed by microRNA sequencing or metabolomics. Integrating 4 high-dimensional 38 

datasets comprising metabolites from plasma (n=151 features), along with microRNAs from 39 

plasma (n=421), synovial fluid (n=930), or urine (n=1225), a multimodal deep learning variational 40 

autoencoder architecture with K-means clustering was employed. Features influencing cluster 41 

assignment were identified and pathway analyses conducted. An integrative machine learning 42 

framework combining 4 molecular domains and a clinical domain was then used to classify 43 

WOMAC pain/function responses post-TKA within each cluster.  44 

 45 

Findings: Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 46 

distinct patient clusters. Feature signatures comprising microRNAs and metabolites across 47 

biofluids included 30, 16, and 24 features associated with Clusters 1-3, respectively. Pathway 48 

analyses revealed distinct pathways associated with each cluster. Integration of 4 multi-omic 49 

domains along with clinical data improved response classification performance, with Cluster 3 50 

achieving AUC=0·879 for subject pain response classification and Cluster 2 reaching AUC=0·808 51 

for subject function response, surpassing individual domain classifications by 12% and 15% 52 

respectively. 53 

 54 

Interpretation: We have developed a deep learning-based multimodal clustering model capable 55 

of integrating complex multi-fluid, multi-omic data to assist in KOA patient endotyping and test 56 

outcome response to TKA surgery. 57 
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Introduction 65 
 66 

Osteoarthritis (OA) is a degenerative, painful and disabling joint disease affecting over 500 million 67 

people worldwide,1 with the knee most commonly afflicted2. Primary knee (K)OA patients are 68 

heterogeneous3. Risk factors of KOA include age, sex, and obesity status.2 Mental health and 69 

persistent pain status have also associated with KOA clinical phenotypes.4,5 Total joint 70 

arthroplasty (TKA) is the only available therapy for KOA patients who no longer respond to 71 

conservative management; however, up to 34% of KOA patients with TKA fail to achieve 72 

clinically-relevant pain reduction.6 Identifying those at high risk of non-response is of significant 73 

interest. It is possible that KOA heterogeneity captured by biological features may improve our 74 

ability to classify patient responses to TKA. 75 

Biofluid microRNAs (miRNAs) and metabolites can provide highly descriptive, individualized 76 

categorizations of patients beyond clinical measures. MiRNAs epigenetically modify target RNA 77 

expression. Biofluid metabolomes represents snapshots of the metabolic activity contributed by 78 

associated cells and tissues. Advanced omic technologies can measure miRNAs (miRNomics) and 79 

metabolites (metabolomics), primarily by next generation sequencing (NGS) and liquid 80 

chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), respectively.7,8  81 

In a case-control study using the UK Biobank cohort, 14 distinct OA risk phenotypes were 82 

identified by multi-modal machine learning (ML) using clinical factors alone.9 The inclusion of 83 

individual proteomics, genomics or metabolomics data showed no prediction improvement of 84 

case-control status over clinical factor modeling alone.9 In contrast, studies using individual 85 

biofluids have identified endotypes of OA patients. Three endotypes of OA patients (low tissue 86 

turnover, structural damage and systemic inflammation) were identified from a panel of 16 serum 87 

and urine proteins/peptides using unsupervised ML.10 Plasma metabolomics alone uncovered 88 

multiple endotypes of KOA patients,11,12 with some endotype-related metabolite ratios able to 89 

differentiate specific endotypes of KOA subjects from control participants.11 KOA patient biofluid 90 

miRNA signatures were also able to differentiate between slow and fast progressors,13 early and 91 

late KOA,14,15 and patients requiring TKA or not.16 Thus, endotype data from biofluids is 92 

important for understanding KOA heterogeneity, and, consequently, may be associated with 93 

patient outcomes. To our knowledge, KOA endotypes have yet to be evaluated across multiple 94 

biofluids using multi-omic technologies in an integrated approach.8  95 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 5 

Our experience to date suggests that multi-biofluid, mult-omic endotyping requires more complex 96 

modeling systems. Deep learning aids in extracting complex patterns from data. However, 97 

integrating multimodal data from multiple sources presents challenges due to the diversity within 98 

and across data types. Variational Autoencoders (VAEs) address this challenge by embedding 99 

diverse data domains into reduced latent dimensions, facilitating improved data clustering.17-19 100 

Despite the potential of VAEs, there is a lack of unified frameworks for leveraging these methods 101 

to identify clusters from multimodal data and to classify clinical responses by integrating diverse 102 

data domains. Additionally, VAEs have not been applied to investigate OA endotypes.  103 

In this study, we developed a novel multimodal deep learning framework employing VAEs for 104 

integrative clustering using 4 high-dimensional domains of subject-matched multi-omic data from 105 

synovial fluid, urine and plasma and tested its ability to determine distinct clusters (endotypes) of 106 

a sample of KOA patients. Leveraging these endotypes, we further developed an integrative ML 107 

framework and tested the potential of this methodology to assess pain and function responses to 108 

TKA surgery. 109 

 110 

Methods 111 

 112 

Study Sample 113 

A sample of 414 patients with primary KOA who underwent TKA within the Longitudinal 114 

Evaluation in the Arthritis Program-OA cohort (University Health Network, Toronto, ON, 115 

Canada), as previously described,20 and who had synovial fluid (collected intra-operatively), 116 

plasma and urine (collected up to 3 months prior to surgery) available, were selected for analysis. 117 

Subjects completed self-reported, multidimensional questionnaires from which baseline Western 118 

Ontario and McMaster Universities Arthritis Index (WOMAC) pain and function,21 Hospital 119 

Anxiety and Depression Scale (HADS)22 and painDETECT23 at baseline (completed within the 3-120 

months preceding surgery), and WOMAC pain and function 1-year post-TKA, were calculated. 121 

Improvement in WOMAC pain and function from baseline to 1 year post-TKA was calculated and 122 

individuals were categorized as responders (>33% improvement) or non-responders (≤33% 123 

improvement). HADS depression and anxiety scores were each categorized as normal (score 0-7), 124 

borderline case (score 8-11), and definite case (score 11-21)22. PainDETECT neuropathic-like pain 125 

scores were used to classify patients pain as likely nociceptive (score 0-12), unclear (score 13-18), 126 
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or likely neuropathic (score 19-38).23 Baseline age, sex, and weight and height [from which body 127 

mass index (BMI; kg/m2) was calculated] were also collected. Biofluids and patient data were 128 

collected with written informed consent from each patient and Research Ethics Board approval of 129 

the University Health Network, Toronto, ON (REB# 07-0383-BE; 14-7592-AE). 130 

 131 

MiRNA sequencing (miRNomics) and metabolomics 132 

MiRNA extraction was performed using 200 µL plasma (N=414), 100 µL synovial fluid (N=414), 133 

and 1 ml urine (N=414). cDNA libraries were prepared using a protocol we previously reported.15 134 

NGS was conducted at the Schroeder Arthritis Institute (Toronto) sequencing facility using the 135 

Illumina NextSeq550 platform. Alignment, processing and quality assessment was performed 136 

using a previously reported pipeline.24 Targeted metabolomics was used to profile 188 metabolites 137 

(Biocrates AbsoluteIDQ p180 kit, Biocrates Life Sciences AG, Austria) in N=414 plasma samples 138 

at The Metabolomics Innovation Centre (Calgary, Alberta) by LC-MS/MS, as previously 139 

described.12 Metabolite quantification and batch correction was conducted using the Absolute 140 

IDQ-coupled MetIDQ software (Biocrates). MiRNA count data and metabolite concentrations 141 

were normalized using sum normalization, log-transformation, and Pareto scaling.25 To stabilize 142 

variance estimates within differential expression analysis, empirical Bayes moderation techniques 143 

were applied.  144 

 145 

OmicVAE: integrative variational autoencoder architecture for multimodal clustering 146 

We generated a novel variational autoencoder (VAE) architecture named ‘omicVAE’ designed to 147 

cluster multimodal multi-omic data (Figure 1). OmicVAE consists of a single encoder network 148 

followed by 4 individual decoder networks, to perform integrative clustering combining 4 149 

modalities: metabolomics, miRNA plasma, miRNA synovial fluid, and miRNA urine. 150 

The encoder network inputs concatenated multimodal multi-omic data and maps it to a shared 151 

latent space representation using multiple fully connected neural network (FNN) layers with 152 

sigmoid activation. The encoder network's output layers parameterize the mean and variance of a 153 

Gaussian distribution representing the shared latent space. Each decoder network reconstructs its 154 

respective domain's input data from samples drawn from this latent space, using multiple fully 155 

connected neural network (FNN) layers. During training, variational inference optimizes the 156 

VAE's parameters. The objective function	𝐿!"!#$ includes the reconstruction loss (𝐿%&') and the 157 
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Kullback-Leibler (KL) divergence (𝐿()) between the learned latent distribution and a predefined 158 

prior (eqs. 1-3). Minimizing KL divergence regularizes the latent space, preventing overfitting and 159 

ensuring it remains structured and interpretable. The reconstruction loss measures the discrepancy 160 

between the input data and its reconstruction by the VAE decoder for each modality.  161 

𝐿%&' =	
*

+!"#$%&'(#")
∑ ||𝑋,&!#-"$.!&/(.) − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟,&!#-"$.!&/(.)(𝑧)||2 ++
.3*162 

														 *
+!(*+,-'$)!$

∑ ||𝑋,.4+5-'$)!$(.) − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟,.4+5-'$)!$(.)(𝑧)||
2 ++

.3*163 

		 											 *
+!(*+,)./&0($'

∑ ||𝑋,.4+5)./&0($'(.) − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟,.4+5)./&0($'(.)(𝑧)||
2 ++

.3*164 

		 												 *
+!(*+,12(/"

∑ ||𝑋,.4+512(/"(.) − 𝐷𝑒𝑐𝑜𝑑𝑒𝑟,.4+512(/"(.)(𝑧)||
2		+

.3*          (1)	165 

 166 

𝐿() =	−
1
2 (
(1 + 𝑙𝑜𝑔(𝜎,&!#-"$.!&/2 ) − 𝜇,&!#-"$.!&/2 −𝜎,&!#-"$.!&/2 ) 	+	167 

																							(1 + 𝑙𝑜𝑔 8𝜎,.4+5-'$)!$
2 9 − 𝜇,.4+5-'$)!$

2 −𝜎,.4+5-'$)!$
2 ) 	+	168 

																								(1 + 𝑙𝑜𝑔 8𝜎,.4+5)./&0($'
2 9 − 𝜇,.4+5)./&0($'

2 −𝜎,.4+5)./&0($'
2 ) 	+	169 

																								(1 + 𝑙𝑜𝑔:𝜎,.4+512(/"
2 ; − 𝜇,.4+512(/"

2 −𝜎,.4+512(/"
2 ))	                           (2)170 

 	171 

𝐿!"!#$ = 𝐿%&' + 𝐿()                      (3) 172 

where i represents the samples in each modality, X is the input data, Decoder(z) is the 173 

reconstructed data, and 𝜇 and	𝜎 denote the mean and variance of the Gaussian distribution in the 174 

latent space. Once omicVAE is trained, K-means clustering on the learned latent space is used to 175 

identify distinct subpopulations within the multimodal multi-omic data. 176 

 177 

Multi-omic signature identification within each cluster 178 

We employed a comprehensive approach to identify signature features (miRNAs and/or 179 

metabolites within three biofluids) influencing cluster assignment within each domain. We 180 

concurrently conducted standardized mean differences (SMD) analysis and differential expression 181 

(DE) analysis for pairwise cluster comparisons (one cluster vs others), using Benjamini-Hochberg 182 

(BH) adjusted p-values (q < 0.05) to identify significant features. By integrating these analyses, 183 
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we identified features with both large SMDs and significant DE, capturing robust signature 184 

features distinguishing clusters. 185 

 186 

Endotype pathway analysis 187 

MiRNAs gene targets per cluster were identified using the top 1% of targets per miRNA using 188 

mirDIP v. 5.2 (https://ophid.utoronto.ca/mirDIP)26 We performed pathway enrichment analysis 189 

for sets of gene targets in each cluster using pathDIP 5 (https://ophid.utoronto.ca/pathDIP).27 190 

Diseases, drugs and vitamins, and genetic information processing pathway types were excluded 191 

from enrichment analysis. Only pathways with q-value (BH adjusted) <0.01 were considered. 192 

Metabolite pathway enrichment analysis was not possible, so we identified pathways that included 193 

metabolites specific for each cluster for further analyses. Selected pathways specific for each 194 

cluster were visualized using NAViGaTOR 3.0.19 195 

(https://navigator.ophid.utoronto.ca/navigatorwp).28 Mapping of pathways to consolidated 196 

categories in pathDIP was used to calculate the number of pathways per category. ggradar2_1.1.0 197 

in R 4.3.0 was subsequently used to plot their distribution per cluster, scaling category pathway 198 

counts from 0% to 100%. 199 

 200 

Integrative machine learning framework for classifying response 201 

We developed a comprehensive two-step ML framework (Figure 4a) to integrate plasma 202 

metabolites, miRNA plasma, miRNA synovial fluid, and miRNA urine domain, along with clinical 203 

domain (consisting of age, sex, BMI, depression and anxiety categories, and neuropathic pain 204 

category), to classify 1-year pain and function responses (i.e. responders vs non-responders). In 205 

the first step, we trained separate unimodal ML models for each domain to extract features 206 

classifying 1-year response. We utilized the MICE library in R for imputing missing clinical data 207 

(missingness <8%). We explored various ML algorithms, including logistic regression, lasso 208 

regression, ridge regression, support vector machines and random forests, selecting models based 209 

on 10-fold cross-validation performance. 210 

 211 

In the second step, we integrated features from all domains using a naïve-Bayes meta-classifier, 212 

trained with classifiers from the unimodal models. Cross-validation was used for performance 213 

estimation and hyperparameter tuning. The final classification was generated by the meta-214 
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 9 

classifier based on integrated features. Model evaluation involved assessing the overall framework 215 

performance using area under the receiver operating characteristic curve (AUC) and analyzing 216 

feature importance with mean Gini impurity metrics.  217 

 218 

Role of the Funding Sources 219 

Funders had no role in study design, data collection and analysis, decision to publish, or 220 

manuscript writing. 221 

 222 

Findings 223 

 224 

Endotype and signature identification using omicVAE and K-means clustering 225 

We first sought to identify endotypes from our sample of 414 KOA patients. The patient sample 226 

was 57% female, with a mean age (±sd) of 65·7±8·7 years, and BMI (±sd) of 31±7·1 kg/m2. The 227 

majority of subjects had anxiety or depression symptom scores in the normal range and the 228 

majority had painDETECT scores indicating likely nociceptive pain. Mean baseline WOMAC 229 

pain score for the sample was 10·1±3·5 points on a 20 total point scale, and baseline WOMAC 230 

function score was 34·9 ± 11·9 points on a 68 total point scale (Supplementary Table 1).  231 

After metabolomics and miRNomics analyses of plasma, synovial fluid and urine, our analytical 232 

dataset consisted of 2727 molecular features from 4 domains: 151 plasma metabolites, 421 plasma 233 

miRNAs, 930 synovial fluid miRNAs, and 1225 urine miRNAs. We then developed omicVAE 234 

with K-means clustering (Figure 1), which uncovered three clusters of patients using the 4 domains 235 

(Figure 2a). Distribution of most baseline clinical, demographic and anthropometric measures 236 

were similar across clusters, except cluster 3 that had a higher proportion of subjects with 237 

depression scores in the normal range, and cluster 1 that had a higher proportion of subjects with 238 

likely neuropathic pain (Table 1). 239 

Significant features associated with each cluster were identified by the intersection of differential 240 

expression and standardized mean difference analyses. Distinct signatures consisting of 30, 16 and 241 

24 features for clusters 1-3, respectively, were identified (Figure 2b and Supplementary Table 2). 242 

Notably, each signature contained features from all 4 domains. In Cluster 1, the highest mean 243 

value difference was observed for synovial fluid hsa-miR-2053. In Cluster 2, synovial fluid hsa-244 
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miR-496 exhibited the highest mean value. In Cluster 3, plasma hsa-miR-570-3p had the highest 245 

mean value. Thus, each cluster represents a group of subjects with a distinct endotype. 246 

 247 

Endotype feature signatures are enriched for unique pathways 248 

We next sought to determine if cluster endotype signatures were associated with unique 249 

physiological pathways. We first identified putative miRNA-gene targets using mirDIP,26 250 

identifying 3257, 2211, and 2319 individual genes targeted by the miRNAs in each of the endotype 251 

signatures associated with clusters 1-3, respectively. Using these gene set lists, we performed 252 

enrichment analysis using pathDIP (Supplementary Table 3-5).27 For metabolites in each endotype 253 

signature, pathway annotations were also identified using pathDIP (Supplementary Table 6-8). All 254 

pathways were also annotated with categories in pathDIP. For each endotype, individual miRNA-255 

gene targets and metabolites were linked to some common as well as unique pathways. The top 256 

unique enriched and annotated pathways linked to miRNA-targeted genes or metabolites, 257 

respectively, for each endotype are displayed in a network showing individual pathways and 258 

categories (Figure 3a, Supplementary Figures 1-3).  259 

We next used pathway categories to evaluate physiologically-relevant mechanisms linked to each 260 

endotype. Each enriched miRNA-derived pathway or annotated metabolite pathway was counted 261 

based on its category annotation in pathDIP, scaled and visualized using radar plots (Figure 3b). 262 

The cluster 1 endotype signature was most linked to pathway categories associated with 263 

development and regeneration, membrane transport, metabolism of various molecules, and the 264 

nervous system. The cluster 2 endotype signature was most linked to aging, and cellular 265 

community categories. Finally, the cluster 3 endotype signature was most linked to transport and 266 

catabolism, signal transduction, sensory system, endocrine system, excretory system, immune 267 

system, catabolism, and lipid metabolism categories. Overall, these analyses suggested that 268 

features associated with each endotype were uniquely associated with distinct physiological 269 

pathways. 270 

 271 

Evaluation of classification performance for WOMAC pain and function responses 272 

To determine the classification performance of our clusters for identifying post-TKA WOMAC 273 

pain and function response status, we used an integrative ML framework using five domains—274 

plasma metabolites, plasma miRNAs, synovial fluid miRNAs, urine miRNAs, and clinical data 275 
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(age, sex, BMI, anxiety and depression categories, and neuropathic pain category; Figure 4a). 276 

Subject clusters had similar mean pain and function scores 1 year post-TKA, change in scores 277 

from baseline to 1 year, as well as pain and function response rates (Table 1). We first conducted 278 

differential expression analysis in each cluster, identifying metabolites with a fold-change of 1·1 279 

and miRNAs within each biofluid with a fold change of 1·5 between responders and non-280 

responders. Subsequently, we employed 10-fold cross-validation to estimate the AUC. Of the ML 281 

approaches compared, random forests consistently outperformed others in each individual domain 282 

(Supplementary Table 9) and was used for the unimodal ML models.  283 

After differential analysis-based feature selection, cluster 1-3 retained 250, 87, and 49 features, 284 

respectively for the ML analysis to classify pain response (Supplementary Table 10). Initially, 285 

unimodal models were applied to each domain. Within cluster 1, miRNA plasma demonstrated 286 

the highest unimodal performance with an AUC of 0·735. However, the integrative performance, 287 

combining all 4 domains in the meta-classifier, notably improved AUC to 0·841 (highlighted in 288 

red in the ROC plot). For cluster 2, the clinical domain had the highest unimodal AUC of 0·740, 289 

while the integrative AUC was 0·816. Cluster 3 achieved the highest integrative AUC of 0·879, 290 

with miRNA urine showing the highest unimodal AUC of 0·786 (Figure 4b).  291 

Based on differential analysis-based feature selection to classify function response, clusters 1-3 292 

retained 63, 46, and 46 features, respectively, for the ML analysis (Supplementary Table 11). 293 

Across clusters 1-3, the clinical data domain consistently exhibited the best performance among 294 

unimodal domains, with AUCs of 0·702, 0·791, and 0·722, respectively. In terms of integrative 295 

performance, clusters 1-3 achieved AUCs of 0·786, 0·808, 0·738 (Figure 4c), respectively. 296 

 297 

Identifying key response classification features in our multimodal machine learning framework 298 

To enhance the interpretability of our model we identified the most important features (molecular 299 

and clinical) contributing to response classification in each cluster. The top 20 features 300 

contributing to WOMAC pain or function response classification are shown in Supplementary 301 

Figures 4 & 5, respectively. Each top 20 list consisted of features from all 4 molecular domains, 302 

with a notable absence of clinical features; however, all molecular and clinical features inherently 303 

played a role in response classification (Supplementary Tables 12&13). Interestingly, only 3 304 

miRNAs overlapped in the top 20 important features for WOMAC pain response between clusters 305 

2 & 3, namely synovial fluid hsa-miR-1265 and hsa-mir-642a-3p, plasma hsa-3942-5p. In 306 
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addition, only the metabolite glutamine overlapped in the top 20 important feature lists of clusters 307 

2 & 3 for WOMAC function response. Thus, using our integrative approach, the vast majority of 308 

the most important features for response classification were unique for each cluster and were 309 

primarily driven by molecular entities. Overall, these findings highlight the diverse molecular 310 

features associated with outcome classification in each cluster, emphasizing the importance of 311 

integrating multiple domains for classification modeling of WOMAC pain and function responses 312 

post-TKA. 313 

 314 

Interpretation 315 

 316 

Demographic, anthropometric and clinical characteristics of OA patients are heterogeneous, 317 

influencing outcomes to therapy, including TKA.3,29 Heterogeneity has also been identified 318 

through biofluid data, however, most studies to date have used single biofluids with single 319 

molecular type measures to identify endotypes within OA cohorts.10,11 We developed a novel 320 

multimodal deep learning algorithm, omicVAE, to cluster a sample of 414 KOA subjects who 321 

underwent TKA using preoperative miRNA and metabolite feature sets, identified by miRNomics 322 

and targeted metabolomics, from plasma, synovial fluid and urine,  and uncovered three unique 323 

cluster endotypes. To our knowledge, our study is the first to use patient-matched multi-fluid, 324 

multi-omic approach to KOA patient endotyping. Not only did we uncover three unique multi-325 

omic-based cluster endotypes, each was linked to unique biologically-relevant pathways. Despite 326 

a similar clinical phenotype, the cluster 1 endotype was primarily linked to metabolic processes 327 

and nervous system pathways, the cluster 2 endotype was primarily associated with aging 328 

pathways, and the cluster 3 endotype was primarily linked to immune, endocrine, and lipid 329 

metabolism pathways. Overall, the cluster endotypes uncovered are likely to contribute to, or be 330 

the result of, distinct mechanisms associated with KOA patients. Finally, using this novel approach 331 

to cluster endotyping, combined with integrative multimodal ML, we enhanced classification of 332 

patient-reported pain and function responses beyond that achieved using clinical measures alone. 333 

Surprisingly, it was the molecular entities that primarily drove classification of pain and function 334 

responses using our integrative modeling. Overall, our unique methodological approach reduced 335 

OA patient heterogeneity by defining patient clusters that had intra-cluster molecular differences 336 

that enhanced classifing pain and function responses to TKA. As endotypes are further refined and 337 
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molecular entities best associated with classification are further characterized, it will be important 338 

to understand how these response-based signatures may relate to physiological responses post-339 

surgery. 340 

The strength of our methodology lies in developing integrative deep learning and ML techniques 341 

for efficient multi-omic endotyping and response classification in KOA patients. VAEs offer 342 

advantages to integrating multiple domains for clustering compared to traditional approaches by 343 

effectively capturing the underlying structure of heterogeneous data through a joint latent 344 

representation. While traditional approaches such as dimensionality reduction or sequential 345 

clustering may provide insights, they often suffer from limitations such as difficulty in capturing 346 

non-linear relationships, and inadequate integration of domain-specific characteristics. Unlike 347 

standard VAEs,19 we employed 4 separate decoders, enabling domain-specific reconstruction 348 

facilitating robust subject clustering, accounting for the inherent uncertainty in the latent space via 349 

the VAE’s probabilistic nature. Overall, VAEs effectively leverage complementary information 350 

from multiple modalities for a more comprehensive characterization of KOA patient endotypes. 351 

The integration of multiple data domains through our comprehensive two-step ML framework 352 

represents a significant advancement in response modeling for KOA outcomes by combining 353 

complementary information inherent in metabolomics, miRNA, and clinical data domains. 354 

Utilization of unimodal ML models in the first step allowed for extraction of domain-specific 355 

features that could classify 1-year TKA pain and function responses, while subsequent integration 356 

of these features using a naïve-Bayes meta-classifier enhanced classification accuracy. Naïve-357 

Bayes classifiers emulate aspects of clinical decision-making by probabilistically combining 358 

evidence from multiple sources to make classifications.30 Importantly, our novel framework 359 

demonstrated improvements in classification performance compared to unimodal domain-specific 360 

models, underscoring the utility of an integrative approach. 361 

Although we included three biofluids to integrate miRNA or metabolite features to identify 362 

endotypes among KOA patients, additional endotypes may exist. Incorporating additional omic 363 

technologies (e.g. proteomics, genomics, methylomics) in the presented framework, as well as 364 

comprehensively evaluating omic measures across all biofluids may further refine endotypes, or 365 

uncover additional endotypes to further improve our understanding of KOA and ability to more 366 

accurately classify responses to interventions. Future studies should also focus on easily obtained 367 

patient biofluids, such as urine and blood, to determine if the presented approach can show similar 368 
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endotyping capability and response classification accuracy. In response classification modelling, 369 

we only evaluated a subset of clinical and demographic variables associated with KOA and patient 370 

outcomes to TKA, but incorporation of additional patient-related clinical and sociodemographic 371 

variables (e.g. comorbidities, medication use, race etc.), alongside endotype data, may also help 372 

improve modeling accuracy. Although we extensively validated our integrative ML unimodal 373 

models using a 10-time, 10-fold cross-validation, a lack of external validation remains. For 374 

external validation to be accomplished, better patient clinical and sociodemographic annotations, 375 

omic data and biosample sharing practices, and harmonization are needed.7,8 Lastly, similar 376 

evaluations in additional patient cohorts, such as those with early-KOA and other afflicted joints, 377 

or evaluating other response measures, would also be of interest moving forward. 378 

Overall, using our novel modelling framework, we were able to unravel some heterogeneity of a 379 

sample of late-stage surgical KOA patients and evaluate post-TKA response classification. We 380 

anticipate this methodological approach will aid in understanding underlying molecular 381 

contributors and pathways to clusters of OA patients, and define molecular signatures contributing 382 

to intervention response. With additional studies, our methodological approach could ultimately 383 

help in shared patient-clinician decision making with regard to proceeding with selected therapies, 384 

including TKA for primary KOA. 385 

 386 

Contributors 387 

JSR, DS, OEG, KH, AS, YRR, AVP, RG and MK conceptualized the study. NNM, K. Syed, AVP, 388 

YRR, RG and MK supervised patient data and biofluid collection. KP managed biofluid and 389 

patient data storage. JSR, DS, OEG, KH, AS, CP, IJ, K. Sundararajan, YRR, AVP, RG and MK 390 

processed and curated the data. JSR, DS, OEG, KH, AS, CP, PP, NF, IJ and MK created the 391 

methodology and validated the data. DS developed the deep learning and machine learning 392 

algorithms. DS, OEG, and KH performed statistical analyses. JSR, DS, CP, IJ and MK created 393 

figures and tables. JSR, DS, KH, AS, CP and MK wrote the manuscript. MK supervised and 394 

acquired funding for multi-omic analysis. All authors had full access to the study data, were 395 

involved in manuscript editing, and were responsible for the decision to submit for publication. 396 

 397 

Data Sharing 398 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 15 

De-identified subject primary microRNA sequencing datasets are available on the Gene 399 

Expression Omnibus under accession number GSE222979. Software code and the dataset of 400 

processed miRNA counts, metabolite concentrations and demographic, anthropometric and 401 

clinical questionnaire responses used in this study is available at 402 

https://github.com/divya031090/DeepLearning_KOA. 403 

 404 

Declaration of Interests 405 

We declare no competing interests. 406 

 407 

Acknowledgments 408 

Funding for this project was provided by the Canada Research Chairs Program (MK), Tony and 409 

Shari Fell Platinum Chair in Arthritis Research (MK), Campaign to Cure Arthritis, University 410 

Health Network Foundation. AVP is supported by the Arthritis Society Canada STAR Award-20-411 

0000000012 and YRR is supported by J. Bernard Gosevitz Chair in Arthritis Research at 412 

University Health Network. Computational analysis was supported in part by funding from 413 

Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2024-04314), 414 

Canada Foundation for Innovation (CFI #225404, #30865), and Ontario Research Funds (RDI 415 

#34876, RE010-020). The funders had no role in study design, data collection and analysis, 416 

decision to publish, or preparation of the manuscript. Authors would like to thank the clinical 417 

research team within the Division of Orthopedics and members of the Buchan Arthritis Center at 418 

the Schroeder Arthritis Institute for their assistance in study recruitment. We also thank Dr. Max 419 

Kotlyar for his assistance during initial discussions related to the study. 420 

  421 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 16 

References 422 

1. Long H, Liu Q, Yin H, et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 423 

to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol 2022; 424 

74(7): 1172-83. 425 

2. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019; 393(10182): 1745-59. 426 

3. Bierma-Zeinstra SM, Verhagen AP. Osteoarthritis subpopulations and implications for 427 

clinical trial design. Arthritis Res Ther 2011; 13(2): 213. 428 

4. Dell'Isola A, Allan R, Smith SL, Marreiros SS, Steultjens M. Identification of clinical 429 

phenotypes in knee osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord 430 

2016; 17(1): 425. 431 

5. Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis 432 

phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage 2017; 433 

25(12): 1926-41. 434 

6. Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of 435 

patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic 436 

review of prospective studies in unselected patients. BMJ Open 2012; 2(1): e000435. 437 

7. Ramos YFM, Rice SJ, Ali SA, et al. Evolution and advancements in genomics and 438 

epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024. 439 

8. Rai MF, Collins KH, Lang A, et al. Three decades of advancements in osteoarthritis 440 

research: insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis 441 

Cartilage 2024; 32(4): 385-97. 442 

9. Nielsen RL, Monfeuga T, Kitchen RR, et al. Data-driven identification of predictive risk 443 

biomarkers for subgroups of osteoarthritis using interpretable machine learning. Nat Commun 444 

2024; 15(1): 2817. 445 

10. Angelini F, Widera P, Mobasheri A, et al. Osteoarthritis endotype discovery via clustering 446 

of biochemical marker data. Ann Rheum Dis 2022; 81(5): 666-75. 447 

11. Werdyani S, Liu M, Zhang H, et al. Endotypes of primary osteoarthritis identified by 448 

plasma metabolomics analysis. Rheumatology (Oxford) 2021; 60(6): 2735-44. 449 

12. Rockel JS, Layeghifard M, Rampersaud YR, et al. Identification of a differential 450 

metabolite-based signature in patients with late-stage knee osteoarthritis. Osteoarthr Cartil Open 451 

2022; 4(3): 100258. 452 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 17 

13. Ali SA, Espin-Garcia O, Wong AK, et al. Circulating microRNAs differentiate fast-453 

progressing from slow-progressing and non-progressing knee osteoarthritis in the Osteoarthritis 454 

Initiative cohort. Ther Adv Musculoskelet Dis 2022; 14: 1759720X221082917. 455 

14. Li YH, Tavallaee G, Tokar T, et al. Identification of synovial fluid microRNA signature in 456 

knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthritis 457 

Cartilage 2016; 24(9): 1577-86. 458 

15. Ali SA, Gandhi R, Potla P, et al. Sequencing identifies a distinct signature of circulating 459 

microRNAs in early radiographic knee osteoarthritis. Osteoarthritis Cartilage 2020; 28(11): 1471-460 

81. 461 

16. Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating microRNAs in osteoarthritis. 462 

Ann Rheum Dis 2015; 74(3): e18. 463 

17. Lin X, Tian T, Wei Z, Hakonarson H. Clustering of single-cell multi-omics data with a 464 

multimodal deep learning method. Nat Commun 2022; 13(1): 7705. 465 

18. Kopf A, Fortuin V, Somnath VR, Claassen M. Mixture-of-Experts Variational 466 

Autoencoder for clustering and generating from similarity-based representations on single cell 467 

data. PLoS Comput Biol 2021; 17(6): e1009086. 468 

19. Rong Z, Liu Z, Song J, et al. MCluster-VAEs: An end-to-end variational deep learning-469 

based clustering method for subtype discovery using multi-omics data. Comput Biol Med 2022; 470 

150: 106085. 471 

20. Sandhu A, Espin-Garcia O, Rockel JS, et al. Association of synovial fluid and urinary 472 

C2C-HUSA levels with surgical outcomes post-total knee arthroplasty. Osteoarthritis Cartilage 473 

2024; 32(1): 98-107. 474 

21. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of 475 

WOMAC: a health status instrument for measuring clinically important patient relevant outcomes 476 

to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1988; 477 

15(12): 1833-40. 478 

22. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 479 

1983; 67(6): 361-70. 480 

23. Freynhagen R, Baron R, Gockel U, Tolle TR. painDETECT: a new screening questionnaire 481 

to identify neuropathic components in patients with back pain. Curr Med Res Opin 2006; 22(10): 482 

1911-20. 483 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 18 

24. Potla P, Ali SA, Kapoor M. A bioinformatics approach to microRNA-sequencing analysis. 484 

Osteoarthr Cartil Open 2021; 3(1): 100131. 485 

25. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, 486 

scaling, and transformations: improving the biological information content of metabolomics data. 487 

BMC Genomics 2006; 7: 142. 488 

26. Hauschild AC, Pastrello C, Ekaputeri GKA, et al. MirDIP 5.2: tissue context annotation 489 

and novel microRNA curation. Nucleic Acids Res 2023; 51(D1): D217-D25. 490 

27. Pastrello C, Kotlyar M, Abovsky M, Lu R, Jurisica I. PathDIP 5: improving coverage and 491 

making enrichment analysis more biologically meaningful. Nucleic Acids Res 2024; 52(D1): 492 

D663-D71. 493 

28. Brown KR, Otasek D, Ali M, et al. NAViGaTOR: Network Analysis, Visualization and 494 

Graphing Toronto. Bioinformatics 2009; 25(24): 3327-9. 495 

29. Fernandez-de-Las-Penas C, Florencio LL, de-la-Llave-Rincon AI, et al. Prognostic Factors 496 

for Postoperative Chronic Pain after Knee or Hip Replacement in Patients with Knee or Hip 497 

Osteoarthritis: An Umbrella Review. J Clin Med 2023; 12(20). 498 

30. Badgeley MA, Zech JR, Oakden-Rayner L, et al. Deep learning predicts hip fracture using 499 

confounding patient and healthcare variables. NPJ Digit Med 2019; 2: 31. 500 

  501 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.13.24308857doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308857
http://creativecommons.org/licenses/by-nc/4.0/


 19 

 502 

 503 

 504 

 505 
 506 

Figure 1: Overall framework for Deep Learning-based Multimodal Clustering. Deep-507 
learning framework for multimodal integration and clustering using Variational Autoencoder 508 
(VAE) modeling. Four individual decoders in the proposed VAE accurately identify the latent 509 
distribution within each domain (M1-M4) capturing the complex non-linear associations within 510 
the multimodal data. K-means approach is used for identifying three clusters from the obtained 511 
latent distribution. ‘N’ represents the no. of patients and ‘nMx’ represents the number of features 512 
in each data domain. 513 
 514 
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 516 

 517 
 518 

Figure 2. Integrated analysis of patient clustering and miRNA and metabolite feature 519 
signatures. (a) Three-dimensional illustration (latent dimension 1-3) of the three clusters obtained 520 
using a Variational Autoencoder-based deep learning framework. Cluster 1 (red) comprises 146 521 
patients, Cluster 2 (green) consists of 138 patients, and Cluster 3 (blue) includes 130 patients. (b) 522 
Molecular signature profiles for clusters 1, 2, and 3 respectively (left to right) derived through the 523 
intersection of the most significant variables (p < 0.05) identified from both standardized mean 524 
differences analysis and differential expression analysis within the plasma metabolites and 525 
miRNA domains, differentiating each cluster. 526 
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Table 1. Summary statistics of clinical variables within each cluster identified from variational autoencoder 
machine-learning modeling and K-means clustering. Frequency (percentage) are provided for categorical variables 
while median (Quartile 1, Quartile 3) values are presented for continuous variables according to patients within each 
cluster. p value is computed using wilcoxon rank sum test for continuous variables and chi-square or fisher's test as 
appropriate for categorical variables. 

  Cluster 1 (n=146) Cluster 2 (n=138) Cluster 3 (n=130) p-value between 
clusters 

Sex       0.9 
Female [N, (%)] 84 (58) 76 (55) 72 (55) 

 

Male [N, (%)] 62 (42) 62 (45) 58 (45) 
 

Age       0.37 
Mean (sd) 66.2 (8.2) 65.4 (8.0) 65.5 (8.9) 

 

Median (Q1,Q3) 67 (62, 71) 65.0 (60.0, 70.8) 66 (60, 72) 
 

BMI       0.55 
Mean (sd) 30.7 (6.1) 31.9 (7.7) 31.4 (7.3) 

 

Median (Q1,Q3) 29.2 (26.4, 33.8) 30.0 (26.5, 35.7) 31.1 (25.3, 34.7) 
 

HADS anxiety       0.72 
normal [N, (%)] 103 (72) 98 (73) 100 (79) 

 

borderline [N, (%)] 21 (15) 20 (15) 13 (10) 
 

case [N, (%)] 19 (13) 17 (13) 14 (11) 
 

Missing (N) 3 3 3 
 

HADS depression       0.037 
normal [N, (%)] 107 (74) 105 (78) 112 (87) 

 

borderline [N, (%)] 23 (16) 19 (14) 6 (5) 
 

case [N, (%)] 15 (10) 11 (8) 11 (9) 
 

Missing (N) 1 3 1 
 

painDETECT       0.011 
neuropathic [N, (%)] 30 (21) 14 (10) 11 (8) 

 

nociceptive [N, (%)] 86 (59) 82 (59) 87 (67) 
 

unclear [N, (%)] 27 (18) 31 (22) 23 (18) 
 

Missing [N, (%)] 3 (2) 11 (8) 9 (7) 
 

WOMAC pain baseline       0.98 
Mean (sd) 10.2 (3.5) 10.0 (3.2) 10.0 (3.7) 

 

Median (Q1,Q3) 10 (8, 12) 10 (8, 12) 10.0 (8.0, 12.4) 
 

WOMAC pain 1yr       0.34 
Mean (sd) 3.7 (4.0) 3.7 (3.6) 3.2 (3.6) 

 

Median (Q1,Q3) 3.0 (1.0, 5.8) 3 (1, 6) 2.0 (0.2, 5.0) 
 

WOMAC pain change (1 yr - baseline)       0.55 
Mean (sd) -6.5 (4.1) -6.3 (3.9) -6.8 (4.1) 

 

Median (Q1,Q3) -7 (-9, -4) -6.0 (-9.0, -3.2) -7.0 (-9.8, -4.0) 
 

WOMAC pain change categorical       0.48 
≤33.3% [N, (%)] 27 (18) 33 (24) 22 (17) 

 

>33.3% [N, (%)] 119 (82) 105 (76) 108 (83) 
 

WOMAC function baseline       0.74 
Mean (sd) 34.7 (11.9) 34.9 (11.4) 33.8 (12.3) 

 

Median (Q1,Q3) 36 (26, 41) 35.0 (26.2, 43.0) 34 (26, 41) 
 

Missing (N) 1 0 1 
 

WOMAC function 1 yr       0.24 
Mean (sd) 14.8 (13.7) 14.7 (12.9) 12.8 (13.0) 

 

Median (Q1,Q3) 12.0 (4.2, 21.0) 11.5 (4.0, 20.8) 9.0 (2.2, 19.0) 
 

WOMAC function change (1 year-
baseline)       

0.76 

Mean (sd) -20.3 (13.4) -20.0 (13.8) -20.2 (13.3) 
 

Median (Q1,Q3) -20 (-30, -11) -18.4 (-31.0, -10.0) -19.0 (-28.8, -11.0) 
 

WOMAC function change categorical       0.24 
≤33.3% [N, (%)] 33 (23) 32 (23) 24 (19) 

 

>33.3% [N, (%)] 112 (77) 106 (77) 105 (81) 
 

       Missing (N) 1 0 1 
 

BMI, body mass index; HADS, hospital anxiety and depression scale; Q, quartile; sd, standard deviation. 
 528 
 529 
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 531 
 532 
Figure 3. Cluster endotype signatures are associated with different physiological pathways. 533 
(a) Network depicting unique enriched pathways from miRNA-gene targets and annotated 534 
pathways from metabolites associated with individual cluster endotype signatures. Labels show 535 
pathways with lowest q-value or highest number of annotated genes. (b) Radar plots of pathway 536 
categorizations from enriched pathways from miRNA-gene targets and annotated pathways from 537 
metabolites indicating categories most associated to individual clusters endotypes. 538 
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 540 
 541 
Figure 4: Machine Learning modeling for classifying response to 1 year pain and function 542 
within each cluster (a) Comprehensive two-step machine learning (ML) framework wherein, 543 
initially, unimodal ML models extract features from each domain, including metabolites, miRNA 544 
from plasma, synovial fluid, urine, and clinical data. A second-level multimodal machine learning 545 
classifier integrates these features to efficiently classify response vs. non-response at 1 year. (b) 546 
Receiver Operating Characteristic (ROC) plots illustrating the Area Under the Curve (AUC) for 547 
individual domains, alongside the integrated AUC (in red) combining all five domains to classify 548 
WOMAC pain response. (c) Receiver Operating Characteristic (ROC) plots illustrating the Area 549 
Under the Curve (AUC) for individual domains, alongside the integrated AUC (in red) combining 550 
all five domains to classify WOMAC function response. Notably, the integrated AUC outperforms 551 
individual AUCs in Cluster 1, Cluster 2, and Cluster 3. 552 
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