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ABSTRACT (word count max 250, now 250)

Deep phenotyping is important for improving diagnostics and rare diseases research and is
especially effective when standardized using Human Phenotype Ontology (HPO). Patients are
an under-utilized source of information, so to facilitate self-phenotyping we previously
“translated” HPO into plain language (“layperson HPO”). Another self-phenotyping survey,
GenomeConnect, asks patient-friendly questions that map to HPO. However, self-reported data
has not been assessed. Since not all HPO terms are translated to layperson HPO or in the
GenomeConnect survey, we created theoretical maximum-accuracy phenotype profiles for each
disease for each instrument, representing the theoretical maximum performance. Both
instruments performed well in analyses of semantic similarity (area under the curve 0.991 and
0.954, respectively). To explore the real-world implications, we randomized participants with
diagnosed genetic diseases to complete the GenomeConnect, Phenotypr, or both instruments.
For each diagnosed disease, we compared the derived disease profile to the patient-completed
profile for each instrument. Profiles resulting from participant responses to the GenomeConnect
survey were more accurate than to the Phenotypr instrument. The Phenotypr instrument had a
tighter distribution of scores for respondents who did both instruments and was therefore more
precise. We evaluated the ability of each known Mendelian disease HPO phenotype profile to
retrieve the corresponding disease. We conducted interviews and generally participants
preferred the GenomeConnect multiple choice format over the autocomplete Phenotypr format.
Our results demonstrate that individuals can provide rich HPO phenotype data. These results
suggest that self-phenotyping source of information could be used to support diagnostics or
supplement profiles created by clinicians.

INTRODUCTION

In addition to seeing a variety of physicians, patients with an undiagnosed disease spend an
enormous amount of time online and in patient communities describing their symptoms and
trying to find other patients like them. Patients’ self-descriptions are often granular but are not
expressed in a computer-recognizable form and are rarely utilized in clinical or informatics
contexts. In addition, undiagnosed disease patients also go from specialist to specialist, often
with little or no care coordination between them. Yet a complete understanding of all aspects of
the features that characterize a patient’s condition (“phenotyping”) is vital to make a diagnosis
and critical to inform the genetic analysis that may lead to the answer. Tools and standards for
genomic data analysis have advanced dramatically over the last decade [1]; by contrast, despite
the critical importance of phenotyping, collecting phenotypic data has not become more
standardized or less expensive [2]. One approach to collecting comprehensive phenotyping
data, taken by the NIH Undiagnosed Diseases Program (UDP) [3–5] and the expanded
Undiagnosed Diseases Network (UDN), is to bring the patient to a medical center for
phenotyping by different subspecialists [3–5].

The Human Phenotype Ontology (HPO) is a structured and logically-defined vocabulary of
phenotypic features encountered in human disease. It was developed to facilitate deep
phenotyping [6], whereby phenotypic findings (a phenotypic profile) are captured [7]. The
resulting “HPO profile” can be used to assist with identifying the most probable candidate
disease, as well as to match patients with similar phenotypes/genotypes through tools such as
the Matchmaker Exchange [8,9]. The use of semantic similarity and probabilistic models in
medical applications has increased over the past years, leading to a variety of algorithms to
calculate semantic similarity between phenotype profiles and thereby support improved
diagnostics [10–13].
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In the typical evaluation of a patient with an undiagnosed disease, the clinical team conducts a
comprehensive phenotype evaluation and assembles a list of HPO terms characterizing the
patient’s phenotypes. However, even this intensive process may leave important gaps. Patients
often have a uniquely comprehensive knowledge of their phenotypic features, potentially
because there are phenotypes that are not asked about, are not easily observed in a clinical
setting, or are not shared effectively across care providers. Thus, self-phenotyping may be a
valuable addition to family history, clinical evaluation, and diagnostic testing in identifying a
genetic diagnosis. In addition, self-phenotyping may be especially important for individuals who
do not have access to receive comprehensive phenotyping by clinicians. Not only could
self-phenotyping save time and money, but it could alleviate bottlenecks in the diagnostic
odyssey and, importantly, empower patients to participate in their own care.

In light of the value of patient self-phenotyping and the need to generate HPO terms, several
approaches have been taken. One is to have patients answer survey questions that describe
their phenotypes; the responses can then be mapped to HPO terms. This is the approach taken
by GenomeConnect, the patient registry developed by the Clinical Genome Resource (ClinGen)
[14]. The GenomeConnect self-phenotyping survey was developed as a broad “review of
systems” to add phenotypic context to variant observations submitted to ClinVar; on this initial
survey, participants are presented with a limited number of “common” phenotype terms
associated with each body system, as well as an area to describe other features with free text.
Additional, more focused surveys are assigned to the participant based on their answers to the
initial survey. For example, if a participant indicated that they experienced seizures, they would
later be assigned the GenomeConnect seizure survey, designed to collect more in-depth
information about type, onset, treatment history, etc. Within GenomeConnect, phenotypic and
genomic variant information is collected on each participant with the primary goal of providing
the type of information needed to adjudicate variant classifications, either by ClinGen expert
panels or others. However, since the GenomeConnect survey was not designed for diagnostic
use, it had not been validated to assure that the HPO terms generated by the survey accurately
reflect the patient’s phenotype. We sought to do this validation as a vital step to demonstrate
that patients’ production of structured phenotypic data is accurate and potentially diagnostically
useful [15,16]. An alternative method for self-phenotyping is for patients to directly select HPO
terms corresponding to their symptoms. However, since most HPO terms are medical terms
unfamiliar to patients, this requires the HPO terms be “translated” to plain language terms that a
patient would be more familiar with. This is the approach taken by the Monarch Initiative [17,18],
which systematically translated plain language counterparts for each of 8,164 HPO terms,
although not all HPO terms are readily translatable (Figure 1); we call this the “layperson HPO”.
The utility of the layperson version of HPO in self-phenotyping was unknown as it had not been
computationally assessed or evaluated in patients.
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Figure 1. The Human Phenotype Ontology and layperson encoding. The Gold standard
profile for Marfan Syndrome includes many possible facial phenotypes illustrated by the leaf
nodes above. Each such phenotype is shown in its location within the overall HPO graph. For
the leaf nodes, the patient-centered terms are shown in green on the right and their clinical
counterparts are shown in teal to the left.

The goal of this study was to assess these two self-phenotyping approaches, the
GenomeConnect survey and the layperson HPO  — to benchmark their theoretical maximum
utility as well as to explore patients’ real-world performance. Our long-term objective is to
integrate self-phenotyping into the evaluation of patients to facilitate clinical diagnostics and
research.

METHODS

Overview of HPO profile approaches

For each of 7,344 unique known Mendelian diseases in the Monarch Initiative’s standard corpus
there exists a reference phenotype profile [19] that is curated from the literature and from
disease reference sources such as OMIM and Orphanet. However, not all of these clinical HPO
phenotype terms are readily translatable into plain language in the layperson HPO, and only a
fraction are mappable from GenomeConnect’s limited number of survey questions. We therefore
sought to understand the impact that the differences in profile richness could have on the
diagnostic utility of these two self-reported phenotyping approaches. For each of 7,344 known
Mendelian diseases we compared the Gold standard reference HPO phenotype profile (center,
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teal in the Figure 1 example, “HPO-Gold” in Table 1) to profiles based on terms in the layperson
HPO and to profiles based on terms mappable to the GenomeConnect survey responses
[20,21]. We determined, for each disease, whether the resulting HPO phenotypic profiles from
the two self-phenotyping methods (the GenomeConnect survey and layperson HPO) identified
that given disease after comparing against all 7,344 diseases curated with the Gold standard
HPO profiles. Source profiles are available at
https://github.com/monarch-initiative/hpo-survey-analysis/tree/master/data/disease_profiles.

Figure 2. Overall phenotype profile comparison strategy (Wilms’ tumor example). Shown
are example Wilms Tumor Gold standard phenotypes (teal) and their comparison to their TMax
and simulated (life-like) counterparts for each of the two instruments: layperson subset of HPO
(green, left) or the GenomeConnect mappings to HPO (purple, right). Example real patient
responses are shown to the leftmost and rightmost columns, respectively.

Generating theoretical maximum accuracy (TMax) phenotype profiles

Because not all of the HPO is layperson accessible, and not all of the layperson HPO is
available in the GenomeConnect survey, we created theoretical maximum (TMax) phenotype
profiles for each of the two instruments. The TMax profiles represent the theoretical maximum
patient performance for each instrument. To derive these, we started with the Gold standard

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.24308791doi: medRxiv preprint 

https://paperpile.com/c/nglgol/QABYt+XFJVs
https://github.com/monarch-initiative/hpo-survey-analysis/tree/master/data/disease_profiles
https://doi.org/10.1101/2024.06.13.24308791
http://creativecommons.org/licenses/by/4.0/


reference HPO phenotype profile and omitted terms that were not available using each
phenotyping method. In the case of the layperson HPO, the TMax profile is constrained to terms
for which there also exists a layperson HPO synonym. In the case of GenomeConnect, the
TMax profile is constrained to the HPO layperson synonyms that are mappable to questions
asked in the survey. The TMax profiles therefore represent the theoretical maximum diagnostic
utility achievable for a profile generated by a layperson that answers every applicable entry on
each of the two instruments.

Generating simulated “life-like” (Sim) phenotype profiles

There are many reasons patients are unlikely to encode their phenotypes to perfectly match the
clinical gold standard profile for their disease, including phenotype variability, unrelated
symptoms, and challenges in accurately completing the instrument. Therefore, we wanted to
evaluate realistic profiles wherein we randomly added noise and made omissions. For each of
the two phenotyping methods (GenomeConnect survey and the layperson HPO), we simulated
20 patients each for 7,344 rare diseases, generating 146,880 simulated profiles per method. To
create each simulated patient, we started with the TMax profile based on the available HPO
terms in the method by constraining the patient profile to HPO terms that had a layperson or
GenomeConnect translation. We then computationally and randomly created simulated profiles
from the TMax phenotype profiles by omitting terms, adding imprecision, and adding noise
(defined as terms not associated with the disease). Terms that were omitted were picked
randomly by the computer. Terms that were randomly selected to become less precise were
replaced by their parent term. For example, if a disease was annotated to the term “Distal lower
limb amyotrophy”, we would select the term “Lower limb amyotrophy” for the simulated profile.
Noise was added by selecting random phenotypes in the subset not annotated to the target
disease. We decided the number of terms selected based on the size of the TMax profile:10% of
the terms were made less precise, 20% of the terms were omitted, and 23% of the terms in the
final profile were noise.

Permuting Gold standard phenotype profiles

For simulating profiles based on the full clinical Gold standard phenotype profiles, we increased
the noise parameters since the layperson HPO and GenomeConnect derivation process
naturally added omissions and imprecision. For these Gold standard simulations
(HPO-Gold-Sim below), 30% of the terms were made less precise, 40% of the terms were
omitted, and 23% of the terms in the final profile were noise. We ensured that all simulated
profiles were unique.

Instrument development

Layperson HPO: We developed an online instrument termed “Phenotypr” [22]. Phenotypr allows
categorical selection (i.e., by anatomical system) of any layperson HPO term by the patient.
There is a toggle to allow patients to include all HPO terms, and a free text box to include terms
not otherwise identified.

GenomeConnect survey: In order to compare the GenomeConnect survey with the Phenotypr
instrument, we developed a customized survey presentation platform for the GenomeConnect
survey that was similar in look and feel to Phenotypr.

Subjects

Participants were 18 years old or older, or the parent/guardian of a living child <18 years of age,
diagnosed with a rare genetic disease. Participants were enrolled who were: 1) evaluated in the
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Boston Children’s Hospital (BCH) Genetics Clinic over the past 3 years and confirmed to have a
genetic disease by the primary geneticist; 2) enrolled in the Manton Center for Orphan Disease
Research at BCH and had a confirmed molecular diagnosis; 3) followed in a genetic
disease-specific clinic at BCH; 4) enrolled in a patient registry for a specific genetic disease; or
5) were a member of GenomeConnect and had a confirmed genetic disease. For individuals
enrolled from a disease-specific clinic, patient registry, or GenomeConnect, we confirmed their
diagnosis with them prior to enrollment. Participants who completed the instrument/s were
invited to enroll in the post-enrollment qualitative interviews. IRB of Boston Children’s Hospital
gave ethical approval for this work (IRB-P00027106).

Instrument distribution and data collection

Participants were offered either one or both Instruments (GenomeConnect survey and/or
Phenotypr). The GenomeConnect and/or Phenotypr instruments were completed online
wherever possible; a few participants for whom we did not have an email completed a paper
copy of the GenomeConnect survey. Those who completed only one instrument received $15
and those who completed both instruments received $30. Those who received only one
instrument were randomly assigned to the GenomeConnect or Phenotypr instrument.
Participants in the Genetics Clinic were purposely assigned within a diagnosis to each method
in order to assign equal numbers to each method and were matched as much as possible by
gender, race, ethnicity, and age. For those who received both instruments, we alternated which
instrument was assigned first. The instruments were administered via an external web interface.
Each user was assigned a computer-generated unique ID. Once the data was properly entered,
we captured it into the BCH instance of REDCap [23] for analysis.

Phenotype profile semantic similarity comparisons

To assess their potential utility in a diagnostic setting, phenotype profiles were compared using
semantic similarity measures. We compared the theoretical maximum (TMax) and simulated
(Sim) HPO profiles for each method (GenomeConnect or Layperson HPO) against the Monarch
Gold standard profiles by creating the profiles in Table 1.

Table 1. HPO profiles for each participant’s disease

Clinical-
grade HPO

Genome
Connect

Layperso
n

Gold: Gold standard clinical HPO profile for the disease
(one profile per disease)

HPO- Gold
profile N/A N/A

TMax: Derived theoretical maximum profile of
lay-accessible HPO terms corresponding to the Gold
standard and also mappable using the instrument (one
profile per disease)

N/A GC-TMax
Profile

Lay-TMax
Profile

Sim: Simulated with missing terms and noise terms.
HPO-Gold-Sim starts from the HPO-Gold, whereas
GC-Sim and Lay-Sim start from the TMax profiles (twenty
profiles per disease)

HPO-Gold-Si
m

GC-Sim
Profile

Lay-Sim
Profile

Patient: Actual patient profile as obtained from the
instrument (number of profiles dependent on patient
population)

N/A GC-Patie
nt Profile

Lay-Patie
nt Profile
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We also compared each patient-generated profile against the corresponding theoretical
maximum (TMax) profile for their diagnosed disease. Semantic similarity methods leverage the
hierarchical structure of the ontology to make comparisons between graphs. A phenotype profile
that is composed of ontology terms can itself be represented as a graph, each node of which
represents a phenotype that corresponds to a patient or a disease (see Figure 1 for an example
phenotype profile graph representing facial features of Marfan syndrome). To calculate semantic
similarity of phenotype profiles, we used PhenoDigm, an algorithm that uses both information
content (Resnik similarity) and Jaccard similarity [24]. PhenoDigm takes as input two profiles, for
example measuring similarity between a patient profile and a Monarch Gold standard disease
profile, and outputs a score.

To run the Phenodigm algorithm, we utilized OWLTools, a java package that contains a
collection of semantic similarity metrics to phenotype similarity and disease classification
(https://github.com/owlcollab/owltools).

We began with full sets of TMax phenotype profiles for each instrument and the sets of
simulated patients (i.e. profiles with omitted, imprecise, or noisy terms). We iterated over the
phenotype profiles as input for PhenoDigm and stored the rank and similarity score of the
correct disease match. The disease “rank” refers to the position of the reference disease in the
prioritized list of candidate diseases suggested by the disease matching the TMax or simulated
phenotype profiles against the Gold standard disease profiles. Diseases given the same score
were given the same rank. Using this data, we plotted a receiving operator characteristic (ROC)
curve using the Scikit-learn[25] version 0.24.2 and Matplotlib[26] version 3.4.1 python packages.

Enrichment and depletion analysis

We hypothesized that the phenotypic profiles from the GenomeConnect survey and Phenotypr
would be biased towards categories of disease with phenotypic features that are more readily
visually observable (e.g., musculoskeletal disorders may be disproportionately represented in
the layperson HPO terms in Phenotypr because the phenotypes are more easily observed and
described in lay terms, whereas liver disease may be underrepresented because these
phenotypes may not be as “visible” to the patient). In order to measure if types of diseases were
over- or under-represented in each phenotype subset of HPO terms, we performed an
enrichment and depletion analysis. We collected 11,113 diseases and classes of disease that
had at least one phenotype term. For each disease, we generated a contingency table of the
number of phenotypes in the subset of the phenotype profile associated with each disease, the
number of phenotypes in the subset not associated with the disease, the number of phenotypes
not in the subset associated with the disease, and the number of the phenotypes not in the
subset not associated with the disease. For each disease and disease category we performed a
Fisher exact test to characterize the distribution of phenotype terms across our disease
phenotype profiles and adjusted the p-values with Bonferroni correction.

Statistical Methods

We calculated effect sizes to determine when differences in methods were substantial and
report the absolute value of effect sizes. For quantile regressions we standardized the
continuous variables included so that they had a mean of 0 and a variance of 1. The resulting
regression coefficients can be interpreted as effect sizes across all quantile regressions. We
report absolute values that range from 0 to 1; higher numbers represent stronger effects. For
logistic regressions we used the standardized coefficients that can be interpreted as odds-ratios
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and effect sizes across all logistic regressions. Odds-ratios range from 0 to infinity. The closer to
1, the weaker the effect; the closer to 0 or infinity, the stronger the effect. For 2x2 contingency
tables, where Fisher’s exact tests were used to assess the association between two variables,
we also used odds-ratios. Effect sizes for equality of variance tests are not specifically
developed so are not reported. The estimated median difference was determined by
estimating the median after subtracting the GenomeConnect similarity score from the Phenotypr
similarity score and was negative if the GenomeConnect score was higher (more similar) than
the Phenotypr score.

Our analyses of similarity scores and ranks were all conducted separately in two groups of
participants: 1) those who completed one instrument (“One Survey”) and 2) those who
completed both instruments (“Both Surveys”). All analyses of the Both Surveys group accounted
for the clustering/pairing of the data. For both groups we used quantile regressions to determine
statistical differences between the median similarity scores, and between median ranks,
between the methods. To determine if the distribution of similarity scores from one method was
tighter than the other for the groups that completed both instruments, we used Pitman’s test for
equality of variances; for the group that who completed only one instrument we tested for the
equality of variances between the two methods using Levene’s test. To determine which method
yielded more respondents where the correct clinical disease was at rank 10 or lower, for the
group that completed both instruments, we generated a dichotomous variable that indicated if
this was the case for a given respondent and then used the method/instrument type as an
independent variable in a logistic regression; for the group that completed one instrument we
used Fisher’s exact test.

Correction for multiple testing

For these analyses, we conducted 102 statistical significance tests (not all data shown). The
final p-values for all of the statistical tests were adjusted for multiple comparisons using the
Benjamini-Hochberg adjustment as the Bonferroni adjustment is generally too conservative.
Using the Benjamini-Hochberg methodology to adjust for multiple testing the new critical p-value
is p<0.015. We denoted as “ns” (not significant) any values that would be statistically significant
at a p-value of p<0.05 but that are no longer statistically significant due to multiple testing.

Post-enrollment qualitative interviews

We invited all participants who completed one/both instruments to email us if they were
interested in completing an interview. We asked general questions about the instrument that the
participant completed, including what they thought the purpose was, the value, how they
thought the instrument could be used, and if they thought the instrument would have helped in
their journey to get a diagnosis. We then asked if the instrument was user-friendly, how it could
have been changed to be easier to use, what was challenging or frustrating about the
instrument, the time it took them to complete the instrument, if they liked the look and feel, how
completing the instrument made them feel, and any additional concerns. If they completed both
instruments, we asked these questions for both. The interview was audio-recorded and
transcribed. We provided a $30 gift card as a token of appreciation. The team reviewed the
transcripts and the interviewer’s notes and themes were identified, and discrepancies reconciled
to create a catalog of the most prevalent themes. Data was analyzed using descriptive statistics
and recurring patterns were identified.
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RESULTS

Evaluation of Simulated Profiles

We measured the performance of the PhenoDigm algorithm given the three input simulations
(the Monarch Gold standard simulations, layperson simulated, and GenomeConnect simulated)
by plotting a ROC curve and recording the area under the curve (AUC) for each input set
(Figure 3). This approach measures the algorithm's ability to differentiate between diseases
given three sets of input data. The full set of HPO terms (Monarch Gold standard) performed the
best. The layperson subset performed second best, and the GenomeConnect subset performed
the least but with an AUC of 0.954, which is considered good for many classification problems.
These results were not unexpected as the layperson HPO subset is approximately a third of the
full HPO and the GenomeConnect HPO subset is less than 2%; as such, diseases described
with increasingly less phenotypes are expected to match Gold standard diseases with less
precision.

Figure 3. Simulated patient profiles (Lay-Sim profile, GC-Sim profile) were compared with the
full HPO terminology (HPO-Gold) and its simulated counterpart (HPO-Gold-Sim). The
simulations were each tested on 7,344 diseases. For each disease, 20 patients were simulated.
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Evaluation of 100,000 Genomes Project Cases

742 diagnosed cases from the 100,000 Genomes Project[27] were processed through
Exomiser[28] (12.0.1 and 2007 databases) with default settings and either: (i) the full HPO
profile collected by the recruiting clinicians or (ii) a converted profile where the terms were
replaced with the closest layperson term in the hierarchy. Exomiser was able to recall 81%,
88%, and 90% of the diagnoses in the top, top 3 and top 5 ranked candidates using the full
profile compared to 76%, 85%, and 87% with the converted profile, demonstrating the layHPO
has sufficient coverage for use in diagnostic pipelines.

Disease Enrichment Analysis

We used enrichment approaches to understand the classes of diseases that would be best
suited to self-phenotyping approaches. We performed one-tailed Fisher’s exact tests on 11,113
diseases and classes of disease for the layperson and GenomeConnect subsets of HPO terms
to test for enrichment and depletion and corrected p-values with Bonferroni correction (Table 1).
For the layperson analysis we tested the hypothesis that, for each disease, the proportion of
layperson HPO terms associated with that disease is higher than the proportion of layperson
terms associated with all other diseases. We performed the same test for the GenomeConnect
subset. Based on a significant p-value of p<0.01 the GenomeConnect subset was enriched for
7,480 diseases and classes of disease (and the layperson subset was enriched for 4,708
diseases and classes of disease). This suggests that there are many diseases that are
significantly enriched, relative to all other diseases, with terms that a layperson could provide
(via either instrument) – and therefore potentially more correctly matched by patients’
phenotyping. The source data and code are available on GitHub at
https://github.com/monarch-initiative/hpo-survey-analysis/tree/master/data/enrichment.

The GenomeConnect subset of HPO terms was most enriched for vascular, neoplastic, and
conjunctival diseases. The layperson subset was most enriched for bone, odontologic, and
connective tissue diseases (Table 3). Neither the layperson nor GenomeConnect subsets had
significantly depleted disease associations. Disease classes enriched with layperson terms
have more phenotypes with an observable physical manifestation, such as phenotypes related
to development, for example short stature, cleft lip, and short 4th finger. Vascular disorders are
predominantly enriched in the GenomeConnect subset, likely because GenomeConnect asks
several questions about phenotypes related to vascular disorders, such as the questions “what
specific types of blood/bleeding issues have you had?” and “what specific heart or blood vessel
problems have you had?”.
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Table 2. The top 10 disease terms overrepresented in the Layperson and
GenomeConnect subsets. For each disease class we performed a one-tailed Fisher’s
exact test on the proportion of phenotype terms in the lay person subset annotated to
disease class compared to the proportion of lay phenotypes annotated to other disease
classes. We performed the same analysis for the GenomeConnect subset.

Layperson Subset Enrichment

Disease class

Percent of
phenotype terms
annotated to the
target disease in
the Lay subset

Percent of phenotype
terms annotated to
other diseases in the

Lay subset
P value

congenital limb malformation 59% 28% 1.00✕ 10-196

bone development disease 53% 26% 7.11✕ 10-195

dysostosis 58% 28% 6.27✕ 10-191

bone disease 50% 26% 2.04✕ 10-179

rare odontologic disease 64% 30% 1.91✕ 10-167

skin appendage disease 59% 30% 3.00✕ 10-161

multiple congenital anomalies/
dysmorphic syndrome 59% 30% 8.06✕ 10-161

ectodermal dysplasia
syndrome 61% 30% 4.26✕ 10-159

eyelid disease 57% 30% 1.13✕ 10-151

connective tissue disease 48% 26% 1.33✕ 10-147

GenomeConnect Subset Enrichment

Disease Class
Percent of

phenotype terms
annotated to the
disease in GC

Percent of phenotype
terms annotated to
other diseases in GC

P value

vascular disease 7% 0.30% 1.01✕ 10-89

neoplastic disease 7% 0.30% 9.38✕ 10-89

hypertensive disorder 12% 0.60% 1.15✕ 10-87

neurocristopathy 10% 0.50% 6.22✕ 10-86

rare adrenal disease 11% 0.60% 8.02✕ 10-86

conjunctival disease 10% 0.50% 1.78✕ 10-84

cardiomyopathy 8% 0.40% 7.86✕ 10-84

rare circulatory system disease 5% 0.20% 5.43✕ 10-83

neurovascular disease 8% 0.50% 1.27E✕ 10-82

cardiovascular disease 5% 0.20% 2.27✕ 10-82
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Figure 4. Number of diseases by percentage of lay-accessible terms. Shown are the
number of diseases (x axis) and the corresponding percentage of lay-accessible HPO terms
(y-axis) for each of the two instruments, where the GenomeConnect survey (blue) necessarily
maps to fewer Gold standard HPO terms than does the layperson HPO available via Phenotypr
(orange).

Study Population

We offered enrollment to 1,061 individuals and 260 (25.0%) enrolled (Figure 5). The enrollment
rate was 23.4% (154/659) for individuals completing one instrument, and was higher for the
GenomeConnect (28.0%, 92/329) than Phenotypr (18.8%, 62/330). One participant completed
the GenomeConnect survey twice  — one for themselves and one for their child under the same
unique identification number; this case was deleted from the dataset. We offered 402 individuals
both instruments and 129 participants completed at least one (32.1%). Three of the 129
participants completed 2 instruments, one for themselves and one for their child under the same
unique identification number; these 3 cases were deleted from the dataset. Of the remaining
126 participants invited to complete both instruments, 80.2% completed both (101/126), 16.7%
(21/126) completed only the GenomeConnect survey, and 3.2% (4/126) completed only
Phenotypr. There were 2 individuals with 2 distinct genetic diseases for which separate similarity
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indices could be generated. One of these individuals completed Phenotypr and one the
GenomeConnect survey. In the analyses we included both similarity scores for each individual.
Thus our final sample was 281 instruments and 279 respondents. Chromosomal conditions are
typically out of scope for OMIM and other disease resources such as Mondo[29]; 23
respondents had chromosomal conditions and thus we removed them from the analysis. An
additional respondent was dropped from the analysis because they answered all
GenomeConnect questions in the negative, which was likely a user error since the phenotypic
similarity algorithms use only positive phenotypes. The final dataset for analyses therefore
included 257 diseases reported by 255 respondents. Of the 255 respondents, 89 answered both
instruments, 63 answered Phenotypr and 103 answered GenomeConnect.

In most cases the participant was a parent completing the instrument in reference to their child
who has the condition. Occasionally the respondent was an adult having the condition filling the
instrument out about themselves.

Although we offered the survey to all parents regardless of race, ethnicity, or gender,
respondents were predominantly white and female (Table 4). Most surveys were completed by
the parent of a child with the condition, and the female predominance was because the mothers
were generally the parent who completed the survey for their child.
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Figure 5. Flowchart of Recruitment, Enrollment, Survey Completion, and the Final Data
Set for Analysis
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Table 3. Demographic Characteristics of Final Data Set of Respondents by Instrument
Group

Instrument group, % (No.)a

GenomeConnect only Phenotypr only Both surveys Total,a % (No.)
(n = 103) (n = 63) (n = 89) (N = 255)b

Sex
Male 25.2 (26) 8.3 (5) 16.9 (15) 18.3 (46)
Female 74.8 (77) 91.7 (55) 83.2 (74) 81.8 (206)

Race
White 85.6 (83) 90.9 (50) 89.8 (79) 88.3 (212)
Black/African American 4.1 (4) 0.0 (0) 2.3 (2) 2.5 (6)
Multiracial 4.1 (4) 0.0 (0) 1.1 (1) 2.1 (5)
Asian 4.1 (4) 5.5 (3) 2.3 (2) 3.8 (9)
American Indian/Alaska

Native 0.0 (0) 0.0 (0) 1.1 (1) 0.4 (1)

Hawaiian/Pacific
Islander 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Other 2.1 (2) 3.6 (2) 3.4 (3) 2.9 (7)
Ethnicity

Hispanic/Latino/a 3.9 (4) 9.8 (6) 6.9 (6) 6.4 (16)
Non-Hispanic 96.1 (99) 90.2 (55) 93.1 (81) 93.6 (235)

Age, years
18-20 2.1 (2) 0.0 (0) 1.2 (1) 1.3 (3)
21-30 14.6 (14) 10.0 (6) 8.3 (7) 11.3 (27)
31-40 36.5 (35) 36.7 (22) 50.0 (42) 41.3 (99)
41-50 33.3 (32) 30.0 (18) 36.9 (31) 33.8 (81)
51-60 11.5 (11) 20.0 (12) 3.6 (3) 10.8 (26)
61-70 2.1 (2) 3.3 (2) 0.0 (0) 1.7 (4)
≥71 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Child age, years
<1 1.2 (1) 5.1 (3) 2.4 (2) 2.7 (6)
1-4 29.7 (25) 20.4 (12) 28.4 (23) 26.7 (60)
5-10 35.7 (30) 34 (20) 42 (34) 37.6 (84)
11-13 16.7 (14) 13.6 (8) 12.3 (10) 14.3 (32)
14-17 16.7 (14) 11.9 (7) 12.4 (10) 13.8 (31)
≥18 0.0 (0) 15.3 (9) 2.5 (2) 4.9 (11)

aPercentages might not add up to 100% within 1 cell due to rounding.
bMissing values were excluded so not all rows add up to 255 due to missing values for some
variables.
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Profiles generated by patients with diagnosed rare diseases

Univariate descriptive statistics for similarity scores and ranks are in Table 5.

Table 4. Univariate Descriptive Statistics for Similarity Scores and Ranks. Note that the n size
differs because we had fewer respondents who completed the Phenotypr compared to
GenomeConnect.

Participant
generated

HPO profiles
Comparis
on profile n Mean Median Min Max Interquartile

Range

Genome
Connect

HPO-Gold
profile

193 52.34 58.51 0 81.58 45.51; 64.05
188 758.82 365.5 1 5307 72; 1130.5

GC-Sim
Profile 193 57.46 63.34 0 93.07 50.43; 69.46

Phenotypr

HPO-Gold
profile

153 54 56.33 0 83.27 47.88; 62.13
153 586.94 232 1 4140 52; 724

Lay-Sim
Profile 153 53.06 55.37 0 82.74 48.05; 61.39

Analysis of similarity scores

Comparison to simulated profiles

The descriptive statistics for the participant derived similarity scores compared to simulated
profiles for both the GenomeConnect survey and the Phenotypr survey, and for the One Survey
and Both Surveys groups, are in Table 6.

For both the One Survey and Both Surveys group analyses, the median similarity score
between the GenomeConnect survey profiles and the simulated profiles was significantly higher
than the similarity scores between the Phenotypr profiles and the simulated profiles (One
Survey: p=0.008; Both Surveys: p<0.001) (Table 7), demonstrating that the GenomeConnect
survey HPO profiles were closer to the simulated profiles. The higher median similarity score
with GenomeConnect survey suggests GenomeConnect was more accurate than Phenotypr.

For the Both groups analysis only, the distribution of similarity scores between the Phenotypr
profiles and the simulated HPO profiles was significantly tighter than the distribution of similarity
scores between the GenomeConnect survey profiles and the simulated profiles (Both
instruments: p=0.005) (Table 8), demonstrating that the Phenotypr profiles has less variability
and thus was more precise in the Both group analysis.
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Table 5. Analysis of GenomeConnect and Phenotypr profiles compared to the
simulated profiles: Descriptive statistics of the similarity scores when compared to
simulated profiles.

One Survey Both Surveys

Participant-
generated HPO

profiles
Comparison

profile n median
score IQR n median

score IQR

GC-Patient
Profile GC-Sim Profile 104 64.61 49.93;

69.38 89 61.69 50.43;
70.40

Lay-Patient
Profile

Lay-Sim
Profile 64 57.97 49.71;

63.31 89 54.16 45.73;
60.08

Table 6. Analysis of GenomeConnect and Phenotypr profiles compared to the simulated
profiles: Median Similarity Scores Between Phenotypr and GenomeConnect

One Survey Both Surveys

Estimated Median Difference;
Effect Size -6.64; 0.34 -7.53, 0.52

95% Confidence Interval -1.68; -11.12 -7.63; -7.42

P value 0.008 < 0.001

For respondents who completed one survey, there was no significant difference
(Benjaminin-Hochberg adjusted p-value) in the distribution of similarity scores between the
simulated HPO profiles and either the GenomeConnect survey HPO profiles or the Phenotypr
survey HPO profiles (Table 8).

Table 7. Analysis of GenomeConnect and Phenotypr profiles compared to the simulated
profiles: Tightness of Distribution Between Phenotypr and GenomeConnect

One Survey Both Surveys

Participant-
generated

HPO profiles
Comparison

profile mean SD p value mean SD p value

GC-Patient
Profile

GC-Sim
Profile

56.49 21.98

0.021 (ns)
58.59 15.8

0.005
Lay-Patient

Profile
Lay-Sim
Profile

54.88 12.54 51.76 12.04
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Comparison to Monarch Gold standard disease profiles
We also compared the similarity between the patient-derived profile (Phenotypr and
GenomeConnect) and the Monarch Gold standard disease profiles. There were no differences
in the median similarity scores between the Monarch Gold standard profiles and the Phenotypr
and GenomeConnect profiles, respectively (data not shown).

Analysis of Ranks

We compared the ranks (the position of the reference disease in the prioritized list of candidate
diseases) to see which instrument identified the correct clinical disease “sooner” going down the
rank list of diseases. The lower the median score, the better the rank, the closer the disease
was to the top of the prioritized list of candidate diseases, and the sooner the correct clinical
disease was identified. Note that due to the generality of the HPO term(s), or very few or very
many terms used to describe a disease, there can sometimes be many diseases listed at the
same rank.

The descriptive statistics (Table 8) showed that for both groups, with the GenomeConnect
survey the rank had a higher median (was less accurate) compared to Phenotypr. For the One
Survey group, three diseases ranked first using Phenotypr, and one using GenomeConnect
(data not shown).

Table 8. Analysis of Paired Rank: Descriptive statistics of disease ranks for participants who
completed one survey and both surveys.

One Survey Both Surveys

Participant-
generated HPO

profiles
Comparison

profile n median
score IQR n median

score IQR

GC-Patient
Profile

Gold
Standard 99 309 33; 903 89 387 142; 1162

Lay-Patient
Profile

Gold
Standard 64 156.5 19.5; 613 89 261 89; 836

In the statistical comparison of the ranks, the GenomeConnect survey yielded significantly lower
ranks (closer to the top of the list) for the Both Surveys group (p=0.001); but not the One group
(Table 9).

Table 9. Analysis of Paired Rank: Compare Ranks Between the Methods (Phenotypr compared
to GenomeConnect)

One Survey Both Surveys

Estimated Median Difference;
Effect Size -131; 0.15 -126; 0.13

95% Confidence Interval -346.97; 84.97 -131.26; -120.74

P value 0.233 <0.001
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There was no statistical difference between Phenotypr and GenomeConnect in the percent of
participant responses that led to the correct disease ranking number 10 or better in the list of the
diseases generated by participants’ responses to the instruments (correct clinical disease
identified “sooner”), although there was a tendency for Phenotypr to perform better than
GenomeConnect (Table 10).

Table 10. Analysis of Paired Rank: Compare Proportion of Respondents with a Rank of 10 or
Lower

One Survey Both Surveys

Participant-
generated HPO

profiles
Comparison

profile n % rank (n) p value;
effect size n % rank (n) p value;

effect size

GenomeConnect
-Patient Profile

Gold
Standard 104 9.62 (10)

0.04 (ns);
2.69

89 2.3 (2)
0.021 (ns);

4.3Lay-Patient
Profile

Gold
Standard 64 21.88 (14) 89 9.0 (9)

Post-enrollment qualitative interviews

Study Population

We conducted 17 interviews: 5 with individuals who completed the GenomeConnect survey, 5
with individuals who completed Phenotypr, and 7 with individuals who completed both
instruments.

Themes identified

Overall, participants preferred the GenomeConnect multiple-choice format over the
autocomplete Phenotypr format.

General themes
● The instruments will be helpful to patients/clinicians to input signs and symptoms and

see suggested diagnoses.
● It was satisfying to see all signs and symptoms listed in one place.
● The length of both instruments was acceptable.

Phenotypr themes
o The typing aspect of Phenotypr was difficult and a list would be preferred.
o It wasn’t always clear which organ system to put a symptom under for Phenotypr.
o Phenotypr language was at times very clinical and difficult to understand

GenomeConnect themes
o GenomeConnect was a bit too broad (terms too general) and not granular enough.
o The layout and structure of GenomeConnect was more streamlined and manageable.
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DISCUSSION

The hypothesis of our study was that “self-phenotyping” is an accurate and comprehensive
source of data on, and by, patients. Self-phenotyping is not intended to lead to a diagnosis on its
own, but rather could be used as a tool to empower patients to participate in the diagnostic
process, which includes the clinical evaluation, family history, laboratory work, and so forth.
Although some work has gone into assessing the potential role of self-reported health data in
complementing electronic health record (EHR) data [30], little has been done to assess the role
and value of self-phenotyping in informing clinical care or research. In addition, self-phenotyping
instruments, such as the GenomeConnect survey or use of the layperson version of HPO, have
not been tested to determine if they result in accurate profiles. Further, the layperson version of
HPO had not been tested as a self-phenotyping method in patients. The primary goal of this
study was to determine if patients could effectively utilize the layperson version of the HPO to
self-phenotype at a level that could be clinically useful, which we defined as leading to a
survey-derived HPO profile that was similar to the HPO profile of the disease. We aimed to
compare use of the full lay HPO in a new patient-centered application, Phenotypr, with a
whole-body survey provided by GenomeConnect.

In order to address the question “can patients generate useful HPO-based data for use in
disease diagnosis?”, we first created a TMax lay-subset profile (Lay-Sim Profile) corresponding
to each disease in the Gold standard (HPO-Gold profile) corpus of HPO annotations. For each
disease we then then compared the HPO-Gold profiles with theirTMax counterparts using
semantic similarity approaches to determine “how close” the lay versions of the disease profiles
would be to the correct clinical disease when compared against all diseases. This result is
essentially the upper limit of what a patient might be able to achieve if they documented their
phenotype profile perfectly using the full availability of the layperson HPO. The results of the
similarity analysis for these TMax lay profiles showed that indeed, patients could theoretically
generate diagnostically useful profiles.

We then compared simulated instrument responses (GC-Sim Profile, Lay-Sim Profile) to their
HPO-Gold profile counterparts to determine how close the simulated profiles were to the Gold
standard profiles. The results of the simulation showed that the layperson HPO has the
capability of generating phenotypic profiles closer to the Gold standard than GenomeConnect.
This is expected, since the layperson subset contains 4,757 terms in comparison to the 215
terms mapped by GenomeConnect. We concluded that Lay-Sim Profile profiles are effective at
identifying the correct clinical disease, with 61% of simulated layperson HPO and 25% of
simulated GenomeConnect surveys ranking the clinical disease in the top 10. We note that
there are often ties based upon there being either very general HPO terms used, or very few or
very many terms used to describe any given disease. This can lead to accurate, but not very
precise comparisons and ranking.

We then tested the GenomeConnect survey and Phenotypr (the layperson HPO instrument that
we developed) in participants with diagnosed genetic diseases to determine which performed
better and which instrument was preferred by participants. The comparison with the simulated
profiles allowed us to see how participants did compared to the best they could theoretically do
if the instrument was perfectly completed. The comparison to the Monarch Gold standard gave
us a comparison that was more clinically relevant as the clinician uses the equivalent
comparison to reach a candidate diagnosis. Although the comparison to the Monarch Gold
standard gave us a comparison that was more clinically relevant, since the clinician uses the
equivalent comparison to reach a candidate diagnosis, the primary goal of this study was to
compare the instruments themselves and assess how well participants could fill out the
instruments relative to their theoretical maximum.
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We found that the GenomeConnect survey had a higher median similarity score compared to
the simulated HPO profiles than Phenotypr so is more accurate, but Phenotypr had a tighter
distribution of scores so is more precise. However, we did not find any differences between the
two instruments when compared to the Monarch Gold standard.

A key comparison is the accuracy of the instruments at identifying the correct condition. We
used the rank scores to address this issue. We found a tendency for Phenotypr to be better than
GenomeConnect at including the correct clinical disease in the list of the top 10 diseases
generated by participants’ responses to the instruments. For many of the analyses we
compared 2 groups of respondents: those who did both instruments and those who only did
one. This was necessary in order to make a comparison but may have decreased our power to
see differences as we divided our cohort into smaller groups. Based on the finding that
Phenotypr seems to be better at identifying the disease, we conclude that Phenotypr might be
more useful for clinicians to garner useful phenotype data for diagnostic use from patients.
However, despite this difference, most of the time the patient’s disease was not in the top 10
diseases generated by the patient’s responses to the instruments. This suggests that more work
is needed to refine the self-phenotyping strategy as well as to validate how to best utilize
patient-phenotyping in the context of clinical phenotyping.

The largest conceptual difference between GenomeConnect and Phenotypr approaches is that
GenomeConnect has a multiple-choice format, which our interview results showed that
participants in general preferred. However, Phenotypr was more granular and able to generate a
much larger number of terms for a given disease HPO profile. The responses to the qualitative
interviews suggest that this granularity was overwhelming for some participants. We
hypothesize that the multiple-choice format of GenomeConnect is easier for users. Phenotypr
requires users to recall phenotypes, placing burden on the user to both remember and start
typing a term with lexical similarity to one of the lay or clinical HPO terms. Many users provided
text in the additional signs and symptoms free text field, suggesting it is likely that users were
unable to find all of their phenotypes (signs and symptoms). We also hypothesize that it is
easier for users to select more general terms in the HPO. For example, it is easier to say if a
participant or family member experiences ``behavioral abnormalities'' versus if they experience
"obsessive compulsive behavior". In addition, participants found the Phenotypr language to be
clinical and difficult at times. This was likely because both layperson HPO terms and medical
HPO terms were included in the terms that respondents had to choose from.

Although our study advances methods for self-phenotyping, the results do not suggest a
clear-cut preferred method for self-phenotyping for patients and caregivers. We conclude that a
survey model that combines elements of both instruments might be the most ideal, for example,
a multiple-choice survey format (GenomeConnect) that had more granular choices (Phenotypr).

In this study we validated self-phenotyping methods computationally and in a patient cohort. We
have been able to demonstrate that both instruments can enable patients to provide critical
phenotype information to the clinician. Ongoing work would leverage the cognitively preferred
method of multiple-choice type of selection within a survey, with the more precise
free-association model used when autocompleting on the lay HPO terms directly.

There are many strengths to our study. We have created a novel tool, Phenotypr, for patients to
perform self-phenotyping and implemented the tools in the largest study of such tools that we
are aware of. We have shown that both tools are useful in getting phenotype data directly from
patients for use clinically, with the complementary strengths and weaknesses of both
instruments suggesting hybrid models and/or improvements to such instruments in the future.
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Our study has some limitations. The number of different diagnoses in our patient cohort was
large. This meant that the robustness with respect to disease diversity was high and therefore
more representative of the real-world disease heterogeneity. However, it also meant that the
ability to make within-disease comparisons was challenging due to the very small cohort size for
most diseases. Further, participants with diagnoses are more likely to have researched their
condition and have better understanding of the clinical terms. These instruments need to be
evaluated in an undiagnosed cohort to understand how they perform in a clinical setting to
inform diagnosing diseases. These cohort limitations are simply the reality of working on rare
diseases in general and that the diverse cohort we evaluated in the end provisioned us a
reasonable spectrum of endpoints. We favored breadth over depth in any one disease for its
better reflection of how the tools would be used clinically.

It should be noted that GenomeConnect was not developed for, and never meant to be, a
diagnostic tool. The GenomeConnect survey is the first in a series of surveys that participants
are presented with the goal of providing additional phenotypic context to ClinVar variant entries
to aid in the variant classification process. GenomeConnect participants also consent to be
recontacted; additional, more specific information can be obtained directly from the participant
as needed and is not necessarily limited to survey answers. Thus, the survey used is
intentionally broad, as it is meant to be a review of systems; more detailed surveys are assigned
based on the participant's answers. This is why there are so few terms mappable from
GenomeConnect.

Finally, although we offered the instruments regardless of race, ethnicity, or gender, a limitation
of this study is that the population from which we recruited was not very diverse (primarily white
and female). It is therefore not surprising that mostly women (mothers) and white individuals
answered.

The tools developed in this project are not yet ready for clinical diagnostic use. Future work
should focus on developing an instrument that strikes the right balance between
patient-friendliness and granularity. Such an instrument should be tested in a more diverse,
undiagnosed disease population to determine if it leads to improved diagnostic rate or efficiency,
and greater patient satisfaction in active participation of the diagnostic odyssey. Both of these
outcomes are the ultimate goal of self-phenotyping. Validation and a greater understanding of
how patient-phenotyping and clinician phenotyping can be best utilized together are needed. In
order to address the lack of racial and ethnic diversity, reaching out specifically to
underrepresented minorities would be a good strategy in future research. It would also be useful
to define the literacy or education level needed to use these instruments as well. Finally, studies
to determine whether patients find self-phenotyping useful or informative could be conducted,
for example by surveying patients after completing the survey or conducting interviews.

In conclusion, computationally, better phenotype profiles were generated with Phenotypr. When
participants completed the instruments, they preferred the GenomeConnect survey format and
the GenomeConnect survey was more accurate. However, the Phenotypr instrument was more
precise. This suggests that a hybrid approach that provides familiar tooling but access to richer
HPO terms may be warranted. Such tools could be used to improve and accelerate diagnostic
pipelines and promote collaboration and patient engagement with clinical caregivers and
diagnosticians.
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