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1 Abstract 

2 Previous research in India has identified urbanisation, human mobility and population 

3 demographics as key variables associated with higher district level COVID-19 incidence. 

4 However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, 

5 in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. 

6 We explored travel networks within India during two pandemic waves using aggregated and 

7 anonymized weekly human movement datasets obtained from Google, and quantified changes 

8 in mobility before and during the pandemic compared with the mean baseline mobility for the 

9 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical 

10 models coupled with distributed lag non-linear models (DLNM) within the integrated nested 

11 Laplace approximate (INLA) package in R to examine the lag-response associations of drivers 

12 of COVID-19 transmission in urban, suburban, and rural districts in India during two pandemic 

13 waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-

14 pandemic levels was associated with an increase in relative risk of COVID-19 transmission 

15 during the Delta wave of transmission. This increased mobility, coupled with reduced 

16 stringency in public intervention policy and the emergence of the Delta variant, were the main 

17 contributors to the high COVID-19 transmission peak in India in April 2021. During both 

18 pandemic waves in India, reduction in human mobility, higher stringency of interventions, and 

19 climate factors (temperature and precipitation) had 2-week lag-response impacts on the 𝑅𝑡 of 

20 COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across 

21 urban, rural and suburban areas. With the increased likelihood of emergent novel infections 

22 and disease outbreaks under a changing global climate, providing a framework for 

23 understanding the lagged impact of spatiotemporal drivers of infection transmission will be 

24 crucial for informing interventions.  

25
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28

29 Introduction

30 The COVID-19 pandemic highlighted the intrinsic role of human movement, along with 

31 demographics and environmental factors, in the dispersal of human pathogens in a highly 

32 connected, mobile and globalised society.1-3 As the global climate changes and environmental 

33 and extreme weather events increase in frequency, emergence of novel zoonotic diseases and 

34 outbreaks of bacterial, parasitic and viral infections are likely to become more frequent4. 

35 Effective and efficient responses to future outbreaks and epidemics require a thorough 

36 understanding of the infection transmission drivers that contributed to different COVID-19 

37 pandemic waves. Furthermore, it is essential to develop a framework for examining the 

38 spatiotemporal variations in transmission drivers across urban, suburban, and rural areas.

39 In India, the initial wave of COVID-19 was contained by a nationwide lockdown, which 

40 extended from March 31st to May 31st, 2020,5 with a subsequent phased lockdown for 

41 containment zones in effect until June 30th, 2020.6 The first wave of COVID-19 transmission 

42 in India was characterised by mild clinical infection and a relatively low mortality rate of less 

43 than 3%.5 Several serosurveys carried out following the initial pandemic wave in India 

44 determined a high proportion of asymptomatic infections7-10, leading to speculation as to the 

45 reasons for lower incidence of severe clinical cases including population demographics and 

46 innate population immunity.11,12

47 In March 2021, India experienced a severe second wave of COVID-19 transmission  

48 with a high proportion of infection associated mortality.13 The Delta variant, or B.1.617 

49 lineage, dominant during the second transmission wave was first identified in Maharashtra in 

50 late 202014 before quickly spreading throughout India and to at least 90 other countries.15 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


3

51 Compared with the initial pandemic wave in India, the Delta wave was characterised by high 

52 morbidity and mortality, even among a younger age cohort, overwhelming health systems 

53 across the country.16,17 On April 26th 2021, India recorded 360,960 new cases, at the time the 

54 highest number of daily new SARS-CoV-2 infections recorded worldwide,18 and by mid-June 

55 2021 more than 29 million cases of COVID-19 had been confirmed.19 During the second 

56 pandemic wave, the number of COVID-related deaths in India ranked third globally with an 

57 estimated 2.7 million COVID-19-related deaths occurring between April and July 2021.20 

58 Although reasons for the second wave of transmission were unclear, it was speculated 

59 that the surge in case numbers was attributed to the circulation of the B.1.617 lineage of SARS-

60 CoV-2 (Delta variant), which had a more effective transmission capability, shorter incubation 

61 period and was more pathogenic than previous lineages.17,21,22 Prior to this surge in 

62 transmission, adherence to COVID-19 preventative behaviours in India was less stringent, 

63 likely due to pandemic fatigue, economic necessity  and complacency due to the perception 

64 that clinical case infections in India were mild relative to other populations.16,23 Population 

65 mobility, which had begun to increase relative to mobility during national lockdown 

66 interventions, including rural-urban-rural migration to mass election rallies and social and 

67 religious gatherings such as Kumbh Mela (approximately 7 million people), was also likely to 

68 be a primary driver of the second wave of SARS-CoV-2 in India.13,15

69 Previous research has explored the relationship between human mobility in response to 

70 government interventions and COVID-19 transmission during the early stages of the pandemic 

71 24,25,26, or state level associations between human mobility and COVID-19 transmission during 

72 the Delta pandemic wave.27 However, no previous research has compared mobility patterns, or 

73 inter-district movement across both pandemic waves, relative to pre-pandemic mobility levels, 

74 and associated impact on COVID-19 transmission. The contribution of district level 

75 urbanisation,28,29 population density and demographics,30,31 climate32,33 and stringency of 
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76 government interventions24 to COVID-19 transmission in India has also previously been 

77 investigated. However methodological approaches have included simple correlation24,30 or 

78 regression analyses34 and, to the best of our knowledge,  no spatiotemporal modelling approach 

79 has been used to explore the urban-rural district level associations of human mobility, 

80 stringency of government intervention, and climate to transmission risk across both pandemic 

81 waves in India. 

82 In this study, we quantified changes in mobility patterns and travel networks across 

83 India, before and during the COVID-19 pandemic, using spatially resolved, aggregated and 

84 anonymized weekly human movement datasets obtained from Google. We used a Bayesian 

85 spatiotemporal hierarchical framework, coupled with distributed lag non-linear models 

86 (DLNM) to examine the lag-response associations between the transmission dynamics of 

87 COVID-19 and drivers of transmission during the initial wave (July to November 2020) and 

88 Delta wave (March to July 2021) of SARS-CoV-2 in India. We also compared the lagged 

89 impacts of mobility metrics, climate covariates, and stringency of government interventions on 

90 the transmission of SARS-CoV-2 lineages between both pandemic waves, and across urban, 

91 suburban and rural delineated districts.

92 Methods

93 Data sources

94 Covid-19 incidence data

95 In India, administrative units are divided in state (36 including eight union territories), district 

96 and township, corresponding to spatial administrative levels I, II and III, respectively (SI 

97 Figure S1). The daily number of confirmed COVID-19 cases at country level were obtained 

98 from the Data Repository assembled by the Centre for Systems Science and Engineering 

99 (CSSE) at Johns Hopkins University35. We also obtained COVID-19 data at district (admin II) 

100 level for the period from 26 April 2020 to 31 October 2021 for 666 districts from 
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101 www.covid19india.org, a volunteer driven, crowdsourced tracker for COVID-19 cases in 

102 India.36 COVID-19 data were available in 666 district units, as in some cases, depending on 

103 testing capacity and guidelines in each federal state, data were aggregated to state level only or 

104 case incidence estimated by state pool.36 

105 Administrative level I and II shapefiles for India, corresponding with state and district 

106 level, were obtained from the Database of Global Administrative Areas (GADM version 3.6) 

107 (https://gadm.org/). Since the last national census of population in India in 2011, new districts 

108 have been created by splitting and rearranging some administrative boundaries.30 COVID-19 

109 data aggregated to current district boundaries were merged with 2011 administrative level II 

110 units according to the best spatial alignment of current and previous district boundaries. For 

111 the purpose of spatial modelling, the islands in Lakshadweep and the Andaman Islands have 

112 been unified as discrete spatial areas and treated as distinct districts. The authors remain neutral 

113 with regard to jurisdictional claims in maps used in this study.

114 Google COVID-19 Aggregated Mobility Research Dataset 

115 Aggregated and anonymized weekly human movement datasets were obtained from Google to 

116 measure the changes of mobility across and within regions from November 10, 2019, to 

117 December 31, 2021, and to assess their impacts on COVID-19 transmission in India. The 

118 Google mobility dataset contains anonymized mobility flows aggregated over users who have 

119 turned on the Location History setting, which is off by default. This is similar to the data used 

120 to show how busy certain types of places are in Google Maps — helping to identify when a 

121 local business tends to be the most crowded. The dataset aggregates flows of people between 

122 S2 cells, which here is further aggregated by district of origin and destination. Each S2 cell 

123 represents a quadrilateral on the surface of the planet and allows for efficient indexing of 

124 geographical data. 
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125 To produce this dataset, machine learning was applied to log data to automatically 

126 segment data into semantic trips.37,38 To provide strong privacy guarantees, all trips were 

127 anonymized and aggregated using a differentially private mechanism to aggregate flows over 

128 time (see https://policies.google.com/technologies/anonymization). This research is done on 

129 the resulting heavily aggregated and differentially private data. No individual user data was 

130 ever manually inspected, only heavily aggregated flows of large populations were handled. All 

131 anonymized trips are processed at aggregate level to extract their origin, destination, location 

132 and time. For example, if users travelled from location a to location b within time interval t, 

133 the corresponding cell (a, b, t) in the tensor would be n∓err, where err is Laplacian noise. The 

134 automated Laplace mechanism adds random noise drawn from a zero mean Laplace 

135 distribution and yields (𝜖, δ)-differential privacy guarantee of 𝜖 = 0.66 and δ = 2.1 × 10−29. The 

136 parameter 𝜖 controls the noise intensity in terms of its variance, while δ represents the deviation 

137 from pure 𝜖-privacy. The closer they are to zero, the stronger the privacy guarantees. Each user 

138 contributes at most one increment to each partition. If they go from a region A to another region 

139 B multiple times in the same week, they only contribute once to the aggregation count.

140 The summed weekly domestic mobility inflows and outflows of each district were then 

141 divided by the number of origin S2 cells (each was calculated only once) that contained data 

142 between November 10, 2019 and December 31, 2021. Any potential bias that might be 

143 introduced by discarding the increasing number of S2 cells in order to protect privacy due to 

144 the decreasing number of travellers under travel restrictions was accounted for. For 

145 comparability of changes in mobility across districts, aggregated flows were further 

146 standardised using pre-pandemic mean baseline levels of mobility for the first eight weeks of 

147 2020 (December 29, 2019 – February 22, 2020) (SI Figure S2 – S4 & Figure S29). This 

148 dataset was analysed by researchers at the University of Southampton, UK as per the terms of 
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149 the data sharing agreement. Production of this anonymized and aggregated dataset has been 

150 detailed in previous studies.3,37-39

151 Stringency of COVID-19 Intervention 

152 Stringency Index of COVID-19 intervention policy in India data were obtained from the 

153 Oxford COVID-19 Government Response Tracker (OxCGRT) project at state level and daily 

154 temporal resolution (SI Figure S5 & S30). The Stringency Index is a composite index of 

155 government responses to the COVID-19 pandemic compiled by OxCGRT based on data 

156 collected from publicly available sources such as news articles, and government press releases 

157 and briefings from 1 January 2020.40,41 The project tracks national government policies and 

158 interventions across a standardized series of indicators and creates a suite of composite indices 

159 to measure the extent of these responses to understand how government responses evolved over 

160 the course of the pandemic.41 The Stringency Index was calculated as a composite score of 18 

161 indicators of closure and containment, health, and economic policy.24,40 Scores were created 

162 using an additive unweighted approach, taking the ordinal value and adding a weighted 

163 constant if the policy was general rather than targeted. The maximum values were rescaled to 

164 create a score ranging from 0 to 100, with higher scores indicating stricter measures.40 

165 Stringency index data for India were obtained from 27th April 2020 to 25th July 2021. 

166 Climate data 

167 Three-dimensional Network Common Data Form (NetCDF) climate data were obtained from 

168 the Copernicus Climate Data online repository (Copernicus Climate Change Service, Climate 

169 Data Store, (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus 

170 Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 

171 (Accessed on 19-05-2023). Data were ERA5 daily reanalysis global climate data obtained for 

172 January 2019 to March 2021, gridded to 0.25 degrees of latitude and longitude. Variables 

173 obtained were mean temperature of air (°C at 2m above the surface of land, sea or inland 
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174 waters), accumulated precipitation (metres), relative humidity (%) and downward ultraviolet 

175 (UV, 𝐾𝐽/𝑚2 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟) radiation at the Earth’s surface (SI Figures S6-S9 & S31 – S34). 

176 ERA5 data is the fifth generation of European Centre for Medium-Range Weather 

177 Forecasts (ECMWF) reanalysis for the global climate and weather for the past 4 to 7 decades. 

178 Reanalysis is a method of combining model data with global observations for producing 

179 complete and consistent datasets for a large number of atmospheric, ocean-wave and land-

180 surface quantities. Reanalysis works in the same way as the principle of data assimilation which 

181 combines previous forecasts with newly available observations on a 12-hour basis to produce 

182 new best estimates of atmospheric measures.42 Climate data were extracted from NetCDF files 

183 using the ncdf440,43 and RNetCDF44 packages in R statistical software version 4.1.0 and 

184 aggregated to district level using Quantum Geographic Information Systems (QGIS) 

185 software.45 

186 Urban and rural classification

187 Data on the degree of urban, rural and suburban spatial area within each district (administrative 

188 level II) were derived from the Global Human Settlement Layer (GHSL)46 using the Degree of 

189 Urbanisation – Territorial units classifier (GHS-DU-TUC) tool. The GHS-DU-TUC tool 

190 classifies local units from a settlement classification grid according to the Degree of 

191 Urbanisation (DEGURBA). It operationalises the method recommended by the 51st Session of 

192 the United Nations Statistical Commission to delineate cities, urban and rural areas (stage 

193 2, units classification) as defined by the Degree of Urbanisation Level 1 and 2. Categorised 

194 variables for each degree of urbanisation (DEGURBA_L1_1 to DEGURBA_L1_3) were 

195 generated for degree of urban vs. rural spatial area in each district area in accordance with 

196 methods for implementation of INLA models outlined in Lezama-Ochoa et al. 2020.47

197 Degree of urbanisation was categorised as follows: (1) Rural (mostly thinly populated 

198 areas), (2) Suburban (mostly intermediate density areas), and (3) Urban (mostly densely 
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199 populated areas). Population data for 2020 were obtained at 100m spatial resolution from the 

200 WorldPop online repository (https://www.worldpop.org/) and aggregated to calculate 

201 population density per km2 for each district. Data on public holidays time periods were 

202 obtained from the National Portal of India online repository (https://www.india.gov.in/). Public 

203 holidays, which included the date of public holiday and one day before and after, were assigned 

204 a value of 1. All other days were given a value 0.

205 Data analysis 

206 Exploring changes in mobility in India during the pandemic

207 To gain a better understanding of travel networks and connectivity across India, we explored 

208 the overall patterns in domestic travel by rural, semi-urban and urban delineated areas in India, 

209 using weekly Google mobility data from November 10, 2019, to December 31, 2021. The 

210 relative levels of mobility across regions (regions are defined as six zones comprising different 

211 states in India defined under the States Reorganisation Act 195648) and weeks were further 

212 calculated for each type of flow, relative to the mean level of pre-pandemic baseline in each 

213 region from December 29, 2019, to February 22, 2020. We also defined mobility reductions 

214 and communities of population movements between administrative level II units, i.e. districts, 

215 across the country for five periods (SI Figure S2 - S3): 1) 

216 Pre-pandemic period (15 weeks) from November 10, 2019 to February 22, 2020; 2) 

217 First lockdown (6 weeks), from March 22 to May 2, 2020, that included strict travel restrictions, 

218 stay-at home orders and closure of many businesses; 3) Pre-second lockdown period (8 weeks) 

219 from January 31 to March 27, 2021; 4) Second lockdown (6 weeks) for the Delta wave, from 

220 April 18 to May 29, 2021; 5) post-second lockdown period (8 weeks), from November 7 to 

221 December 31, 2021, after travel restrictions for COVID-19 had been lifted in India. In the 

222 context of travel networks, a community refers to a group of areas that are more closely 

223 connected internally than with other areas in the network.49,50 Community structures were 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://www.worldpop.org/
https://www.india.gov.in/
https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


10

224 detected using the Louvain algorithm, a method of extracting communities from large 

225 networks.49 We mapped the communities identified to highlight distinct geographic groupings 

226 of districts in terms of movements across periods.

227 Reproduction number

228 To account for variations in the transmissibility of COVID-19, we estimated the instantaneous 

229 reproduction number (𝑅𝑡) for each district of the country with available case data (SI Figure 

230 S10 & S35). First, the number of daily new COVID-19 cases at district level were smoothed 

231 using a Gaussian smoothing approach over a 7-day rolling window.51 Second, the mean 

232 incidence of cases at day 𝑡 was assumed following the Poisson distribution that is defined as:

233 𝐸(𝐼𝑡) = 𝑅𝑡

𝑡

𝑘=1
𝐼𝑡―𝑘𝑤𝑘

234

235 where 𝐼𝑡―𝑘 is the incidence at time 𝑡 ― 𝑘, 𝑤𝑘 is the infectivity profile which depends on the 

236 serial interval of COVID-19 (5.2, 95%CI: 4.9–5.5).52 The serial interval represents the time 

237 between onset of the primary case to onset of the secondary case. Last, we estimated the daily 

238 𝑅𝑡 for each district with a 7-day sliding window, using the EpiEstim package53  in R statistical 

239 software version 4.1.0.54

240 In order to account for changing transmissibility of COVID-19 caused by different 

241 variants in the modelling, we also estimated the instantaneous basic reproduction number (𝑅0) 

242 over time to capture the intrinsic transmission capability of the virus without interventions. We 

243 first assembled data of the biweekly proportion of sequences of six main SARS-CoV-2 

244 variants, including lineages B.1.1.7 (VOC Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 

245 (Delta), B.1.525 (Eta), and B.1.617.1 (Kappa), based on SARS-CoV-2 sequence data in the 

246 Global Initiative on Sharing All Influenza Data (GISAID),55 as of 25 October 2021. Using an 

247 approach described by Ge et al.,56 we then calculated a weighted average of basic reproduction 
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248 numbers of the six variants mentioned above and the SARS-CoV-2 strain in circulation before 

249 VOCs became predominant (seven coronavirus variants in total). 

250 Models for examining lag-response associations between COVID-19 transmission and 

251 different factors

252 We built spatiotemporal Bayesian hierarchical models which consisted of weekly changes in 

253 the 𝑅𝑡 of COVID-19 transmission for 665 India districts where data were available during 17 

254 weeks from March 7 to July 3, 2021 (Delta wave) and during the 19 weeks between July 19th 

255 2020 and November 29th 2020 (wave 1). We assumed that 𝑅𝑡 adjusted by 𝑅0, denoted as △ 𝑅𝑡

256 = 𝑅𝑡/𝑅0, conformed to the Gamma distribution, △ 𝑅𝑡| 𝜇_𝑡 ~𝐺𝑎𝑚𝑚𝑎( 𝜇𝑡

0.5,0.5), where 𝜇_𝑡 was 

257 the corresponding distribution expectation (or mean), reflecting the shape-rate parameterisation 

258 of the Gamma distribution used by the INLA package. Spatial and temporal fixed effects were 

259 accounted for in the model by incorporating terms for district and week, representing the spatial 

260 resolution of the data, and time scale during which data was collected. Spatiotemporal random 

261 effects were included to account for unobserved and unmeasured sources of variation in 

262 transmission and spatial and temporal dependency structures. First, for the expectation of Δ𝑅𝑡 

263 within each city 𝑖, we constructed a base model below with two spatiotemporal random effects, 

264 𝑟𝑡 and 𝑏𝑖, and a fixed effect 𝑣𝑖,𝑡

265 𝜇𝑖,𝑡 = 1 + 𝑟𝑡 + 𝑏𝑖 + 𝑣𝑖,𝑡 

266 where Δ𝑟𝑡 = 𝑟𝑡 ― 𝑟𝑡―1 ∼ 𝑁(0,𝜏―1) is a random walk model of order 1 (rw1), used to account 

267 for data temporality; 𝑏𝑖 is a modified Besag-York-Mollie (BYM2) model for space, used to 

268 account for spatial variation across districts in the data; and the fixed effect 𝑣𝑖,𝑡 of the 

269 cumulative infection rate among population was also included in the base model, as it might 

270 be related to herd immunity acquired by natural infection in previous waves before mass 

271 vaccination. 
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272 Second, as the evolution of COVID-19 is a complex process, and factors mentioned 

273 above might not be the only explanatory variables for the observed changes in transmission, 

274 we further examined the duration of public holidays as a fixed effect in models. All covariates 

275 obtained at daily temporal resolution were averaged by week. To account for multicollinearity 

276 of factors, we calculated pair-wise Pearson correlations for these variables and the variance 

277 inflation factor (VIF) for candidate variables in linear regressions for the whole country (SI 

278 Figure S11 & S36).  In order to account for any non-normally distributed data, we also 

279 calculated Kendall rank coefficients between explanatory variables in our model as a non-

280 parametric exploration of multicollinearity (SI Figure S12 & S37). Estimations of 

281 multicollinearity were broadly similar using Pearson and Kendall rank correlation coefficients, 

282 with weaker associations found using Kendall rank coefficients. Collinear variables were 

283 therefore excluded based on the more conservative Pearson correlation coefficients. Variables 

284 with the highest VIF score and Pearson correlation coefficients of 0.5 which were excluded 

285 included relative humidity and UV, and only variables with a VIF score of less than 2.5 were 

286 retained. The relative impacts of remained factors, thus, was defined as the contributed 

287 percentage change in △ 𝑅𝑡 .

288 We built models of increasing complexity by systematically incorporating 

289 combinations of mobility, temperature, precipitation, stringency of intervention policy and 

290 public holidays covariates into our base model. Model goodness of fit was assessed using the 

291 deviance information criterion (DIC) and logarithmic score (logscore), consistent with 

292 previous studies57, and final models for each pandemic wave selected. DIC balances model 

293 accuracy against complexity by estimating the number of effective parameters, while the 

294 logarithmic scores measure the predictive power of the model when excluding one data point 

295 at a time, with smaller values for each denoting better fitting models. 
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296 Third, we used the distributed lag non-linear models (DLNMs) formulation by defining 

297 lagged model covariates and a cross-basis matrix and incorporating the resulting cross-basis 

298 functions into our Bayesian spatiotemporal modelling framework. Using this approach we 

299 explored exposure-lag response associations between the relative risk (RR) of increase 𝑅𝑡 in 

300 COVID-19 transmission, and changes in mobility, meteorological variations, and Stringency 

301 Index of intervention policy. DLNMs are a family of models that describe the lagged 

302 relationship between exposure and response variables in a model across both spatial and 

303 temporal dimensions.58 DLNM models incorporate cross-basis functions that combine a lag-

304 response function of variables at the temporal dimension and an exposure-response function to 

305 present the potential non-linear relationship along with the change of one factor. The resulting 

306 bi-dimensional exposure-lag-response function flexibly estimates the intensity of factors at 

307 varying time-lags after exposure.58 

308 Given the common delays from infection to diagnosis and reporting, the lag-response 

309 impact of different factors on COVID-19 transmission were assessed by 0-3 weeks, with 

310 natural cubic splines selected for both the exposure and the lag dimensions. Last, we tested 18 

311 candidate models of increasing complexity (with regard to input variables and model structure) 

312 with DLNMs for the whole country, and rural, suburban, and urban areas, respectively (SI 

313 Table S2). DLNM cross-basis functions were built using R packages ‘dlnm’ and ‘splines’ and 

314 model parameters were estimated using the Integrated Nested Laplace Approximation (INLA) 

315 approach in R version 4.1.0. 54,60  INLA approaches include a wide and flexible class of models 

316 ranging from generalized linear mixed models to spatial and spatiotemporal models that are 

317 less computationally intensive therefore avoiding problems with model convergence.59-61 

318 Finally, as no informed prior distribution estimates were available at the time of 

319 analyses, we explored the sensitivity of the best fit model to a range of uninformative priors. 

320 We specified a range of priors around the hyperparameters, i.e., 𝜏, 𝜃1, and 𝜃2, in our base 
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321 model. Prior distributions were investigated for the best fit model using data for the Delta wave 

322 time period (SI Table S4) and for the wave 1 time period (Tables S7) using the deviance 

323 information criterion (DIC). The choice of prior distributions applied to best fit models using 

324 data from both waves was found to elicit only negligible measurable differences in model 

325 hyperparameters and DIC. Therefore, the prior used in this study was a penalized complexity 

326 prior with the precision t = 1 / σ², so that Pr(1/ 𝑡 > 0.5) = 0.01. 

327 Model performance and validation

328 Model goodness-of-fit was assessed using DIC scores to compare model performances 

329 and identify the best-fitting model for the whole country, and rural, suburban, and urban areas, 

330 respectively. We also calculated the difference in mean absolute error (MAE) between the 

331 baseline model and the final selected model for each pandemic wave in order to identify the 

332 proportion of districts in different regions of India for which a more complex data-driven model 

333 improved model fit. Cross-validations using a leave-one-week-out and leave-one-state out 

334 approach were conducted to refit the selected model. This approach excluded one week or one 

335 state, respectively, from the fitting process during each cross-validation model iteration. 

336 Comparisons were made between observations and out-of-sample posterior predictive 𝑅𝑡 for 

337 state and each week of both pandemic waves investigated. In order to validate DLNM model 

338 results, based on the findings of lag-response associations from analyses above, we 

339 incorporated lag-adjusted covariates into our spatiotemporal Bayesian hierarchical modelling 

340 and compared results with observations obtained from Bayesian spatiotemporal models 

341 incorporating DLNM models built using cross-basis functions.

342 Results 

343 Spatiotemporal heterogeneity of mobility changes in India during the pandemic

344 Compared with baseline mean mobility patterns during the first 8 weeks of 2020, domestic 

345 travel within India dropped dramatically after the COVID-19 pandemic was declared by the 
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346 WHO and the country implemented its first lockdown for transmission containment (Figure 

347 1). The lowest mobility level for domestic travel (26.9% of the pre-pandemic mean level) was 

348 observed at week 15 of 2020 (April 5 – 11, 2020). In June 2020, restrictions on opening 

349 shopping centres, religious places, hotels, and restaurants were lifted [32], coinciding with 

350 increased population flows and an increase in infection cases. Overall, mobility gradually 

351 recovered from mid-May 2020 to early March 2021, even during the first wave of COVID-19 

352 in the second half of 2020.

353 Following a surge in transmission in March 2021, and concern about increased 

354 infections and deaths caused by the Delta variant, another lockdown was implemented across 

355 the country from mid-April to early June 2021. Domestic mobility during the second lockdown 

356 reduced significantly from an average level of 90.5% in the 8 weeks between January 31 – 

357 March 27, 2021, reaching its lowest level (54.6%) at week 20 of 2021 (May 16 – 22). However, 

358 the stringency, compliance and duration of mobility reductions were less strict and shorter than 

359 those of the first wave. Additionally, changes in mobility between rural, suburban and urban 

360 districts of India displayed similar temporal patterns (Figures 1C), but travel in urban areas 

361 (73.9%) was more affected by the pandemic compared with mobility in semi-urban (91.7%) 

362 and rural (94.4%) areas in 2020 – 2021. In terms of geographic groupings of districts in 

363 connected travel networks, there was also apparent spatiotemporal heterogeneity in response 

364 to efforts to mitigate the varying scale of transmission across districts at different time periods 

365 (Figure 2). During the pre-pandemic period from November 10, 2019, to February 22, 2020, 

366 districts highly connected with each other formed 23 communities, with the 13 largest 

367 communities containing 94.4% of districts in the country, ranging in size from 23 to 97 districts 

368 per community. 

369 Connections between districts in terms of travel were disrupted to mitigate transmission 

370 during the first lockdown in 2020 (SI Figure S3A), and more isolated communities (n=79) 
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371 were formed with 54.4% (43) of them containing only one district. However, due to the fewer 

372 reductions in mobility (SI Figure S3C), connections between districts (31 communities) during 

373 the second lockdown were not as sparse as during the first lockdown. A total of 13 major 

374 communities contained 93.8% of districts, with a similar geographical range during the pre-

375 pandemic period, except for some remote rural and semi-urban areas. Following the recovery 

376 of travel in November – December 2021 across the country (SI Figure S3D), connections 

377 between districts formed 22 communities, a pattern closely resembling that of pre-pandemic 

378 connected district communities. 

379

380 Fig 1. COVID-19 cases, reproduction numbers and mobility changes in India during the 
381 pandemic. (A) Number of daily new confirmed COVID-19 cases reported in India from March 15, 
382 2020, to December 25, 2021. (B) Estimated mean and 95% confidence interval (CI) of the basic 
383 reproduction number (𝑅0) and instantaneous reproduction rate (𝑅𝑡). (C) Relative weekly mobility of 
384 domestic travel by rural, suburban and urban areas in India as measured by the aggregated Google 
385 COVID-19 mobility research dataset. Relative mobility levels were standardized by the overall mean 
386 level of each type of flow in each region during the first 8 weeks of 2020. The red and grey vertical 
387 dashed lines indicate the date of the COVID-19 pandemic being declared by the WHO and the first date 
388 of each year, respectively.
389

390
391 Fig 2. Changes in community domestic travel networks of Indian districts across four time periods 
392 in 2019-2021). (A) Communities (n=23) of domestic travel at district level during the pre-pandemic 
393 period from November 10, 2019, to February 22, 2020*. (B) Communities (n=79) of domestic travel 
394 during the first lockdown on March 22 - May 2, 2020*. (C) Communities (n=31) of domestic travel 
395 during the second lockdown on April 18 - May 29, 2021*. (D) Communities (n=22) of domestic travel 
396 post-second lockdown period (8 weeks), from November 7 to December 31, 2021, after travel 
397 restrictions for COVID-19 had been lifted in India. In each panel, geographically adjacent areas of the 
398 same colour represent an internally and closely connected community in terms of human movement in 
399 India. The community structure was detected using the Louvain algorithm. Circle size represents the 
400 relative volume of outbound travellers. The bigger the circle, the higher the level of outflow.* Based on 
401 aggregated Google COVID-19 mobility research dataset. 
402
403
404 Nonlinear and lag-response impacts of mobility and other factors on the Delta wave

405 Upon initial exploratory analysis using baseline Bayesian spatiotemporal models for India, we 

406 found that population density as a fixed effect was not statistically associated with △ 𝑅𝑡 for 

407 COVID-19 transmission (DIC = 4756; SI Table S2). Humidity and UV were removed due to 
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408 a higher VIF and potential multicollinearity. We then included DLNMs for mobility, 

409 temperature, precipitation and Stringency Index, lagged between 0 and 3 weeks, including the 

410 holiday variable as a fixed effect in different candidate models (SI Table S2). The inclusion of 

411 mobility, temperature, precipitation and Stringency Index as DLNMs (Model 4.1) for the whole 

412 country and urban areas resulted in a greater reduction in the DIC and mean logarithmic score 

413 compared with the baseline model (SI Figure S18). 

414 However, models which included DLNMs for mobility, temperature, and Stringency 

415 Index (Model 3.1) had the smallest DIC and logarithmic score in semi-urban areas. The best 

416 fitting model for rural areas only contained Stringency Index as DLNMs, which might be due 

417 to the smaller reductions in mobility in rural districts. The posterior predictive results from the 

418 best fitting model by cross validation showed that the model had a robust performance 

419 compared to observed data (SI Figure S13 - S16). The spatial random effects and the fitted Rt 

420 for the whole country were also presented in Supplementary (SI Figures S17 - S20). Based on 

421 results of the best fitting models for the whole country, overall, the recovery of mobility to 99% 

422 of the pre-pandemic level and the decrease of intervention stringency below 68 significantly 

423 increased the RR (>1) of COVID-19 transmission in India during the study period (Figures 3A 

424 and 3J). The increase of weekly precipitation (>0.15m) and cold weather (<27.2°C) were also 

425 associated with a higher risk of transmission (RR>1), but the variation in RRs in response to 

426 precipitation was small and the impact of temperature below 0°C was not significant (Figures 

427 3D and 3G).

428
429 Fig 3. The lagged impact of different factors and scenarios on COVID-19 transmission during the 
430 Delta wave in 2021. (A) The overall association between mobility changes and COVID-19 
431 transmission dynamics under 0- to 3-week lags. The red/blue lines show RR under the scenario of 
432 mobility below/above the overall mean level (0.99). The histogram with the secondary y-axis shows 
433 the frequency of data under different levels. (B) Contour plot of the association between mobility and 
434 relative risk (RR) of COVID-19 transmission. The deeper the shade of purple, the greater the increase 
435 in RR of transmission, while the deeper the shade of green, the greater the decrease in RR. (C) COVID-
436 19 lag–response association for mobility level at 0.6, 0.8, 1.25, relative to the overall pre-pandemic 
437 mean level (1). The mean and 95% CI were presented. (D) – (F) Lag-response association between 
438 COVID-19 transmission and temperature (Temp) for cool (10°C), warm (20°C), and hot (30°C) 
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439 weather, relative to the overall mean of 27.2°C.  (G) – (I) COVID-19 lag-response association for 
440 precipitation (Prec) at 0.05, 0.5, and 1m, relative to the overall mean of 0.15m. (J) – (L) Lag-response 
441 association between COVID-19 transmission and the stringency of intervention policy at low (40), 
442 medium (60), and high (80), relative to the overall mean Stringency Index (68.2). Results are for the 
443 best fitting model with DLNMs (base model + mobility + temperature + precipitation + intervention 
444 policy; see SI Table S2) across the whole country. 
445

446  
447 Fig 4. The lag-response association between COVID-19 transmission and different factors in 
448 urban, suburban, and rural districts. (A) – (D) COVID-19 lag–response association for different 
449 levels of mobility, temperature (Temp), precipitation (Prec) and the stringency of intervention policy in 
450 urban areas, relative to the overall mean level. Results are for the best fitting model with DLNMs (base 
451 model + mobility + temperature + precipitation + intervention policy) in urban districts.  (E) – (G) Lag–
452 response association between the risk of COVID-19 transmission and different levels of mobility, 
453 temperature (Temp), and the stringency of intervention policy in semi-urban areas, based on the best 
454 fitting model with DLNMs (base model + mobility + temperature + intervention policy; see SI Table 
455 S2) in suburban districts. (H) COVID-19 lag–response association for the Stringency Index of 
456 intervention policy at low (40), medium (60), and high (80), based on the best fitting model with 
457 DLNMs (base model + intervention policy) in rural districts.  The mean and 95% CI of RR for each 
458 level were presented.
459

460 In addition, given the reporting delays of cases after exposure (i.e. incubation period 

461 plus the lags from illness onset, diagnosis to reporting, normally 10 days with an interquartile 

462 range of 8 – 11 days,62 we found that the introduction of DLNMs improved model adequacy 

463 statistics compared with the inclusion of factors with no lags, which proved the rationality and 

464 necessity of considering the lag-response effects in the modelling. The maximum associations 

465 of mobility reductions (Figure 3B; relative mobility >0.5 times baseline mobility associated 

466 with RR of <0.8)) and intervention policy (Figure 3K; Stringency Index <30 associated with 

467 RR <0.95) with changes in 𝑅𝑡 of COVID-19 transmission were found at a lag of 2 weeks with 

468 precipitation having an apparent maximum impact at a 1 to 2-week lag. However, we also 

469 found an increasing/decreasing risk of transmission under cool/hot weather at one 1-week lag 

470 (Figure 3F; temperature of <20°C associated with RR >1). 

471 Similar lag-response patterns between COVID-19 transmission and covariates at 

472 different levels were also found in urban, suburban, and rural districts (Figure 4).  Mobility of 

473 <0.8 times that of baseline was associated with a decrease in RR <1 at a 0 and 1-week lag in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


19

474 urban delineated districts (Figure 4A). Association of stringency of government interventions 

475 with COVID-19 RR exhibited some heterogeneity between urban, suburban and rural areas 

476 however, with a Stringency Index of <40 associated with a RR>1 in urban areas at a 1-week 

477 lag (Figure 4D), but exhibiting a 2-week lagged response in suburban and rural areas (Figures 

478 4G & H). Based on findings and methods described above, we re-tested models (without 

479 DLNMs) using all covariates with a 2-week lag, i.e. two weeks before cases reported and Rt 

480 observed (SI Table S3). We found that the best fitting model at country level was similar to 

481 the previous Model 4.1 with DLNMs, but precipitation was replaced by UV radiation due to 

482 potential multicollinearity. The results from leave-one-week-out cross-validation showed the 

483 best fitting 2-week lag-response model could further improve the prediction of dynamics in Rt 

484 of COVID-19 transmission across India (SI Figures S23-S27). 

485 Comparing lag-response impacts of different factors between waves

486 We also ran Bayesian spatiotemporal models with DLNMs and data for the wave in 2020 (19th 

487 July to 29th November 2020) to compare drivers of transmission during both pandemic waves 

488 in 2020 (initial transmission wave) and 2021 (Delta wave). Results of DLNMs exploring 

489 drivers of COVID-19 transmission during the first wave were consistent with those exploring 

490 associations of COVID-19 transmission during the Delta wave in India. Humidity and UV were 

491 removed from the analyses due to multicollinearity ascertained by higher VIF statistics (>=2.5). 

492 Based on best fit model statistics (lowest DIC and mean logarithmic score compared to baseline 

493 model) DLNMs which best fit the data were models which included mobility, temperature, 

494 precipitation and Stringency Index (Model 4.1; SI Table S3). Consistent with model validation 

495 using data for the Delta wave, cross validation showed robust model results when posterior 

496 predictive results for the wave in 2020 were compared with observed data (SI Figure S38 – 

497 S41). 

498  
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499 Fig 5. The lagged impact of different factors and scenarios on COVID-19 transmission during the 
500 initial wave of COVID-19 transmission in the second half of 2020. (A) The overall association 
501 between mobility changes and COVID-19 transmission dynamics under 0- to 3-week lags. The red/blue 
502 lines show RR under the scenario of mobility below/above the overall mean level (0.99). The histogram 
503 with the secondary y-axis shows the frequency of data under different levels. (B) Contour plot of the 
504 association between mobility and relative risk (RR) of COVID-19 transmission. The deeper the shade 
505 of purple, the greater the increase in RR of transmission, while the deeper the shade of green, the greater 
506 the decrease in RR. (C) COVID-19 lag–response association for mobility level at 0.8, 1.2, 1.4 relative 
507 to the overall pre-pandemic mean level (1). The mean and 95% CI were presented. (D) – (F) Lag-
508 response association between COVID-19 transmission and temperature (Temp) for cool (10°C), warm 
509 (20°C), and hot (30°C) weather, relative to the overall mean of 25°C.  (G) – (I) COVID-19 lag-response 
510 association for precipitation (Prec) at 0.5, 1.5, and 2.5m, relative to the overall mean of 0.24m. (J) – 
511 (L) Lag-response association between COVID-19 transmission and the stringency of intervention 
512 policy at three different measures of stringency: 70, 75, and 80, relative to the overall mean Stringency 
513 Index (76.5). Results are for the best fitting model with DLNMs (base model + mobility + temperature 
514 + precipitation + intervention policy; see SI Table S2) across the whole country.
515
516

517 Model results using data for the whole country found that a rebound in mobility to 1.2 

518 and 1.4 times the mobility of pre-pandemic levels results in an increase in RR (>1) with a lag-

519 time of between one and two weeks (Figure 5C). A high Stringency Index (80) was found to 

520 be associated with a lower RR with a two-and-a-half-week lag (Figure 5L) with a reduction in 

521 RR (<1) observed over a Stringency Index of 75 (Figure 5J). Cold weather (10°C & 20°C) 

522 was associated with a higher RR with a decrease in RR observed at higher temperatures (30°C) 

523 (Figures 5D and 5F). An increase in weekly precipitation (>0.2m) was also associated with 

524 an increase in transmission risk (Figure 5G) with a lag-time increase of between 1 and 2 weeks, 

525 although higher levels of weekly precipitation (>2.5m) were associated with a decrease again 

526 in RR (<1) at a 2 to 3-week lag. 

527

528 Discussion 

529 Using a de-identified and aggregated Google COVID-19 mobility research dataset, derived 

530 from time- and space-explicit mobile phone data, our study identified connected communities 

531 of travel networks, and quantified changes in population movements across rural and urban 

532 districts in India over the course of the pandemic. Our modelling results showed that mobility 
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533 changes, together stringency of government interventions and climate factors had lagged-

534 response impacts on the risk of COVID-19 transmission. The first nationwide lockdown 

535 between March and June 2020, together with a reduction in population mobility, appear to have 

536 been the main drivers for a relatively low transmission wave of COVID-19 in India during the 

537 first half of 2020.21,63 Although the announcement of the lockdown had initially resulted in an 

538 increase in population mobility, with workers mostly representing informal sectors travelling 

539 interstate to return home,64 the majority of people travelling were not infected and this 

540 population mobility therefore had little impact on transmission.5 

541 In early 2021, NPI restriction measures such as social distancing and mask-wearing had 

542 been gradually eased due to a sense of COVID-19 clinical infections being mild,8,65 and inter-

543 state and rural to urban human mobility was seen to be increasing.21,65 This included  mass 

544 attendance of political rallies and religious festivals, such as the Hindu festival Kumbh Mela 

545 in India’s most populous state of Uttar Pradesh where hundreds of thousands of people gathered 

546 at the banks of the River Ganges.21,23,65 The modelling results presented here indicate that this 

547 recovery of mobility in early 2021 to 99% that of pre-pandemic levels, together with lower 

548 stringency of government interventions  and emergence of the more transmissible Delta variant, 

549 contributed to higher transmission of COVID-19 infection during the Delta pandemic wave.  

550 This is consistent with previously published research which attributed the surge of COVID-19 

551 in April 2021 to the emergence of the more transmissible Delta variant (B.1.617 lineage) and 

552 dominance as the main circulating strain, as well as relaxation of non-pharmaceutical 

553 interventions.13,21,66 

554 The second lockdown with reduced travel frequency and contact rates among 

555 populations also played a significant role in mitigating COVID-19 spread across districts and 

556 transmission in communities in the country. Mobility patterns were inversely associated with 

557 the national Stringency Index, with a relative drop in mobility below 50% associated with a 
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558 Stringency Index of 80, consistent with previous research which found that community 

559 mobility, based on Google location data, drastically fell after the lockdown was instituted.  

560 However, the impacts of mobility changes were not fully synchronized between rural and urban 

561 areas, and the effects of travel restrictions and other interventions in slowing down COVID-19 

562 transmission hinged on the intensity of these measures in reducing 𝑅𝑡 of new variants with a 

563 higher transmissibility. Model results showed differences in lagged associations of COVID-19 

564 RR with Stringency Index between rural, semi-urban and urban districts24 and this was 

565 reflected in urban vs. rural transmission dynamics between both pandemic waves. During the 

566 first wave of COVID-19 in India, transmission was higher in urban rather than rural settings 

567 and cases were spatially clustered throughout metropolitan areas and peri-urban areas.34,67,68 

568 Conversely, during the Delta pandemic wave in India, cases were observed to be spreading 

569 more in rural areas where access to healthcare can be more limited than in urban areas.18 

570 Climate covariates (temperature and precipitation) were also found to have lag-

571 response associations with COVID-19 transmission, although these effects appear to be very 

572 limited in terms of relative risk. Modelling results for the Delta pandemic wave found a 

573 decrease in temperature (<20°C) was associated with an increased relative risk, consistent with 

574 previous modelling studies exploring climate impacts on COVID-19 transmission in India33, 

575 and an increase in precipitation (>2.5m) associated with a decreased relative risk, with a 1 to 

576 2-week lagged impact. This is consistent with wave 1 modelling results which found a 1 to 2-

577 week lagged association between cold weather and precipitation on an increase in RR of 

578 COVID-19 transmission. Previous studies have also observed significant associations between 

579 COVID-19 transmission and temperature, dew point, humidity, and wind speed (Spearman’s 

580 correlation)69; a 1 °C rise in mean temperature associated with increase in the daily number of 

581 COVID-19 confirmed cases when mean temperature was below 3 °C (GAM)51; a positive 

582 correlation between the number of infections with long-term climatic records of temperature, 
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583 wind speed, solar radiation32; average temperature correlated with COVID-19 based on 

584 Spearman’s correlation40; and minimum temperature and average temperature correlated with 

585 the spread of COVID-19 in New York city (Spearman’s correlation).70 These previous 

586 approaches most commonly used correlation analyses however, and spatiotemporal analyses 

587 had not been used to examine such associations prior to the research we present here. 

588 The work we have presented therefore builds upon previous research exploring the 

589 driving factors that led to the surge in COVID-19 transmission during the Delta pandemic wave 

590 in India 15,23,27, while also presenting a number of novel factors not previously presented in the 

591 literature. Firstly, to our knowledge this is the first study to explore inter-district mobility 

592 patterns in India during the initial and Delta waves of COVID-19 transmission, relative to pre-

593 pandemic levels, delineated by urban, suburban and rural location. By investigating these 

594 changes in human mobility using fine spatial resolution Google COVID-19 Aggregated 

595 Mobility Research data we have demonstrated that a surge in population movement, together 

596 with an easing of NPIs were the main contributors to the surge in transmission during the Delta 

597 pandemic wave. We have also explored the spatiotemporal heterogeneities in drivers of 

598 transmission at district level accounting for urbanisation, building upon previous research 

599 exploring the association between state level urbanisation and COVID-19 transmission.29 

600 Additionally, the Bayesian hierarchical modelling approach we used provides a flexible 

601 framework for quantifying heterogeneities in spatiotemporal drivers of transmission during 

602 both pandemic waves while allowing complex and nonlinear relationships within the data to 

603 be captured60. The ability for Bayesian models to incorporate spatial and temporal 

604 dependencies in the models is particularly useful in regions such as India with substantial 

605 divergence between urban and rural areas71,72. Integrating novel DLNM models into the 

606 Bayesian framework allowed us to quantify lagged, nonlinear associations of drivers of 
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607 transmission with COVID-19 incidence, to account for the incubation period from infection to 

608 onset of clinical infection and delays in reporting of infection. 

609 While our findings represent a comprehensive understanding of the drivers of 

610 transmission during the initial and Delta waves of COVID-19 transmission in India, these 

611 results should be interpreted in light of several important limitations. First, the Google mobility 

612 data is limited to smartphone users who have opted into Google’s Location History feature, 

613 which is off by default. These data may not be representative of the population as whole, and 

614 furthermore their representativeness may vary by location. Importantly, these limited data are 

615 only viewed through the lens of differential privacy algorithms, specifically designed to protect 

616 user anonymity and obscure fine detail. However, comparisons between mobility datasets have 

617 shown good agreement with Google Location History data and other commonly used mobility 

618 data sources for capturing population-level mobility patterns 73. Moreover, comparisons across 

619 rather than within locations are only descriptive since these regions can differ in substantial 

620 ways. 

621 Second, the accuracy of our models relied on accurate estimates of 𝑅𝑡 derived from 

622 reported case data, and 𝑅0 estimates were proportional to the contact rate and might vary 

623 according to the local situation. The quality of reported data likely differed across districts due 

624 to varying case definitions, testing and surveillance capacity across the country, with various 

625 underreporting rate and reporting delays. Third, the Stringency Index data at state level used in 

626 spatiotemporal analyses for districts was formulated to assess lockdown strictness and measure 

627 the political commitment and strictness of governmental policies. These data did not measure 

628 the effectiveness of a country’s response or provide information on how well policies were 

629 enforced. A higher value of Stringency Index did not necessarily mean that a country’s 

630 response was better than that of those with lower values.24,40 Fourth, many other factors (e.g. 
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631 vaccination and prior infections) might also contribute to COVID-19 transmission, but our 

632 models did not specify the contributions of these factors. 

633 To our knowledge, this is the first study to combine human mobility data with 

634 Stringency Index and climate data within a Bayesian spatiotemporal framework to compare 

635 drivers of transmission by urban, suburban and rural district over the course of the pandemic 

636 in India, and quantify the lagged impact of these drivers on COVID-19 transmission risk. With 

637 the frequency of emerging infection outbreaks likely to increase in an increasingly urbanised 

638 global society, with more extreme weather events and pronounced changes in climate, the 

639 spatiotemporal modelling approach presented here provides a valuable framework for 

640 understanding drivers of infection transmission.74,75 Based on our approach, examining how 

641 the lagged impact of human mobility, interventions and climate vary by urban and rural 

642 environment in their contribution to infection transmission can provide valuable insights into 

643 the intervention strategies in the future. 
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Supporting information

Figure S1. Regions in India investigated by this study and the number and density of population at 

district level (administrative level II) in 2020. Areas shaded in grey are areas for which no data is 

available.

Figure S2. Five periods for travel network modularity analysis (A): 1) Pre-pandemic period (15 weeks) 

from November 10, 2019 to February 22, 2020; 2) First lockdown (6 weeks), from March 22 to May 2, 

2020, that included strict travel restrictions, stay-at home orders and closure of many businesses; 3) Pre-
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second lockdown period (8 weeks) from January 31 to March 27, 2021; 4) Second lockdown (6 weeks) 

for the Delta wave, from April 18 to May 29, 2021; 5) post-second lockdown period (8 weeks), from 

November 7 to December 31, 2021, after travel restrictions for COVID-19 had been lifted in India.

Fig S3. Relative changes of outbound travel from districts across India during the pandemic 

compared with average pre-pandemic levels during the 12 weeks from November 10, 2019, to 

February 22, 2020. (A) Reductions of outbound flows under the first lockdown during the 6-week 

period from March 22 to May 2, 2020. (B) Changes in outflow during the 8-week period from January 

31 to March 27, 2021, before the second lockdown. (C) Reductions of outflows during the 6-week 

second lockdown from April 18 to May 29, 2021. (D) Changes in outflow during the 8-week period 

from November 7 to December 31, 2021. Sub-division maps at administrative level I (state) and II 

(district) were obtained from the GADM version 3.6 (https://gadm.org/). Regions in which outflow data 

are not available are those represented in green. Areas shaded in grey are areas for which no data is 

available.

Table S1. Summary Statistics for data used for wave 1 and Delta wave spatiotemporal models

SI Delta Wave 

Table S2. Wave 2: Adequacy results for models with DLNMs and increasing complexity.

Table S3. Wave 2: Adequacy results for models (without DLNMs) using 2-week lag covariates 
with increasing complexity.

Table S4. Model hyperparameters using a range of prior distributions in best fit model 4.1 for 
Delta Wave

Figure S4. Relative intra-district mobility during the Delta wave in India, standardised by pre-pandemic 

mean baseline levels of mobility for the first eight weeks of 2020 (December 29, 2019 – February 22, 

2020) for each district. The weeks in 2021 investigated are numbered in maps. Areas shaded in grey are 

areas for which no data is available.

Figure S5. Stringency Index of COVID-19 intervention policy implemented during the Delta wave in 

India. The weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which 

no data is available.

Figure S6. Mean temperature at 2m above the surface during the Delta wave in India. The weeks in 

2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.
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Figure S7. Accumulated weekly precipitation (metres) during the Delta wave in India. The weeks in 

2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.

Figure S8. Relative humidity during the Delta wave in India. The weeks in 2021 investigated are 

numbered in maps. Areas shaded in grey are areas for which no data is available.

Figure S9. Downward ultraviolet (UV) radiation (KJ/m2 per hour) during the Delta wave in India. The 

weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.

Figure S10. Weekly Rt derived from COVID-19 cases reported during the Delta wave in India. The 

weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.

Figure S11. Pairwise Pearson correlations between weekly means of variables at district level during 

the Delta wave in India, 2021. R0: basic reproduction number. Rt: instantaneous reproduction number. 

ln_R: log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. Cases_accu_rate: 

cumulative cases per 1000 people reported since the first week of the wave. mean_intra: intra-district 

relative mobility. d2m: relative humidity. t2m: mean temperature of air (°C at 2m above the surface of 

land, sea or inland waters). tp: precipitation (metres). uv: downward ultraviolet radiation. Stringency: 

index of COVID-19 intervention stringency. Holiday: days of public holidays in a week. pop_sum: total 

population of each district. pop_density: population number per km2 of each district.

Figure S12. Kendall rank correlations between weekly means of variables at district level during the 

Delta wave in India, 2021. R0: basic reproduction number. Rt: instantaneous reproduction number. 

ln_R: log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. Cases_accu_rate: 

cumulative cases per 1000 people reported since the first week of the wave. mean_intra: intra-district 

relative mobility. d2m: relative humidity. t2m: mean temperature of air (°C at 2m above the surface of 

land, sea or inland waters). tp: precipitation (metres). uv: downward ultraviolet radiation. Stringency: 

index of COVID-19 intervention stringency. Holiday: days of public holidays in a week. pop_sum: total 

population of each district. pop_density: population number per km2 of each district.

Figure S13. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the best 

fitting model (model 4.1) at country level using leave-one-week-out cross-validation approach. The 

weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.
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Figure S14. Standard deviation (SD) of posterior predictive Rt during the Delta wave in India, 2021, 

derived from the best fitting model (model 4.1 without DLNMs) at country level using a leave-one-

week-out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Figure S15. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the best 

fitting model (model 4.1) at country level using leave-one-state-out cross-validation approach. The 

weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.

Figure S16. Standard deviation (SD) of posterior predictive Rt during the Delta wave in India, 2021, 

derived from the best fitting model (model 4.1 without DLNMs) at country level using a leave-one-

state-out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Figure S17. Contribution of spatial random effects to estimates of Rt changes in the base model. Areas 

shaded in grey are areas for which no data is available.

 
Figure S18. Improvement by using the best fitting model across the country, compared to baseline 

model. Difference between mean absolute error (MAE) for the baseline model (weekly random effects, 

spatial random effects and population density) and MAE for the best fitting model (model 4.1 with 

DLNMs). Districts with positive values (pink) suggest that capturing the nonlinear and delayed impacts 

of mobility, climate information and intervention stringency, improves the model in these areas. 

Districts with negative values (blue) suggest that mobility, intervention and climate information did not 

improve the model fit and other unexplained factors might dominate space-time dynamics in these 

areas. The MAE of the selected model was smaller than the baseline model for 385 of the 665 (57.9%) 

districts in India, with the results of model performance provided by geo-political regions in the Table. 

Areas shaded in grey are areas for which no data is available.

Figure S19. Observed versus posterior fitted Rt in the capital district of each state using the best fitting 

model (model 4.1 with DLNMs) at country level. Graphs with a log scale at y-axis show the observed 

Rt derived from reported case data, and corresponding mean and 95% confidence interval (CI, shaded 

pink area) of fitted Rt, derived from the best fitting model (model 4.1 with DLNMs) at country level. 

States are ordered by their geographical location.

Figure S20. Observed versus posterior predictive Rt in the capital district of each state, using leave-

one-week-out cross-validation approach. Graphs with a log scale at y-axis show the observed Rt derived 

from reported case data, and corresponding posterior predictive mean and 95% prediction interval (CI, 

shaded pink area), derived from the best fitting model (model 4.1 with DLNMs) at country level. States 

are ordered by their geographical location.
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Figure S21. Contribution of spatial random effects to estimates of Rt changes in the base model. Areas 

shaded in grey are areas for which no data is available.

Figure S22. Improvement of using the best fitting model with 2-week lag covariates (no DLNMs), 

compared to baseline model with the same lag. Difference between mean absolute error (MAE) for the 

baseline model and MAE for the best fitting model (Model 4.1). Districts with positive values (pink) 

suggest that capturing the 2-week lag impacts of mobility, temperature, UV and intervention stringency, 

improves the model in these areas. Districts with negative values (blue) suggest that mobility, 

intervention and climate information did not improve the model fit and other unexplained factors might 

dominate space-time dynamics in these areas. The MAE of the selected model was smaller than the 

baseline model for 428 of the 665 (64.4%) districts in India, and further improved the best fitting model 

with DLNMs (Figure S12). Results of model performance are provided by geo-political regions in the 

Table. Areas shaded in grey are areas for which no data is available.

Figure S23. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the best 

fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and leave-one-

week-out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Figure S24. Standard deviation (SD) of posterior predictive Rt during the Delta wave in India, 2021, 

derived from the best fitting model (model 4.1 without DLNMs) at country level using 2-week lag 

covariates and leave-one-week-out cross-validation approach. Areas shaded in grey are areas for which 

no data is available.

Fig S25. Observed versus posterior predictive Rt in the capital district of each state. Graphs with 

a log scale at y-axis show the observed Rt derived from reported case data, and corresponding posterior 

predictive mean and 95% prediction interval (CI, shaded pink area), derived from the best fitting model 

without DLNMs at country level (model 4.1: base model + mobility + temperature + UV + intervention 

policy; see SI Table S2), using 2-week lag covariates and leave-one-week-out cross-validation 

approach. States are ordered by their geographical location.

Figure S26. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the best 

fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and leave-one-

state-out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Figure S27. Standard deviation (SD) of posterior predictive Rt during the Delta wave in India, 2021, 

derived from the best fitting model (model 4.1 without DLNMs) at country level using 2-week lag 
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covariates and leave-one-state-out cross-validation approach. Areas shaded in grey are areas for which 

no data is available.

SI Wave 1
Table S5. Wave 1: Adequacy results for models with DLNMs and increasing complexity.

Table S6. Wave 1: Adequacy results for models (without DLNMs) using 2-week lag covariates 
with increasing complexity.

Table S7. Model hyperparameters using a range of prior distributions in best fit model 4.1 for 

Wave 1

Figure S28. COVID-19 cases reported by district each week during wave 1 in India. The weeks in 2020 

investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.

Figure S29. Relative intra-district mobility during wave 1 in India, standardised by pre-pandemic mean 

baseline levels of mobility for the first eight weeks of 2020 (December 29, 2019 – February 22, 2020) 

for each district. The weeks in 2020 investigated are numbered in maps. Areas shaded in grey are areas 

for which no data is available.

Figure S30. Stringency Index of COVID-19 intervention policy implemented during wave 1 in India. 

The weeks in 2020 investigated are numbered in maps. Areas shaded in grey are areas for which no 

data is available.

Figure S31. Mean temperature at 2m above the surface during wave 1 in India. The weeks in 2020 

investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.

Figure S32. Accumulated weekly precipitation (metres) during wave 1 in India. The weeks in 2020 

investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.

Figure S33. Relative humidity during wave 1 in India. The weeks in 2020 investigated are numbered 

in maps. Areas shaded in grey are areas for which no data is available.

Figure S34. Downward ultraviolet (UV) radiation (KJ/m2 per hour) during wave 1 in India. The weeks 

in 2020 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


10

Figure S35. Weekly Rt derived from COVID-19 cases reported during the wave 1 in India. The weeks 

in 2020 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.

Figure S36. Pairwise Pearson correlations between weekly means of variables at district level during 

the wave 1 in India, 2020. R0: basic reproduction number. Rt: instantaneous reproduction number. ln_R: 

log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. Cases_accu_rate: cumulative 

cases per 1000 people reported since the first week of the wave. mean_intra: intra-district relative 

mobility. d2m: relative humidity. t2m: mean temperature of air (°C at 2m above the surface of land, sea 

or inland waters). tp: precipitation (metres). uv: downward ultraviolet radiation. Stringency: index of 

COVID-19 intervention stringency. Holiday: days of public holidays in a week. pop_sum: total 

population of each district. pop_density: population number per km2 of each district.

Figure S37. Kendall rank correlations between weekly means of variables at district level during the 

wave 1 in India, 2020. R0: basic reproduction number. Rt: instantaneous reproduction number. ln_R: 

log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. Cases_accu_rate: cumulative 

cases per 1000 people reported since the first week of the wave. mean_intra: intra-district relative 

mobility. d2m: relative humidity. t2m: mean temperature of air (°C at 2m above the surface of land, sea 

or inland waters). tp: precipitation (metres). uv: downward ultraviolet radiation. Stringency: index of 

COVID-19 intervention stringency. Holiday: days of public holidays in a week. pop_sum: total 

population of each district. pop_density: population number per km2 of each district.

Figure S38. Posterior predictive mean Rt during wave 1 in India, 2020, derived from the best fitting 

model (model 4.1) at country level using leave-one-week-out cross-validation approach. The weeks in 

2020 investigated are numbered in maps. Areas shaded in grey are areas for which no data is available.

Fig S39. Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from 

the best fitting model (model 4.1) at country level leave-one-week-out cross-validation approach. Areas 

shaded in grey are areas for which no data is available.

Figure S40. Posterior predictive mean Rt during wave 1 in India, 2020, derived from the best fitting 

model (model 4.1) at country level using leave-one-district-out cross-validation approach. The weeks 

in 2020 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 

available.
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Fig S41. Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from 

the best fitting model (model 4.1) at country level leave-one-district-out cross-validation approach. 

Areas shaded in grey are areas for which no data is available.

Figure S42. Contribution of spatial random effects to estimates of Rt changes in the base model. Areas 

shaded in grey are areas for which no data is available.

Figure S43. Improvement by using the best fitting model across the country, compared to baseline 

model. Difference between mean absolute error (MAE) for the baseline model (weekly random effects, 

spatial random effects and population density) and MAE for the best fitting model (model 4.1 with 

DLNMs). Districts with positive values (pink) suggest that capturing the nonlinear and delayed impacts 

of mobility, climate information and intervention stringency, improves the model in these areas. 

Districts with negative values (blue) suggest that mobility, intervention and climate information did not 

improve the model fit and other unexplained factors might dominate space-time dynamics in these 

areas. The MAE of the selected model was smaller than the baseline model for 430 of the 661 (65.17%) 

districts in India, with the results of model performance provided by geo-political regions in the Table. 

Areas shaded in grey are areas for which no data is available.

Figure S44. Observed versus posterior fitted Rt in the capital district of each state using the best fitting 

model (model 4.1 with DLNMs) at country level. Graphs with a log scale at y-axis show the observed 

Rt derived from reported case data, and corresponding mean and 95% confidence interval (CI, shaded 

pink area) of fitted Rt, derived from the best fitting model (model 4.1 with DLNMs) at country level. 

States are ordered by their geographical location.

Figure S45. Observed versus posterior predictive Rt in the capital district of each state, using leave-

one-week-out cross-validation approach. Graphs with a log scale at y-axis show the observed Rt derived 

from reported case data, and corresponding posterior predictive mean and 95% prediction interval (CI, 

shaded pink area), derived from the best fitting model (model 4.1 with DLNMs) at country level. States 

are ordered by their geographical location.

Figure S46. Posterior predictive mean Rt during the wave 1 in India, 2020, derived from the best fitting 

model (model 4.1 without DLNMs) at country level using 2-week lag covariates and leave-one-week-

out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Fig S47. Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from 

the best fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and 
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leave-one-week-out cross-validation approach. Areas shaded in grey are areas for which no data is 

available.

Figure S48. Posterior predictive mean Rt during the wave 1 in India, 2020, derived from the best fitting 

model (model 4.1 without DLNMs) at country level using 2-week lag covariates and leave-one-district-

out cross-validation approach. Areas shaded in grey are areas for which no data is available.

Fig S49. Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from 

the best fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and 

leave-one-district-out cross-validation approach. Areas shaded in grey are areas for which no data is 

available.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/


 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.24308871doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308871
http://creativecommons.org/licenses/by/4.0/

