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Abstract 

Mixed infections comprising multiple Mycobacterium tuberculosis Complex (MTBC) strains are 

observed in populations with high incidence rates of tuberculosis (TB), yet the difficulty to 

detect these via conventional diagnostic approaches has resulted in their contribution to TB 

epidemiology and treatment outcomes being vastly underrecognised. In endemic regions, 

detection of all component strains is crucial for accurate reconstruction of TB transmission 

dynamics. Currently available tools for detecting mixed infections from whole genome 

sequencing (WGS) data have insufficient sensitivity to detect low-frequency mixtures with less 

than 10% minor strain fraction, leading to a systematic underestimation of the frequency of 

mixed infection. Our R package, TBtypeR, identifies mixed infections from whole genome 

sequencing by comparing sample data to an expansive phylogenetic SNP panel of over 

10,000 sites and 164 MTBC strains. A statistical likelihood is derived for putative strain 

mixtures based on the observed reference and alternative allele counts at each site under the 

binomial distribution. This provides robust and high-resolution sublineage classification for 

both single- and mixed-infections with as low as 1% minor strain frequency. Benchmarking 

with simulated in silico and in vitro mixture data demonstrates the superior performance of 

TBtypeR over existing tools, particularly in detecting low frequency mixtures. We apply 

TBtypeR to 5,000 MTBC WGS from a published dataset and find a 6-fold higher rate of mixed 

infection than existing methods. The TBtypeR R package and accompanying end-to-end 

Nextflow pipeline are available at github.com/bahlolab/TBtypeR. 
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Introduction 

Tuberculosis (TB) stubbornly remains the leading cause of infectious morbidity and mortality, 

with over 1 million annual deaths and 10 million annual cases for the last two decades1. Global 

eradication of TB is hampered by the proliferation of drug-resistant Mycobacterium 

tuberculosis (Mtb) strains, the lack of an effective vaccine for adults and our inability to stop 

transmission. TB patients infected with a mixture of one or more Mtb strains (mixed infection) 

have been reported in endemic regions across multiple studies2–6, with wide-ranging 

prevalence estimates from 0.4% to 57.1%6. Such mixed infections are associated with poorer 

treatment outcomes7. Whilst the occurrence of TB mixed infections has been established for 

some time, the contribution and importance of this phenomenon to local and global 

epidemiology of TB remains substantially underexplored. Characterising the extent of mixed 

infections, and thus re-infection, within populations is crucial for our understanding of the 

natural history of TB pathogenesis.  Furthermore, inadequate detection of mixed infection 

impedes efforts to confirm transmission events, model transmission dynamics and confounds 

the classification of recurrent TB as relapses or reinfections, collectively hindering the effective 

design and implementation of TB control programs in endemic regions8.  

The contribution of TB mixed infection has been largely ignored because the highly clonal 

genetic structure of Mtb,  its low mutation frequency and absence of on-going horizontal gene 

transfer, resulting in significantly less genetic diversity amongst isolates than other bacterial 

pathogens9. Consequently, the most commonly used routine diagnostic lab tests in high-

burden settings for genetically typing Mtb strains (with restriction fragment length 

polymorphism [RFLP] or spacer oligonucleotide [spoligo] typing) use repeat elements that lack 

sensitivity to detect the majority of mixed infections, except when from highly divergent strains.  

Whilst whole genome sequence-based typing now enables strain sublineage classification, 

existing analytical pipelines lack sufficient sensitivity to genotype low frequency isolate 

contributions.  

The Mycobacterium tuberculosis complex (MTBC) comprises five genetically close species of 

Mycobacterium known to cause TB and has been divided into 12 monophyletic lineages based 

on genomic phylogenetic reconstruction: Lineage 1 (Indo-Oceanic Mtb), Lineage 2 (East-

Asian Mtb), Lineage 3 (East-African-Indian Mtb), Lineage 4 (Euro-American Mtb), Lineage 5 

(West-African 1 M. africanum), Lineage 6 (West-African 2 M. africanum), Lineage 7 (Ethiopian 

Mtb), Lineage 8 (African Great Lakes Mtb), Lineage 9 (East African M. africanum), La1 (M. 

bovis), La2 (M. caprae), and La3 (M. orygis)10–13. Several efforts have been made to identify 

single nucleotide polymorphism (SNP) markers (known as SNP “barcodes”) unique to specific 
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MTBC lineages and sublineages (monophyletic) for use in strain identification and 

classification10–12,14,15, replacing the less-precise RFLP and spoligotyping. 

Multiple informatic tools have been developed to detect mixed samples from MTBC WGS data 

over the last decade, all of which rely on analysing the reference and alternate (B) allele counts 

at SNPs that differ between strains in the mixture WGS, with the B-allele frequency at each 

site approximating the mixture frequency. The tools fall into two general classes: (1) barcode-

based tools, which rely on a set of known phylogenetically defined SNP markers, and (2) 

barcode-free tools, which rely only on the observed WGS data to make mixture predictions. 

Barcode-based tools have the advantage that they are able to identify the specific sublineage 

of mixture components, whilst barcode-free tools have the advantage that they can identify 

mixtures between novel or closely related strains that are not present in the barcode.  

Two key barcode-free tools are MixInfect16 and SplitStrains17. MixInfect was the first tool 

developed and employs a method based on calling variants with BCFtools18 followed by 

Bayesian Gaussian mixture modelling of the B-allele frequency to estimate the minor strain 

fraction. MixInfect can reliably identify component mixed infections with ≥10% minor strain 

fraction (sensitivity ≥ 0.92) but fails at 5% minor strain fraction (sensitivity = 0.33). SplitStrains 

similarly uses a Gaussian mixture model and classifies mixed and non-mixed samples with a 

likelihood ratio test. SplitStrains is also reliable at ≥10% minor strain fraction (sensitivity ≥ 0.92) 

but fails at 5% minor strain fraction (sensitivity = 0.08) with default parameters. 

Barcode-based tools include TBProfiler19, Fastlin20 and QuantTB21. TBProfiler uses a 

phylogenetic barcode consisting of 1,101 SNPs covering 125 MTBC phylotypes (as of v5.0.1) 

and is capable of detecting mixed infections. This functionality was not described in the original 

manuscript, and the process used to detect mixed infection as well as the lower limits of 

detection are not documented. Fastlin uses the same phylogenetic SNP barcode as 

TBProfiler, however the SNPs are converted to k-mers of 25 base pairs by adding flanking 

sequence from the reference genome which are then used to rapidly scan sequencing read 

files without requiring alignment to a reference genome. Fastlin estimates the relative 

abundance of mixed strains based on the median count of all detected k-mers associated with 

each specific strain. The authors do not provide advice on the minimum minor strain fraction 

Fastlin is capable of detecting. Finally, QuantTB uses a non-phylogenetic SNP barcode 

constructed from 5,637 MTBC genome assemblies aligned to the H37Rv reference genome, 

yielding 2,167 strains and 244,181 SNP sites. Sample variants are first called at the barcode 

sites, after which an iterative algorithm is applied to select the strain which explains the most 

SNPs in the sample of interest until a threshold is met. The minor strain fraction is then 

estimated by averaging the B-allele frequency of SNPs unique to each strain identified. The 
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authors demonstrated that QuantTB is able to identify mixtures at 10% minor strain fraction 

but did not assess performance below 10% minor strain fraction. 

Here we describe our tool, TBtypeR, an easy-to-use R package and accompanying Nextflow 

pipeline, which has been designed for sensitive and accurate detection of low-frequency mixed 

infections with reliable detection of mixtures down to 2.5% minor strain fraction. We have 

performed thorough benchmarking of the existing tools for detection of mixed infection in 

MTBC WGS data, show the minimum minor strain fraction each tool is capable of detecting, 

illustrate the overall strengths and weaknesses of each approach and demonstrate that 

TBtypeR identifies a 6-fold higher rate of mixed infection in a published WGS dataset than 

conventional methods.  

Materials and Methods 

TBtypeR development 

TBtypeR is an R22 package for mixed strain identification from WGS data based on a 

phylogenetic SNP barcode. The included SNP barcode consists of 10,903 sites covering 164 

MTBC phylotypes (lineages and sublineages) compiled from Napier et al10, Zwyer et al11, 

Thawornwattana et al14, Coscolla et al12 and Shuaib et al15 (Table 1). The barcode is designed 

to be easily extended or replaced by users, allowing the tool to be run against emergent strains 

or with non-MTBC species. Input data for TBtypeR is provided as a multi-sample Genomic 

Data Structure (GDS) format23 or Variant Call Format24 (VCF) file. TBtypeR identifies strain 

mixtures by maximising the joint binomial likelihood across observed SNP sites using an 

iterative greedy search algorithm. At each iteration, TBtypeR identifies the best candidate 

strain to add to the mixture model and then optimises both the mixture proportions and the 

background error rate by maximising the joint likelihood. Statistical significance is assessed 

by both a permutation test and a Wilcoxon rank sum test with false discovery rates controlled 

by the Benjamini-Hochberg procedure. TBtypeR is provided as both a stand-alone R package 

and as part of a comprehensive Nextflow25 pipeline, TBtypeNF, which additionally performs 

FASTQ preprocessing with fastp26, read alignment with BWA-MEM27, variant calling with 

BCFtools18, and quality control (QC) report generation using SAMtools18, mosdepth28 and 

multiQC29. An alternative “Fast” workflow, FastTBtypeNF, was implemented in Nextflow by 

using Fastlin with a modified barcode to rapidly generate allele counts for use by TBtypeR, 

and thus avoiding the time-consuming alignment, variant calling, and QC steps. These three 

variants provide options for user customisation (TBtypeR), ease-of-use and convenience 

(TBtypeNF), and speed and cost-effectiveness (FastTBtypeNF). 
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Table 1: Data sources for the TBtypeR SNP Barcode. Region Abbreviations; AFR: Africa, AMR: Americas, AS: 

Asia, EUR: Europe, OCE: Oceania, UNK: unknown region. Sources are ordered by publication date. SNPs 

identified in multiple sources are counted once and attributed to the first published source. 

Source Lineages Number of WGS by region TBtypeR Barcode 

AFR AMR AS EUR OCE UNK SNPs Sublineages 

Napier et al10 1-9,La1-La3 8,533 3,275 7,368 10,221 65 5,838 7,572 78 

Zwyer et al11 La1-La3 139 262 62 307 51 19 1,323 19 

Thawornwattana et al14 2 363 0 3,806 175 81 0 728 42 

Coscolla et al12 5,6 643 0 0 1 0 31 643 16 

Shuaib et al15 3 695 337 881 506 263 0 637 12 

 

Benchmarking Datasets 

Three datasets were used to benchmark the tools. The first is the “in vitro duos” mixture 

dataset published along with the MixInfect tool16, which consists of 48 mixtures derived from 

mixing DNA extracted from pure Mtb cultures, with 12 each of minor strain fraction equal to 

0% (unmixed), 5%, 10% and 30%. The second and third datasets are the “in silico duos” and 

“in silico trios” datasets which were constructed by mixing sequencing reads from a subset of 

701 MTBC WGS data published by the CRyPTIC Consortium30. Samples were selected based 

on the following criteria: sequencing platform equal to “Illumina HiSeq 2500”, median depth ≥ 

100, fastp percent “pass” reads ≥ 95%, SAMtools percent mapped reads ≥ 95%, read length 

≥ 290 bp and mean SNP B-allele frequency < 0.0007 (determined empirically as indicative of 

a non-mixed sample). The “in silico duos” dataset consisted of 50 samples at each 

combination of coverage (20x, 40x, 60x, 80x and 100x) and minor strain fraction (1%, 2.5%, 

5%, 10%, 25% and 50%), giving 1500 mixed samples and a further 1500 matched unmixed 

samples using the same major strain for a total of 3000 simulated samples. The “in silico trios” 

dataset consisted of 250 unmixed samples, 250 matched mixtures of 2 strains with a 1:1 ratio, 

and 250 matched mixtures of 3 strains with a 3:2:1 ratio with equal numbers of samples with 

coverage 20x, 40x, 60x, 80x and 100x. Mixtures were generated by downsampling FASTQ 

files to the desired coverage with SeqKit31 and then concatenating the reads into a single 

FASTQ file. Samples in each simulated mixture were chosen semi-randomly from the pool of 

701, avoiding combinations where there were fewer than 10 SNPs different between 

component samples. Source code for generating the “in vitro” and “in silico” mixture datasets 

is provided in the TBtypeR repository. 

Benchmarking  

In order to compare the performance of TBtypeR to other published tools, Nextflow workflows 

were implemented for each of Fastlin, TBProfiler, SplitStrains, QuantTB and MixInfect and are 

included in TBtypeR repository. Docker containers were created based on Fastlin (v0.2.3, 
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installed via Bioconda), TBProfiler (v5.0.1, installed via Bioconda), SplitStrains (GitHub 

commit “f936cb2”, dependencies installed via Conda), QuantTB (v1.01, installed via Conda) 

and MixInfect (GitHub commit “79a7315”, dependencies installed via Conda). Fastlin, 

TBProfiler and QuantTB take FASTQ files directly as input so were straightforward to 

implement as Nextflow processes. SplitStrains required preprocessing of FASTQ files which 

was implemented based on the “gcs.sh” and “runSplitStrains.sh” scripts available on GitHub 

(https://github.com/WGS-TB/SplitStrains). MixInfect also required preprocessing which was 

implemented according to the description provided in Sobkowiak et al16. Each tool was used 

with default arguments unless otherwise specified. Since TBProfiler, Fastlin and QuantTB 

make use of SNP barcodes, these tools were benchmarked with both the provided barcode 

as well as one derived from the TBtypeR barcode to isolate performances differences based 

on SNP barcode alone. 

In order to assess the runtime of each tool, 100 samples from the “in silico duos” dataset with 

simulated coverage of 60x were selected, with equal numbers of unmixed and 50% minor 

strain fraction samples. Benchmarks were performed on a SLURM based HPC and run on 

nodes with Intel® Xeon® Gold 6342 CPUs and repeated 5 times each. CPU time was 

calculated by multiplying the percentage of CPU utilisation by the process real-time in seconds 

as reported by the Nextflow process trace. The median CPU time was taken across the 5 

replicates for each sample, and a mean value was calculated across all samples for each tool. 

Data analyses and visualisations were performed with R22, Posit Workbench, Rmarkdown and 

the tidyverse suite of packages32. Source code for running benchmarks and generating figures 

and tables is provided in the TBtypeR repository. 

Results 

Each tool was assessed with a suite of benchmarking tests on the “in vitro” and “in silico” 

mixtures datasets and the performance ranked by the Mathew’s correlation coefficient33 

(MCC), the mean absolute error (MAE) of minor strain fraction prediction, and the runtime per 

sample (Table 2). The MCC was preferred over other measures of binary classification 

performance, such as the F1 score, as it is robust on unbalanced datasets and invariant to 

class-swapping34. TBtypeR performed best in six of the seven overall benchmark categories, 

while Fastlin performed best in the runtime benchmark. An overall performance score was 

calculated and used to rank the tools as follows: 1) TBtypeR; 2) Fastlin; 3) TBProfiler; 4) 

QuantTB; 5) MixInfect; and 6) SplitStrains. Replacement of the default SNP barcodes with the 

TBtypeR barcode improved the overall performance of the other barcode-based tools (Fastlin, 

TBProfiler and QuantTB). For QuantTB the accuracy of minor strain fraction estimation was 

substantially improved, however the overall binary classification performance was somewhat 
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lower when using the TBtypeR barcode. Interestingly, the alternative FastTBtypeNF workflow 

was found to slightly outperform the default TBtypeNF workflow while being eleven times 

faster to run, suggesting that Fastlin’s k-mer counting approach may be more accurate than 

traditional alignment for strain assignment. 

Table 2: Overall performance and ranking of each tool on the “in vitro” and “in silico” benchmark datasets. “MCC” 

is the Mathews correlation coefficient (higher values are better), “MAE” is the mean absolute error in assigned 

minor strain fraction percentage (lower values are better) and “CPU sec.” is the average number of CPU seconds 

required to process a sample with a coverage of 60x (lower values are better). The overall “Score” is the mean of 

the linear rescaling of each metric to the interval [0,1], where 0 is assigned to the worst performer and 1 to the best 

performer. Tools are ordered from best to worst overall score, with best performers in each column indicated with 

bold font and worst performers in each column indicated with an underline. “+BC” in tool name indicates 

replacement of the tool's default SNP barcode with the TBtypeR barcode.  

  In vitro duos  
(n=48) 

In silico duos  
(n=3000) 

In silico trios  
(n=500) 

Runtime 
(n=100) 

Tool Score MCC MAE (%) MCC MAE (%) MCC MAE (%) CPU sec. 

TBtypeR (FastTBtypeNF) 0.985 0.944 1.65 0.840 0.88 0.796 1.80 020.5 

TBtypeR (TBtypeNF) 0.951 0.944 1.67 0.864 1.14 0.827 1.95 222.6 

Fastlin (+BC) 0.766 0.775 6.24 0.707 3.11 0.810 2.62 004.3 

TBProfiler (+BC) 0.762 0.713 2.18 0.551 1.96 0.763 2.23 267.6 

Fastlin 0.746 0.856 3.07 0.575 2.52 0.652 3.79 003.8 

TBProfiler 0.652 0.602 3.66 0.539 2.47 0.642 3.49 249.2 

QuantTB (+BC) 0.489 0.447 6.40 0.431 3.49 0.534 4.19 245.0 

QuantTB 0.418 0.612 9.97 0.493 7.23 0.771 4.00 284.8 

MixInfect 0.315 0.558 5.52 0.542 5.22 -0.283 6.41 414.7 

SplitStrains 0.270 0.000 7.23 0.549 2.06 0.000 5.39 834.6 

 

The performance of SplitStrains was notably inconsistent across these benchmarks. In the “in 

vitro duos” benchmark, specificity was low (0) and sensitivity was high (1), with all samples 

predicted as mixed. In contrast, in the “in silico duos” benchmark, specificity was high (0.99) 

and sensitivity was low (0.48). We note that the same in vitro dataset was used to benchmark 

SplitStrains in the original publication as has been used here, however with different results 

(specificity = 1, sensitivity = 0.86). Despite our best efforts to match the software versions, 

parameters, and data processing of the original publication, and reaching out to the authors 

for guidance, we were not able to reproduce these results with our Nextflow implementation.  

The effects of sequencing coverage, minor strain fraction and pairwise SNP distance were 

explored for each of the tools on the “in silico duos” dataset using the MCC measure (Figure 

1A). TBtypeR, Fastlin and SplitStrains, show improving performance with increased 

sequencing coverage as expected, while QuantTB and TBProfiler showed no trend, and 

MixInfect unexpectedly performed worse as sequencing coverage increased. Mixed infections 

are more difficult to detect when the component strains are genetically similar as there are few 

informative SNP sites on which to make predictions. Accordingly, the barcode-based tools 

(TBtypeR, Fastlin, TBProfiler and QuantTB) showed worst performance when the SNP 
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distance between component strains was lowest. However, TBtypeR still outperformed the 

two barcode-free tools (MixInfect and SplitStrains) at the lowest SNP distance bin, whilst these 

two performed better than the other barcode-based tools at this SNP distance. The minor 

strain fraction had the largest effect on the performance of all tools, with performance dropping 

off at minor strain fractions below 10%. TBtypeR performed best at low minor strain fractions, 

with reliable performance (MCC > 0.7) maintained down to 2.5% minor strain fraction, followed 

by MixInfect down to 5% minor strain fraction, and the remaining tools down to 10% minor 

strain fraction. All tools, except QuantTB and MixInfect, maintained high specificity (>0.95) 

across the benchmark so decreased MCC was driven primarily by decreased sensitivity 

(Figure S1). At 1% minor strain fraction TBtypeR maintained an MCC of 0.63 while all other 

tools were effectively no better than a random guess classifier with MCC close to 0 (0.0-0.05). 

TBtypeR yielded the highest MCC across the majority of tested points (14/16) and was only 

slightly outperformed by SplitStrains when the minor strain fraction was greater than or equal 

to 25%.  

 

Figure 1: Performance measures of each tool on the “in silico” datasets. A) Mathews correlation coefficient (MCC) 

is plotted against simulated coverage, minor strain fraction, and SNP distance bin for the “in silico duos” dataset. 

Distance bins were derived by dividing the pairwise SNP distance between the major and minor strain into 5 bins 

of equal counts, with means and ranges as follows: bin 1: 67 (10-114); bin 2: 147 (115-180); bin 3: 187 (181-193); 

bin 4: 202 (194-216); and bin 5: 317 (217-432). The x-axis of minor strain fraction is log-2 scaled for improved 

resolution. B) Boxplots showing the distribution of predicted minor strain fraction for each simulated value across 
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each tool in the “in silico duos” dataset. The red line corresponds to the function y=x. Axes are log-2 scaled for 

improved resolution and boxplots are coloured by MAE (the mean absolute error in assigned minor strain fraction 

percentage). Absent boxplots for TBProfiler and Fastlin are due to no mixture predictions being made at 1% minor 

strain fraction by these tools. C) Accuracy of each tool in predicting simulated mixtures of either one, two or three 

strains in the “in silico trios” dataset. The length and colour of the bars represents the proportion of samples 

predicted to have the specified number of strains. 

In addition to best binary classification performance, TBtypeR was found to have the highest 

accuracy in minor strain fraction estimation, particularly at low minor strain fraction, 

maintaining a median absolute error (MAE) of less than 2% minor strain fraction, down to 

minor strain mixtures of 1% (Figure 1B). Next best was Fastlin, able to maintain a MAE less 

than 5% minor strain fraction down to minor strain mixtures of 2.5%, followed by TBProfiler 

maintaining a MAE less than 2% minor strain fraction down to minor strain mixtures of 5%. 

SplitStrains and QuantTB performed poorly, maintaining a MAE of less than 5% minor strain 

fraction down to minor strain mixtures of only 10%, and MixInfect performed worst maintaining 

a MAE of less than 2% minor strain fraction down to minor strain mixtures of only 25%.  

The ability of each tool to identify mixtures of three strains (trios) was assessed with the “in 

silico trios” dataset and measured by the accuracy of assigning equal numbers of one-, two- 

and three- strain mixtures (Figure 1C). Here TBtypeR also performed best, correctly assigning 

the highest proportion of mixtures with an accuracy of 0.94, followed by Fastlin with an 

accuracy of 0.87, TBProfiler and QuantTB with accuracies of 0.86, SplitStrains with an 

accuracy of 0.67 and MixInfect with an accuracy of 0.62. It should be noted that as 

implemented SplitStrains is not able to predict three-strains mixtures as the mixture number 

needs to be provided a priori and is not estimated from the data. QuantTB and MixInfect were 

the only tools to make erroneous predictions of three-strain mixtures. 

MTBC strain sublineage assignment was compared between TBtypeR, TBProfiler and Fastlin 

on 690 non-mixed samples downsampled to 100x coverage (Table S1). The QuantTB barcode 

is not phylogenetic and does not use standard nomenclature for MTBC sublineages so strain 

assignment could not be meaningfully compared. TBProfiler and Fastlin were found to agree 

on strain sublineage assignment in 99.4% of cases. As TBProfiler and Fastlin perform near 

identically in sublineage assignment and use the same underlying barcode, further 

comparisons are made between TBProfiler and TBtypeR only. TBtypeR agreed with 

TBProfiler in 57.2% of cases, gave more specific sublineage assignments for 23.5% of cases, 

and gave less specific sublineage assignments in 3.5% of cases. The remaining 15.8% of 

discordant cases were due to different strain nomenclature used in the respective SNP 

barcodes, largely due to: 1) the inclusion of additional lineage 2 strains in the TBtypeR SNP 

barcode from Thawornwattana et al14; and 2) TBtypeR using the new lineage names 1.3.1 and 
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1.3.2 instead of the older lineage names 1.2.2.1 and 1.2.2.2, as detailed in Napier et al10. 

TBtypeR and TBProfiler strain assignments agreed in 99.6% of cases when the TBtypeR SNP 

barcode was used with TBProfiler.  

Finally, in order to demonstrate the extent to which mixed infections have been underreported 

due to the low sensitivity of existing tools to confidently detect low frequency mixtures, we ran 

TBtypeR (workflow FastTBtypeNF) on 5,000 samples randomly selected from the Wang et al 

study where mixed infections were screened for with TBProfiler35. Indeed, we found 

significantly higher levels of mixed infection, with a total of 6.1% (305/5000, 95% binomial 

confidence interval 5.5-6.8%) of samples being called mixed (Table S2), approximately 6-fold 

higher than the 1.1% reported by Wang et al. All mixture calls made by TBProfiler were also 

made by TBtypeR, with the majority (85.0%) of additional mixtures detected by TBtypeR being 

below 5% minor strain fraction (Figure 2A). This result suggests that the majority of mixed 

infections may constitute low-frequency mixtures which are difficult to detect with existing tools 

and highlights the importance of using more sensitive tools to capture the full genomic diversity 

of infecting strains. This is particularly relevant when using WGS for transmission mapping. 

In order to demonstrate that the low-frequency mixtures detected by TBtypeR are likely to be 

genuine, we have visually compared the distribution of the B-allele frequency at the modelled 

mixture genotypes to the predicted minor strain fraction for a subset of samples (Figure 2). 

Five samples each were randomly selected covering cases where: 1) the predicted minor 

strain fraction is below 5% and the prediction is made by TBtypeR alone; 2) the predicted 

minor strain fraction is above 5% and the prediction is made by TBtypeR alone; and 3) the 

predicted minor strain fraction is above 5% and the prediction is made by both TBtypeR and 

TBProfiler. No mixtures with a minor strain fraction below 5% were predicted by TBProfiler. In 

all cases the B-allele frequency is shifted away from 0 (reference allele) and 1 (alternate allele) 

at sites with disagreeing mixture genotypes (“01” and “10”) across all barcode sites, with the 

magnitude of shift being consistent with the estimated minor strain fraction from TBtypeR. 
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Figure 2: Comparison of TBtypeR and TBProfiler mixed infection calls from the Wang et al. dataset. A) Histogram 

of minor strain fraction of mixtures detected by TBtypeR and TBProfiler. Segments are coloured by whether the 

call was made by TBtypeR alone or both TBtypeR and TBProfiler. No calls were made by TBProfiler alone. Vertical 

dashed lines indicated the median minor strain fraction identified by TBtypeR (2.1%) and by TBProfiler (17.8%). 

The x-axis bins have a width of 1%.  B) B-allele Frequency (BAF) violin plots showing BAF distribution vs TBtypeR 

predicted mixture genotypes. The top row shows 5 arbitrary mixtures detected by TBtypeR alone with below 5% 

minor strain fraction, the middle row shows 5 arbitrary mixtures detected by TBtypeR alone with above 5% minor 

strain fraction, and the bottom row shows 5 arbitrary mixtures detected by both TBtypeR and TBProfiler with above 

5% minor strain fraction. Genotype indicates the major strain genotype followed by minor strain genotype, where 

‘0’ indicates a reference allele and ‘1’ indicates an alternate allele. Horizontal lines indicate the expected B-allele 

frequency based on the minor strain fraction and crosses indicate the median observed B-allele frequency. The y-

axis is arcsine transformed for better resolution of binomially distributed data. Labels indicate the WGS accession 

number as well as the sublineages and minor strains fractions identified. For simplicity TBtypeR was configured to 

call mixtures of at most 2 strains for this analysis, however ERR2514052 likely contains a third strain as evidence 

by the “01” genotype B-allele frequency being shifted lower than expected. 
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Discussion 

Here we have presented TBtypeR, the most sensitive and accurate tool for identification of 

mixed infections from MTBC WGS data developed to date. TBtypeR has greater sensitivity 

and accuracy for detecting mixed infections at almost all tested parameters, with the widest 

performance margin at low frequency mixed infections where existing tools struggle. It also 

generally provides more specific sublineage classification than TBProfiler and can detect 

strains from 5 MTBC species covering 12 lineages. TBtypeR has been designed for and tested 

with short-read (Illumina) WGS data, but theoretically could be used with whole genome 

sequencing data from any platform (e.g. Oxford Nanopore long-read) if sufficient coverage is 

achieved. The provided SNP barcode is the most comprehensive to date, compiled and 

harmonized from five separate sources, and may be updated by users to improve sensitivity 

for emerging strains as new SNP markers become available.  

Our benchmarking demonstrates that barcode-based tools outperform barcode-free tools for 

identification of MTBC mixed infections in most cases. We have shown that better 

performance is achieved by using SNP barcodes with as many sites as possible, with the 

performance of both TBProfiler and Fastlin improving when run with the 10-fold larger TBtypeR 

SNP barcode, and with only a minor increase in the respective runtimes. By utilising barcodes 

of known polymorphic sites, barcode-based tools are able to maximise the signal-to-noise ratio 

of the underlying data and thus yield more sensitive and accurate predictions of mixed 

infections. However, it is worth noting that barcode-free tools have the advantage that they 

may identify multiple strain infections in cases of either very closely related strains with small 

numbers of barcode SNPs differing, or with novel strains that are not yet captured by the SNP 

barcode. This limitation of barcode-based tools will be overcome by expanding the number of 

strains and SNPs included in the barcode as the knowledgebase of MTBC sublineages grows. 

We note however that the knowledgebase already has impressive geographic coverage with 

over 35,000 strains covering Africa, the Americas, Asia, Europe and Oceania used to derive 

the phylogenetic SNP barcode used (Table 1).  

TBtypeR achieves improved performance over other tools for two key reasons: 1) use of an 

extensive SNP barcode (as discussed above); and 2), employing a rigorous statistical 

framework based on maximising the joint likelihood of the observed allele counts across all 

SNP sites under the binomial distribution. The binomial distribution is a much closer 

approximation of the underlying stochastic processes that drive the observed reference and 

alternate allele counts and naturally leads to more accurate estimates than the Gaussian 

mixture model employed by other tools. The difference between Gaussian and binomial 

models becomes particularly pronounced at both lower sequencing depths and lower minor 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308870doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308870
http://creativecommons.org/licenses/by/4.0/


13 
 

strain fractions, when the probability of observing an alternate allele at any given polymorphic 

site becomes low. 

We believe that our tool, TBtypeR, will be of use to the research community, and that new 

insights of epidemiological and clinical importance will be possible due to the ability to 

accurately identify low frequency mixed infections from WGS data. The full impact of mixed 

infections on diagnosis, treatment, and transmission mapping of TB will become evident with 

time.  However, improved software solutions are only part of the equation when it comes to 

comprehensive detection of mixed infections. Moreno-Molina et al demonstrated that mixed 

infections are not uniformly distributed in resected lung tissue, and found a large discrepancy 

between the rates of mixture detection between sputum samples (5%) and lung tissue 

resection samples (39%)36. Part of this discrepancy may be because sputum samples are 

primarily composed of the proportion of bacteria in the body in closest proximity to the airway 

and in some cases may even derive from a biofilm lining a cavity. Consequently, the genetic 

diversity of bacteria in sputum can be limited.  Secondly, all sample types are typically cultured 

prior to sequencing, thus biasing detection towards isolates that grow well under conventional 

culture conditions. As such, it has been demonstrated that greater genetic diversity is detected 

when performing direct sequencing of sputum samples compared to culture37. Taken together, 

we believe that careful selection of both software tools and sampling approaches will lead to 

increased routine detection of mixed infection from WGS data that more closely reflects the 

physiological truth found in individuals with TB. 
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Supplementary Figures 

 

Figure S1: Additional binary performance metrics for each tool on the “in silico duos” dataset. The x-axis of minor 

strain fraction is log-2 scaled for improved resolution. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308870doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308870
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Materials and Methods
	TBtypeR development
	Benchmarking Datasets
	Benchmarking

	Results
	Discussion
	Acknowledgements
	References
	Supplementary Figures

