1 Overweight and Obesity as Predictors of Post-acute Sequelae of SARS-Cov-2 Infection:

2 Findings from the RECOVER Initiative

- 3 Ting Zhou, MD, PhD^{1,2}, Bingyu Zhang, MS^{1,3}, Dazheng Zhang, MS^{1,2}, Qiong Wu, PhD^{1,2}, Michael J.
- 4 Becich, MD, PhD⁴, Saul Blecker, MD, MHS⁵, Jiajie Chen, PhD^{1,2}, Nymisha Chilukuri, MD⁶, Elizabeth A.
- 5 Chrischilles, PhD⁷, Haitao Chu, MD, PhD^{8,9}, Leonor Corsino, MD¹⁰, Carol R. Geary, PhD¹¹, Mady Hornig,
- 6 MA, MD¹², Susan Kim, MD, MMSc¹³, David M. Liebovitz, MD¹⁴, Vitaly Lorman, PhD¹⁵, Yiwen Lu, BS^{1,3},
- 7 Chongliang Luo, PhD¹⁶, Hiroki Morizono, PhD¹⁷, Abu SM. Mosa, PhD, MS, FAMIA¹⁸, Nathan M. Pajor,
- 8 MD, MS^{19,20}, Suchitra Rao, MBBS, MSCS²¹, Hanieh Razzaghi, PhD¹⁵, Srinivasan Suresh, MD, MBA^{22,23},
- 9 Yacob G. Tedla, PhD²⁴, Leah Vance Utset, MD²⁵, Youfa Wang, MD, PhD²⁶, David A. Williams, PhD²⁷,
- 10 Margot Gage Witvliet, PhD²⁸, Caren Mangarelli, MD, MS²⁹, Ravi Jhaveri, MD³⁰, Christopher B. Forrest,
- 11 MD, PhD^{15*} , and Yong Chen, $PhD^{1,2,3,31,32,33*}$
- 12 1 The Center for Health Analytics and Synthesis of Evidence (CHASE), University of Pennsylvania, Philadelphia, PA, USA
- 13 2 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- 15 3 The Graduate Group in Applied Mathematics and Computational Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- 17 4 Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- 18 5 Department of Population Health, New York University Grossman School of Medicine, NY, USA
- 19 6 Departments Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- 20 7 Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
- 21 8 Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
- 22 9 Statistical Research and Innovation, Global Biometrics and Data Management, Pfizer Inc, New York, NY
- 23 10 Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- 24 11 Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
- 25 12 Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- 26 13 Department of Pediatrics, Division of Rheumatology, UCSF Benioff Children's Hospital, San Francisco, CA, USA
- 27 14 Division of General Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- 28 15 Applied Clinical Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- 29 16. Division of Public Health Sciences, Washington University School of Medicine in St Louis, St Louis, MO, USA
- 30 17. Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- 31 18 Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, MO, USA
- 32 19. Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

- 33 20 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- 34 21 Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- 22 Divisions of Health Informatics & Emergency Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- 37 23 UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- 38 24 Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- 39 25. Division of Primary Care Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- 40 26 Global Health Institute, Xi'an Jiaotong University, Xi'an, China
- 41 27 Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- 42 28 Department of Sociology, Social Work and Criminal Justice, Lamar University, Beaumont, TX, USA
- 43 29. Division of Advanced General Pediatrics and Primary Care, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago,
 44 IL, USA
- 45 30. Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- 46 31. Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
- 47 32. Penn Medicine Center for Evidence based Practice (CEP), University of Pennsylvania, Philadelphia, PA, USA
- 48 33. Penn Institute for Biomedical Informatics (IBI), University of Pennsylvania, Philadelphia, PA, USA

49 **Corresponding author**:

- 50 Yong Chen, PhD, <u>ychen123@pennmedicine.upenn.edu</u>
- 51 Christopher B. Forrest, MD, PhD, <u>forrestc@chop.edu</u>
- 52 Authorship Statement: Authorship has been determined according to ICMJE recommendations.
- 53 Word count: 2998

54 Key Points

- 55 Question Do children, adolescents, and young adults with overweight and obesity have increased risk of
- 56 developing post-acute sequelae of SARS-Cov-2 infection (PASC)?
- 57 Findings Overweight, obesity, and severe obesity were associated with significantly increased risk of
- 58 pediatric PASC. Compared with pediatrics with body mass index in the healthy range, those who were
- 59 overweight, obesity, or severely obesity had an increased incidence of 4.7%, 25.4%, and 42.1% of PASC,
- 60 respectively.
- 61 Meaning Overweight and obesity are important risk factors for pediatric PASC. The biological
- 62 mechanisms for this association should be investigated in the future research.

63 Abstract

- 64 **IMPORTANCE** Obesity increases the severe COVID-19 risk. Whether obesity is associated with an
- 65 increased risk of post-acute sequelae of SARS-Cov-2 infection (PASC) among pediatrics, independent of
- 66 its impacts on acute infection severity, is unclear.
- 67 **OBJECTIVE** To quantify the association between body mass index (BMI) status before SARS-CoV-2
- 68 infection and pediatric PASC risk, controlling for acute infection severity.
- 69 **DESIGN** Retrospective cohort study occurred from March 2020 to May 2023, with a minimal follow-up
- 70 of 179 days.
- 71 **SETTING** Twenty-six US children's hospitals.
- 72 **PARTICIPANTS** Individuals aged 5-20 years with SARS-CoV-2 infection.
- 73 **EXPOSURES** Elevated BMI status assessed before infection.

74 MAIN OUTCOMES AND MEASURES To identify PASC, we first used the ICD-10-CM code specific

75 for post-COVID-19 conditions, and a second approach used clusters of symptoms and conditions that

constitute the PASC phenotype. BMI was assessed within 18 months before infection; the measure closest

- 77 to the index date was selected. Relative risk (RR) for BMI-PASC association was quantified by Poisson
- regression models, adjusting for sociodemographic, acute COVID severity, and other clinical factors.
- 79 **RESULTS** Among the 172136 participants included, the median age of BMI assessment and cohort entry
- 80 were 12.8 and 13.2 years, 1402 (0.8%) were identified as having PASC with the ICD-10-CM code, and
- 81 74317 (43.2%) had ≥1 incident occurrence of PASC symptoms and conditions. Compared with
- 82 participants with a healthy weight, those who had overweight, obesity, and severe obesity had 4.7% (RR,
- 83 1.047; 95% CI, 0.868-1.263), 25.4% (RR, 1.254; 95% CI, 1.064-1.478) and 42.1% (RR, 1.421; 95% CI,
- 84 1.253-1.611) higher risk of PASC when identified using the diagnosis code, respectively. The risk for any

- 85 occurrences of PASC symptoms and conditions also increased in overweight (RR, 1.030; 95% CI, 0.982-
- 86 1.080), obesity (RR, 1.108; 95% CI, 1.064-1.154), and severe obesity (RR, 1.174; 95% CI, 1.138-1.213),
- 87 and that for total incident occurrences increased, too, in overweight (RR, 1.053; 95% CI, 1.000-1.109),
- 88 obesity (RR, 1.137; 95% CI, 1.088-1.188), and severe obesity (RR, 1.182; 95% CI, 1.142-1.223).

89 CONCLUSIONS AND RELEVANCE Elevated BMI was associated with a significantly increased

- 90 PASC risk in a dose-dependent manner. The biological mechanisms for this association should be
- 91 investigated in future research.

92	Post-acute sequelae of SARS-CoV-2 infection (PASC) encompasses a broad and heterogeneous array of
93	persistent, relapsing, or newly emerging symptoms persisting beyond at least 4 weeks after the acute
94	phase of COVID-19. ¹⁻⁴ This condition exhibits multifaceted involvement across various organ systems. ⁵⁻⁸
95	The prevalence of pediatric PASC with SARS-CoV-2 infection varies across studies with reported rates
96	ranging from 1.6% to 70%. ⁹⁻¹² PASC continues to pose a significant threat to children and there is an
97	urgent imperative for a deeper understanding of the pediatric PASC causes, which is a research priority
98	underscored in the updated National Institute for Health and Care Excellence guideline. ¹³ This imperative
99	persists, emphasizing the ongoing need to unravel the complexities surrounding pediatric PASC even
100	after the pandemic.

101 Obesity is now one of the most common chronic diseases in the US, impacting over 40% of adults and about 20% of children.^{14,15}The association of obesity with severe adverse outcomes was seen again with 102 103 the onset of the COVID-19 pandemic.¹⁶ The association between obesity as a risk factor and PASC has been widely discussed, with a predominant focus on adults.^{17,18} Some studies have reported that 104 overweight or obesity is associated with an elevated risk of PASC^{18,19} across different timelines. 105 106 irrespective of whether the definition of PASC extends to 12 weeks¹⁸ or 4 months.¹⁹ However, the 107 nuances of this relationship become apparent when considering the specific timeline for defining PASC. 108 For example, Sudre et al. observed that increasing body mass index (BMI) and obesity were linked to 109 higher odds of PASC lasting for more than 4 weeks, but this association did not extend to PASC lasting 110 for more than 12 weeks.²⁰

The major concern is the limited attention given to the pediatric population, as the previous investigations predominantly concentrated on adults. There is hardly any discussion regarding the pediatric BMI-PASC association, which underscores a crucial research gap. To address these limitations and enhance our understanding, large-scale studies using routinely available healthcare data among pediatric population are needed. Our study conducted an extensive analysis utilizing EHR data sourced from 26 US children's hospitals. The primary objective was to explore the relationship between BMI status before SARS-CoV-2

infection and a range of PASC definitions among both hospitalized and non-hospitalized pediatric
populations with COVID-19 infection, controlling for acute infection severity. We also assessed
associations between BMI status and the number of PASC symptoms and conditions accounting for
sociodemographic and clinical risk factors. Importantly, the insights obtained will play an influential role
in informing preventive and clinical management strategies, assisting healthcare providers in identifying
at-risk pediatric patients to develop PASC.

123 Methods

124 Data Sources

125 This study is part of the National Institutes of Health Researching COVID-19 to Enhance Recovery

126 (https://recovercovid.org/), which aims to understand, treat, and prevent PASC. Twenty-six institutions

127 contributed to the data (see eTable 1 in the Supplement for details).

128 We conducted a retrospective cohort study from March 2020 to May 2023 by including documented

129 SARS-CoV-2 infected patients under the age of 21 who had at least one visit within the baseline period of

130 18 months to 7 days prior to the index date and had at least one visit within the follow-up period of 28

131 days to 179 days after the index date. Documented SARS-CoV-2 infections were defined by SARS-CoV-

132 2 polymerase chain reaction, antigen or serology positive, or diagnosis of COVID-19, PASC or

133 multisystem inflammatory syndrome (MIS). The index date was set as either the earliest date of positive

tests or COVID-19 diagnoses or 28 days before PASC/MIS diagnosis.

135 Participants were excluded if they aged below 5 at the time of assessing BMI due to their potential for

136 more dramatic BMI variations during the baseline period, and if they had genetic syndromes associated

137 with obesity or any conditions signaling a need for weight gain or a medical cause of altered weight

tendencies during the baseline period (eTable 2 in the Supplement). The participants selection process is

139 summarized in eFigure 1 in the Supplement.

140 **Defining BMI Status**

When multiple BMI (weight (kg)/height (m)²) measures were available during the baseline period, we selected the measure closest to the index date. For participants aged 5-19 years, according to the age-sex– specific BMI percentiles based on CDC Growth Charts, the BMI status was categorized into healthy weight (5th to less than 85th percentile), overweight (85th to less than 95th percentile), obesity (95th percentile to less than 120% of the 95th percentile), and severe obesity (120% of the 95th percentile or greater);²¹ for participants aged above 19 years, these four categories were divided by BMI of 18.5 to less than 25, 25 to less than 30, 30 to less than 40, and 40 or more within the baseline period.²²

148 **Defining PASC**

149 The outcome was assessed within the follow-up period. We first used ICD-10-CM codes, U09.9, specific

150 for post-COVID-19 condition to indicate PASC. For this, we created a binary outcome, PASC (U09.9),

151 which was defined as positive if anyone who was identified as having PASC with a U09.9 diagnosis code.

152 Second, we used clusters of symptoms and health conditions previously shown to constitute the PASC phenotype based on experts' suggestions,^{23,24} including abdominal pain, abnormal liver enzyme, acute 153 154 kidney injury, acute respiratory distress syndrome, arrhythmias, cardiovascular signs and symptoms, 155 changes in taste and smell, chest pain, cognitive dysfunction, fatigue and malaise, fever and chills, fluid 156 and electrolyte imbalances, generalized pain, hair loss, headache, heart disease, mental health disorders, 157 musculoskeletal pain, myocarditis, myositis, postural orthostatic tachycardia syndrome or dysautonomia, 158 respiratory signs and symptoms, skin symptoms, thrombophlebitis and thromboembolism. We assessed 159 the incident occurrences of these 24 PASC symptoms and conditions within the follow-up period, but that 160 did not occur during the baseline period, and then a binary and a count outcome were created. The binary 161 outcome is defined as positive if any of these conditions occurred, and the count outcome is defined as the 162 total incident occurrences of these conditions.

163 Covariates

164	Age at BMI status assessment and age at cohort entry were collected. Other demographic characteristics
165	included sex (male/female), and race and ethnicity (Asian American/Pacific Islander, Hispanic, Non-
166	Hispanic Black, and Non-Hispanic White). The predominating COVID-19 virus variant was categorized
167	as pre-Alpha (2020-03-01~2021-03-31), Alpha (2021-04-01~2021-06-30), Delta (2021-07-01~2021-12-
168	31), and Omicron (2022-01-01~2022-12-01). ²⁵ We used numbers of emergency department/ outpatient
169	department/inpatient department visits, medications or prescriptions, and negative COVID-19 tests up to
170	24 months before index date as healthcare utilization metrics, and the Pediatric Medical Complexity
171	Algorithm (PMCA) ²⁶ index to address levels of medical complexity comorbidity (no/non-
172	complex/complex chronic condition) for the pediatrics. We also classified participants based on the acute
173	COVID-19 severity as asymptomatic, mild, moderate, and severe. ²⁷ Doses of COVID-19 vaccine prior to
174	infection and interval since last COVID-19 vaccination date (no vaccine/<4 months/≥4 months), and type

175 of insurance (private/public/others) were also considered in the secondary analyses.

176 Statistical Analysis

177 We first presented the demographic and clinical characteristics across different BMI statuses.

178 Comparisons of PASC (U09.9) and potential PASC symptoms and conditions were then made by BMI

179 status. For the count outcome, total incident occurrences of PASC symptoms and conditions, we used

180 Poisson regression to assess its association with BMI status by estimating the relative risk (RR) and 95%

181 confidence interval (CI), adjusting for demographic characteristics (age, sex, race/ethnicity), predominant

182 variant, healthcare utilization metrics prior to cohort entry, PMCA index, and acute COVID-19. For

183 binary outcomes, PASC (U09.9) and any incident occurrences of PASC symptoms and conditions,

184 modified Poisson regression²⁸ was employed, accounting for possible variance overestimation and

- 185 adjusting for the factors described above. Analysis of variance was used for the linear trend test.
- 186 Subgroup analyses were performed by age (<18 or ≥18 years) and PMCA index (no chronic condition or

non-complex/complex chronic condition), and by race/ethnicity as disparities exist in the BMI status
among children and the severity of COVID-19 by race/ethnicity to test for potential effect modification.

189 We performed sensitivity analyses to validate our findings. First, we excluded participants whose BMI 190 status assessment date was beyond 6 months before cohort entry as pediatric BMI tended to increase 191 during the pandemic.²⁹ Second, participants whose entrance date was before the time U09.9 was released 192 (i.e., October 1, 2021) were excluded considering possible low usage of U09.9 by clinicians when the 193 code was first introduced. We then excluded patient confirmed by serology test after November 2022 due 194 to the test's possible accuracy issues. Fourth, to investigate whether the observed associations were 195 explained by the acute COVID-19 severity, we excluded participants with moderate or severe infection. 196 Fifth, as vaccination against COVID-19 may reduce PASC risk,^{30,31} we additionally adjusted for 197 vaccination status before infection. Sixth, insurance type was further adjusted to examine whether 198 socioeconomic factors might account for the association. Seventh, participants with diabetes were excluded as diabetes has been reported as a risk factor for PASC.^{32,33} Eighth, we excluded obese 199 200 participants without diabetes using weight-loss drugs during the baseline period to investigate whether 201 weight-loss drugs impact the association. Nineth, we conducted an analysis based on primary care sites to 202 ascertain the generalizability of our findings within a community-based primary care setting. We also 203 used foreign body in ear as a negative control outcome to account for the impacts due to residual bias. ^{34,35} 204 All analyses were conducted using R version 4.1.2 (The R Foundation).

205 **Results**

After excluding participants who were underweight (n=221) and missed BMI status (n=67451), a total of 172136 participants were included in the analysis. Participants missing BMI status data were more prone to be younger, male, Non-Hispanic White and Non-Hispanic Black, be infected after the pre-Alpha wave, have lower complex chronic conditions, use healthcare utilization less, and be less likely to develop PASC (eTable 3 in the Supplement). The median time from BMI status assessment to COVID-19

211	infection was 4.1 months (IQR 1.6-8.6). Of all the participants, 90187 (52.4%) were female, 87275
212	(50.7%) were Non-Hispanic White, and 85613 (49.7%) had obesity or severe obesity (Table 1).
213	During the follow-up period, 1402 (0.8%) participants were diagnosed as PASC (U09.9), of which 751
214	(53.6%) were obese or severely obese; and 74317 (43.2%) participants had at least one incident
215	occurrences of PASC symptoms and conditions, of which 38006 (51.1%) were obese or severely obese.
216	The median of the total number of incident occurrences of PASC symptoms and conditions was 0,
217	signifying that at least half of the participants in the cohort did not experience any incident occurrences of
218	PASC symptoms and conditions.
219	Participants classified as having overweight, obesity, or severe obesity exhibited an increased risk of
220	PASC compared to those with healthy weight, albeit not all reaching statistical significance. Specifically,
221	in comparison to those with healthy weight, participants categorized as having obesity and severe obesity
222	demonstrated a noteworthy 25.4% (RR, 1.254; 95% CI, 1.064-1.478) and 42.1% (RR, 1.421; 95% CI,
223	1.253-1.611) higher risk of PASC (U09.9), respectively. Similarly, those who had obesity and severe
224	obesity experienced a 10.8% (RR, 1.108; 95% CI, 1.064-1.154) and 17.4% (RR, 1.174; 95% CI, 1.138-
225	1.213) increased likelihood of encountering any manifestation of potential PASC symptoms and
226	conditions, respectively. Furthermore, when assessing the cumulative occurrences of PASC symptoms
227	and conditions, the association became slightly more pronounced and the RRs for those who had
228	overweight, obesity, and severe obesity were 1.053 (95% CI, 1.000-1.109), 1.137 (95% CI, 1.088-1.188),
229	and 1.182 (95% CI, 1.142-1.223), respectively. A significant dose-response relationship emerged between
230	worsening BMI classification and risk of PASC ($P < 0.05$ from the linear trend test) (Table 2).
231	Similar association was identified in the subgroup analysis by age and PMAC index, and the result did
232	not differ significantly in the analysis for Non-Hispanic White, yet the association was not observed in the
233	PASC (U09.9) for Non-Hispanic Black, neither was in all the PASC outcomes for Hispanic (Table 3),
234	where the analysis for American/Pacific Islander was not present because the case of U09.9 diagnosis in

certain BMI status categories was too small. The significant dose-response relationship still held in the
sensitivity analysis although slightly changes were seen in the associations (eTables 4-14 in the
Supplement). The result for negative control outcome analysis was insignificant, indicating that residual
bias was not observed (eTable 15 in the Supplement).

239 **Discussion**

240 To our knowledge, this retrospective cohort study is the first and the largest to explore the relationship 241 between BMI status and PASC among the pediatric population. Within the follow-up period, an adverse 242 dose-response relationship between pre-infection BMI status and the susceptibility to PASC was 243 consistently revealed, after adjusting for sociodemographic and clinical variables. This association pattern 244 between BMI status and PASC risk was consistent across pediatric and adult populations¹⁹, albeit with 245 varying magnitudes of association. This association persisted even after rigorous adjustments for critical 246 factors through secondary analyses, except for the subgroup analysis by racial and ethnic minorities, 247 suggesting that race/ethnicity may be an effect modifier. Importantly, the incorporation of negative 248 control outcome yielded no sizable residual bias, confirming the robustness and reliability of the findings.

249 Our study had several strengths. A pivotal one lies in its extensive and representative sample. Covering 250 172136 pediatric populations with COVID-19 infection from twenty-six US children's hospitals, our 251 study is distinguished by its scale, enabling us ample statistical power to rigorously evaluate the BMI-252 PASC relationship accounting for key sociodemographic and clinical risk factors. A noteworthy 253 distinction from the previous research is our ICD-coded EHR phenotypes rather than self-reported PASC 254 symptoms as the latter may be influenced by individual perceptions, interpretations, recall biases, lack of 255 standardization, participant compliance with reporting protocols, etc. The inclusion of multiple PASC 256 outcomes enhances the clarity in understanding the burden and risk of PASC, and mitigates the potential 257 for misclassification. This is particularly relevant given the recognized limitations associated with only 258 using $U09.9^{36}$ and acknowledging the likely divergence in clinical features of PASC between pediatric

and adult population.²³ Moreover, a considerable portion of the existing studies primarily focused solely
 on hospitalized cohorts, our cohort is characterized by its inclusivity, incorporating both non-hospitalized
 and hospitalized participants.

262 Although our study revealed a significantly higher obesity rate (35.7% vs. 49.7% before and after 263 excluding those who were underweight and missed BMI status) compared to the national average (19.7%).¹⁵ the rate among participants from primary care sites was comparable (17.52% vs. 22.36% 264 265 before and after excluding those who were underweight and missed BMI status). This disparity may be 266 attributed to better overall health among participants from primary care sites, as well as the heightened 267 susceptibility to various health conditions among overweight or obese individuals.³⁷ Higher BMI has also been associated with increased risks of hospitalization³⁸ and severe illness³⁹ among pediatric COVID-19 268 patients. Alternatively, it is possible that pediatric BMI levels, particularly in the overweight²⁹ and 269 270 obesity⁴⁰ categories, increased during the pandemic, which could explain the increased RRs observed for 271 individual in these categories in the sensitivity analysis, which excluded participants whose BMI 272 assessment date was beyond 6 months before cohort entry. The BMI-PASC association remained 273 consistent across the outcome measures, although stronger associations were observed for U09.9. The 274 differences observed could stem from the specificity of PASC symptoms and conditions compared to 275 U09.9. Recognizing the limitations associated with the use of U09.9³⁶ and PASC symptoms and 276 conditions,²³ we incorporated both measures to enhance the comprehensiveness and precision in our 277 analysis.

The associations observed in our study may be explained by several plausible biological mechanisms, although they may not be pediatric-specific. Firstly, obesity's association with chronic inflammation ^{41,42} and susceptibility to COVID-19 may involve macrophages pyroptosis,⁴³ leading to prolonged systemic inflammation implicated in the genesis of PASC.^{44,45} Secondly, obesity is also associated with altered microbiota,⁴⁶ and the impact of COVID-19 on the latter may influence PASC risk.⁴⁷ Thirdly, obesity is recognized for its propensity to dysregulate adaptive autoimmunity,^{48,49} a phenomenon documented in

PASC patients.^{50,51} This dysregulation in adaptive immune responses may be implicated in the protracted
 nature of observed symptoms. Furthermore, clotting and endothelial abnormalities associated with obesity
 could explain observed pathophysiological changes in PASC patients.^{50,52–54}

287 Our study has several limitations. Firstly, the high prevalence of obesity among participants may indicate 288 sample skewness, which can be explained by several factors, including the missing BMI status data 289 within the baseline period, as discussed above, thus necessitating cautious generalization to the entire US 290 pediatric population. Additionally, misclassification bias challenges pediatric PASC diagnosis due to the 291 lack of standardized reference. To mitigate this, we used ICD-10-CM codes and PASC symptoms and 292 conditions, though the latter may not capture all aspects. Moreover, some PASC symptoms and 293 conditions we examined may overlap with those in pediatric populations with obesity, potentially 294 inflating the association. However, we assessed the incidence of these symptoms and conditions do not 295 present during the baseline period, which may alleviate this issue. To address the probable 296 underestimation of the PASC burden, we included participants with at least one visit two years before 297 cohort entry and one during the follow-up period. Furthermore, the absence of information on modifiable 298 risk factors, such as diet, physical activity, or sleep in our dataset is notable. Previous study has linked 299 these factors to a substantially reduced PASC risk.¹⁹ Therefore, further investigations including these 300 modifiable factors involving the pediatric population are warranted.

301 Conclusion

Our study reveals a significant association between higher pre-SARS-CoV-2 infection BMI and increased PASC risk in pediatric patients, which contributes to the understanding and management of PASC in this context. Given the potential for associated PASC conditions to become lifelong chronic conditions, understanding pediatric PASC is important. Clinically, this association emphasizes the need for vigilant monitoring and tailored management for this demographic with elevated BMI who have had COVID-19. Pediatricians play a vital role in identifying at-risk individuals and implementing personalized treatment plans to mitigate long-term consequences. From a public health standpoint, recognizing the connection

- 309 between elevated BMI and PASC highlights the importance of preventive interventions. Public health
- 310 initiatives can raise awareness about the heightened PASC risk among obese pediatrics, promoting
- 311 healthy lifestyle behaviors to reduce severe COVID-19 outcomes. Collaborative efforts are essential for
- 312 implementing programs that promote healthy weight management and foster supportive environments.
- 313 Addressing obesity as a modifiable risk factor for pediatric PASC can alleviate the burden of PASC and
- 314 further the broader goals of pediatric health post-pandemic. Further research should explore specific
- 315 PASC symptoms and conditions across various organ systems.

316 Disclosures

317 Disclaimer

- 318 This content is solely the responsibility of the authors and does not necessarily represent the official views
- 319 of the RECOVER Initiative, the NIH, or other funders.

320 Funding

- 321 This work was supported in part by the National Institutes of Health (OT2HL161847-01,
- 322 1R01LM012607, 1R01AI130460, 1R01AG073435, 1R56AG074604, 1R01LM013519, 1R56AG069880,
- 323 1R01AG077820, 1U01TR003709). This work was supported partially through the Patient-Centered
- 324 Outcomes Research Institute (PCORI) Project Program Awards (ME-2019C3-18315 and ME-2018C3-
- 325 14899). All statements in this report, including its findings and conclusions, are solely those of the
- 326 authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute
- 327 (PCORI), its Board of Governors, or the Methodology Committee.

328 Potential Conflicts of Interest

- 329 Dr. Rao received research support from GSK and Biofire and was a consultant for Sequiris. Dr. Chu is an
- 330 employee of Pfizer. All other authors have indicated they have no conflicts of interest relevant to this
- 331 manuscript to disclose.

332 Acknowledgements

- 333 This study is part of the NIH Researching COVID-19 to Enhance Recovery (RECOVER) Initiative,
- 334 which seeks to understand, treat, and prevent the post-acute sequelae of SARS-CoV-2 infection (PASC).
- 335 For more information on RECOVER, visit https://recovercovid.org/.
- 336 We would like to thank the National Community Engagement Group (NCEG), all patients, caregivers,
- and community Representatives, and all the participants enrolled in the RECOVER Initiative. We want to
- thank to Max Hornig, Teresa Akintonwa, Etienne Carignan for their helpful suggestions on our
- 339 manuscript.

340 **REFERENCES**

341 1. Venkatesan P. NICE guideline on long COVID. <i>Lancet Respir</i>	Med. 2021;9(2):129.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aal aaga dafinitian af
24. Soliallo JB, Multily S, Malshall JC, Kelall F, Diaz J V. A cliff 24. post COVID 10 condition by a Dolphi consensus. Langat Info	t Dig
245 post-COVID-19 condition by a Depth consensus. Lancet Inject 245 2022;22(4):e102 e107 dej:10 1016/\$1473 2000(21)00703 0	l Dis.
246 2 Dette SD. Telwer A. Lee IT. A. Proposed Framework and Tim	aling of the Spectrum
540 5. Data SD, Talwal A, Lee JT. A Proposed Framework and Time 247 of Disease Due to SADS CoV 2 Infection 14M4 2020-224(2)	oline of the spectrum
547 of Disease Due to SARS-Cov-2 Infection. JAMA. 2020;524(2. 248 doi:10.1001/jome.2020.22717	2):2231.
240 4 Creanbalah T. Kright M. A ² Court C. Durtan M. Hussin L. M.	
4. Greenhaigh I, Knight M, A Court C, Buxton M, Husain L. Ma	11 2020
acute covid-19 in primary care. <i>BMJ</i> . Published online August	11, 2020:m3026.
351 doi:10.1136/bmj.m3026	С , , , ,
352 5. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization	of post-acute
353 sequelae of COVID-19. <i>Nature</i> . 2021;594(7862):259-264. doi:	10.1038/s41586-
354 021-03553-9	
355 6. Nalbandian A, Sengal K, Gupta A, et al. Post-acute COVID-19	syndrome. Nat
356 <i>Med.</i> 2021;2/(4):601-615. doi:10.1038/s41591-021-01283-z	1 1
35/ /. Montani D, Savale L, Noel N, et al. Post-acute COVID-19 syn	drome. European
358 <i>Respiratory Review</i> . 2022;31(163):210185. doi:10.1183/16000	617.0185-2021
359 8. Davis HE, McCorkell L, Vogel JM, Topol EJ. Author Correcti	on: Long COVID:
360 major findings, mechanisms and recommendations. <i>Nat Rev M</i>	icrobiol.
361 2023;21(6):408. doi:10.1038/s41579-023-00896-0	
362 9. Morello R, Mariani F, Mastrantoni L, et al. Risk factors for po	st-COVID-19
363 condition (Long Covid) in children: a prospective cohort study	. EClinicalMedicine.
364 2023;59:101961. doi:10.1016/j.eclinm.2023.101961	
36510.Lopez-Leon S, Wegman-Ostrosky T, Ayuzo del Valle NC, et a	ll. Long-COVID in
366 children and adolescents: a systematic review and meta-analys	es. <i>Sci Rep</i> .
367 2022;12(1):9950. doi:10.1038/s41598-022-13495-5	
368 11. Jiang L, Li X, Nie J, Tang K, Bhutta ZA. A Systematic Review	v of Persistent
369 Clinical Features After SARS-CoV-2 in the Pediatric Population	on. Pediatrics.
370 2023;152(2). doi:10.1542/peds.2022-060351	
371 12. Zheng YB, Zeng N, Yuan K, et al. Prevalence and risk factor f	or long COVID in
372 children and adolescents: A meta-analysis and systematic revie	ew. J Infect Public
373 <i>Health</i> . 2023;16(5):660-672. doi:10.1016/j.jiph.2023.03.005	
374 13. COVID-19 Rapid Guideline: Managing the Long-Term Effects	of COVID-19.
375 National Institute for Health and Care Excellence (NICE); 202	0.
376 14. https://www.cdc.gov/obesity/data/adult.html.	
377 15. Childhood Obesity Facts. Accessed November 29, 2023.	
378 https://www.cdc.gov/obesity/data/childhood.html	
379 16. Kompaniyets L, Goodman AB, Belay B, et al. Body Mass Inde	ex and Risk for
380 COVID-19–Related Hospitalization, Intensive Care Unit Adm	ission, Invasive
381 Mechanical Ventilation, and Death — United States, March–D	ecember 2020.
382 <i>MMWR Morb Mortal Wkly Rep.</i> 2021;70(10):355-361.	

384	17.	Thompson EJ, Williams DM, Walker AJ, et al. Long COVID burden and risk
385		factors in 10 UK longitudinal studies and electronic health records. <i>Nat Commun</i> .
386		2022;13(1):3528. doi:10.1038/s41467-022-30836-0
387	18.	Subramanian A, Nirantharakumar K, Hughes S, et al. Symptoms and risk factors
388		for long COVID in non-hospitalized adults. Nat Med. 2022;28(8):1706-1714.
389		doi:10.1038/s41591-022-01909-w
390	19.	Wang S, Li Y, Yue Y, et al. Adherence to Healthy Lifestyle Prior to Infection and
391		Risk of Post-COVID-19 Condition. JAMA Intern Med. 2023;183(3):232.
392		doi:10.1001/jamainternmed.2022.6555
393	20.	Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID.
394		Nat Med. 2021;27(4):626-631. doi:10.1038/s41591-021-01292-y
395	21.	BMI and BMI Categories for Children and Teens. Accessed November 14, 2023.
396		https://www.cdc.gov/obesity/basics/childhood-defining.html
397	22.	Defining Adult Overweight & Obesity. Accessed November 14, 2023.
398		https://www.cdc.gov/obesity/basics/adult-defining.html
399	23.	Rao S, Lee GM, Razzaghi H, et al. Clinical Features and Burden of Postacute
400		Sequelae of SARS-CoV-2 Infection in Children and Adolescents. JAMA Pediatr.
401		2022:176(10):1000. doi:10.1001/iamapediatrics.2022.2800
402	24.	Razzaghi H. Forrest CB. Hirabayashi K. et al. Vaccine Effectiveness Against Long
403		COVID in Children. <i>Pediatrics</i> , 2024:153(4), doi:10.1542/peds.2023-064446
404	25.	https://ourworldindata.org/grapher/covid-variants-area?time=2021-06-212021-12-
405		20& facet=none&country=~USA.
406	26	Simon TD. Cawthon ML. Stanford S. et al. Pediatric medical complexity algorithm:
407	20.	a new method to stratify children by medical complexity. <i>Pediatrics</i> .
408		2014.133(6):e1647-54_doi:10.1542/peds.2013-3875
409	27.	Forrest CB, Burrows EK, Meijas A, et al. Severity of Acute COVID-19 in Children
410	27:	<18 Years Old March 2020 to December 2021 <i>Pediatrics</i> 2022:149(4)
411		doi:10.1542/neds.2021-055765
412	28	Zou G. A Modified Poisson Regression Approach to Prospective Studies with
413	20.	Binary Data Am I Enidemial 2004:159(7):702-706 doi:10.1093/aie/kwh090
414	29	Knann FA Dong V Dunlon AI et al Changes in BMI During the COVID-19
415	27.	Pandemic Podiatrics 2022:150(3) doi:10.1542/neds.2022-056552
415 A16	30	Avoubkhani D. Bermingham C. Pouwels KB, et al. Trajectory of long covid
417	50.	symptoms after covid 10 vaccination: community based cohort study <i>RMI</i>
-17 /18		Published online May 18, 2022:e060676, doi:10.1136/bmj.2021.060676
410	31	Ceban F. Kulzhabayaya D. Rodrigues NB, et al. COVID 10 vaccination for the
419	51.	revention and treatment of long COVID: A systematic review and mate analysis
420		Prain Pahan Immun 2022:111:211 220 doi:10.1016/j.bbj.2022.02.022
421	22	Druin Denuv Immun. 2023,111.211-229. doi:10.1010/J.001.2023.03.022
422	52.	Dest COVID 10 Condition 14M4 Intern Mod 2022;182(6):566
423		Post=COVID-19 Condition. JAMA Intern Med. 2025;185(0):500.
424	22	doi:10.1001/jamainternmed.2023.0/30
425	33.	Prafi ER, Girvin AT, Bennett TD, et al. Identifying who has long COVID in the
420		USA: a machine learning approach using N3C data. Lancet Digit Health.
427	2.4	2022;4(7):e532-e541. doi:10.1016/82589-7500(22)00048-6
428	34.	Schuemie MJ, Hripcsak G, Kyan PB, Madigan D, Suchard MA. Empirical
429		contidence interval calibration for population-level effect estimation studies in

430		observational healthcare data. Proceedings of the National Academy of Sciences.
431		2018;115(11):2571-2577.
432	35.	Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting
433		observational studies: why empirical calibration is needed to correct p-values. Stat
434		<i>Med.</i> 2014;33(2):209-218.
435	36.	Pfaff ER, Madlock-Brown C, Baratta JM, et al. Coding Long COVID:
436		Characterizing a new disease through an ICD-10 lens. <i>medRxiv</i> . Published online
437		September 2, 2022. doi:10.1101/2022.04.18.22273968
438	37.	https://www.cdc.gov/healthyweight/effects/index.html.
439	38.	Mohammad S, Aziz R, Al Mahri S, et al. Obesity and COVID-19: what makes
440		obese host so vulnerable? Immunity & Ageing. 2021;18(1):1. doi:10.1186/s12979-
441		020-00212-x
442	39.	Sawadogo W, Tsegaye M, Gizaw A, Adera T. Overweight and obesity as risk
443		factors for COVID-19-associated hospitalisations and death: systematic review and
444		meta-analysis. BMJ Nutr Prev Health. 2022;5(1):10-18. doi:10.1136/bmjnph-2021-
445		000375
446	40.	Lartey ST, Jayawardene WP, Dickinson SL, Chen X, Gletsu-Miller N, Lohrmann
447		DK. Evaluation of Unintended Consequences of COVID-19 Pandemic Restrictions
448		and Obesity Prevalence Among Youths. JAMA Netw Open. 2023;6(7):e2323596.
449		doi:10.1001/jamanetworkopen.2023.23596
450	41.	Korakas E, Ikonomidis I, Kousathana F, et al. Obesity and COVID-19: immune and
451		metabolic derangement as a possible link to adverse clinical outcomes. American
452		Journal of Physiology-Endocrinology and Metabolism. 2020;319(1):E105-E109.
453		doi:10.1152/ajpendo.00198.2020
454	42.	Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity:
455		"Know my methods, WAT(son)." Cell Death Differ. 2023;30(2):279-292.
456		doi:10.1038/s41418-022-01062-4
457	43.	López-Reyes A, Martinez-Armenta C, Espinosa-Velázquez R, et al. NLRP3
458		Inflammasome: The Stormy Link Between Obesity and COVID-19. Front
459		Immunol. 2020;11. doi:10.3389/fimmu.2020.570251
460	44.	Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk
461		factors, and management. BMJ. Published online July 26, 2021:n1648.
462		doi:10.1136/bmj.n1648
463	45.	Woodruff MC, Bonham KS, Anam FA, et al. Chronic inflammation, neutrophil
464		activity, and autoreactivity splits long COVID. Nat Commun. 2023;14(1):4201.
465		doi:10.1038/s41467-023-40012-7
466	46.	Zsálig D, Berta A, Tóth V, et al. A Review of the Relationship between Gut
467		Microbiome and Obesity. Applied Sciences. 2023;13(1):610.
468		doi:10.3390/app13010610
469	47.	Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of
470		patients with post-acute COVID-19 syndrome. Gut. 2022;71(3):544-552.
471		doi:10.1136/gutjnl-2021-325989
472	48.	Kwiat VR, Reis G, Valera IC, Parvatiyar K, Parvatiyar MS. Autoimmunity as a
473	-	sequela to obesity and systemic inflammation. Front Physiol. 2022;13.
474		doi:10.3389/fphys.2022.887702
		1 2

475	49.	Tsigalou C, Vallianou N, Dalamaga M. Autoantibody Production in Obesity: Is
476		There Evidence for a Link Between Obesity and Autoimmunity? Curr Obes Rep.
477		2020;9(3):245-254. doi:10.1007/s13679-020-00397-8
478	50.	Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19
479		(PASC): An Overview of Biological Factors That May Contribute to Persistent
480		Symptoms. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.698169
481	51.	Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-
482		19 sequelae. Cell. 2022;185(5):881-895.e20. doi:10.1016/j.cell.2022.01.014
483	52.	Blokhin IO, Lentz SR. Mechanisms of thrombosis in obesity. Curr Opin Hematol.
484		2013;20(5):437-444. doi:10.1097/MOH.0b013e3283634443
485	53.	Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial Dysfunction in Obesity-
486		Induced Inflammation: Molecular Mechanisms and Clinical Implications.
487		Biomolecules. 2020;10(2):291. doi:10.3390/biom10020291
488	54.	Katsoularis I, Fonseca-Rodríguez O, Farrington P, et al. Risks of deep vein
489		thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-
490		controlled cases series and matched cohort study. BMJ. Published online April 6,
491		2022:e069590. doi:10.1136/bmj-2021-069590
492		

493

Characteristics	Healthy weight (N=68918)	Overweight (N=17605)	Obesity (N=25372)	Severe obesity (N=60241)	Overall (N=172136)
Age, mean (SD),	vr	())			
Assessed BMI	12.6 (4.5)	12.8 (4.3)	11.3 (4.2)	13.1 (4.2)	12.6 (4.4)
Entered cohort	13.0 (4.5)	13.2(4.3)	11.8 (4.2)	13.6 (4.2)	13.1 (4.4)
Sex no (%)	1510 (115)	15.2 (1.5)	11.0 (1.2)	15.0 (112)	15.11 (11.1)
Female	36011 (52 3)	9580 (54.4)	11627 (45.8)	32969 (54 7)	90187 (52.4)
Male	32907 (47.7)	8025 (45.6)	13745 (54.2)	27272 (45 3)	81949 (47.6)
Race/ethnicity no	(%)	0025 (15.0)	15715 (51.2)	27272(13.3)	01919 (17.0)
	3996 (5.8)	770 (4 4)	1055(4.2)	2993 (5.0)	8814 (5.1)
Hispanic	10657(15.5)	3588(204)	7335 (28.9)	21402(35.5)	42982 (25.0)
NHR	10037(13.3) 11080(17.4)	3854(21.9)	6004(23.7)	11227(18.6)	33065 (19.2)
NHW	11980 (17.4)	0303 (21.9)	10078(43.7)	24610(40.0)	87275 (50 7)
Dradominant vari	42263(01.4)	<i>9393</i> (<i>33</i> .4)	10978 (45.5)	24019 (40.9)	87273 (30.7)
Dro Alpho	18204(26.4)	4502 (26.1)	5020 (22.2)	16724 (27.8)	15110 (26 1)
Almho	16204(20.4)	4392(20.1)	3920(23.3) 1254(5.2)	10/24(27.6)	43440 (20.4) 8555 (5.0)
Aipiia Dolto	3041(3.3) 17001(347)	700 (J.J) 1699 (J6 6)	1334 (3.3) 7062 (27 9)	2072 (4.0) 12729 (22.9)	0333 (3.0) 42400 (24 7)
Omiana	1/001(24.7)	4088 (20.0)	/003 (27.8)	13/38 (22.8)	42490 (24.7)
Umicron	30072 (43.6)	/33/(41.8)	11035 (43.5)	2/18/ (43.1)	/3031 (43.9)
PIVICA, no. (%)	A1656 (CO A)	10071 (57.2)	14407 (5(0)	20140((5.0))	105204 ((1.2)
None	41656 (60.4)	100/1 (57.2)	14427 (56.9)	39140 (65.0)	105294 (61.2)
Noncomplex	15755 (22.9)	4470 (25.4)	6521 (25.7)	13389 (22.2)	40135 (23.3)
Complex	11507 (16.7)	3064 (17.4)	4424 (17.4)	7712 (12.8)	26/07 (15.5)
Acute COVID-19	Severity, no. (%)				
Asymptomatic	43807 (63.6)	11277 (64.1)	15528 (61.2)	31754 (52.7)	102366 (59.5)
Mild	20867 (30.3)	5205 (29.6)	8309 (32.7)	26347 (43.7)	60728 (35.3)
Moderate	2617 (3.8)	725 (4.1)	978 (3.9)	1384 (2.3)	5704 (3.3)
Severe	1627 (2.4)	398 (2.3)	557 (2.2)	756 (1.3)	3338 (1.9)
Location diagnose	ed COVID-19, no. ((%)			
ED	7830 (11.4)	2562 (14.6)	3511 (13.8)	3185 (5.3)	17088 (9.9)
IPD	2325 (3.4)	548 (3.1)	764 (3.0)	934 (1.6)	4 71 (2.7)
OPD	28645 (41.6)	6898 (39.2)	12126 (47.8)	41270 (68.5)	88939 (51.7)
OPD:Test Only	13700 (19.9)	3623 (20.6)	4814 (19.0)	9750 (16.2)	31887 (18.5)
Other/Unknown	n 16418 (23.8)	3974 (22.6)	4157 (16.4)	5102 (8.5)	29651 (17.2)
Numbers of neg	ative COVID-19	tests, no. (%)			
0	39837 (57.8)	10073 (57.2)	14939 (58.9)	39463 (65.5)	104312 (60.6)
1	15426 (22.4)	3990 (22.7)	5671 (22.4)	11877 (19.7)	36964 (21.5)
>2	13655 (19.8)	3542 (20.1)	4762 (18.8)	8901 (14.8)	30860 (17.9)
Numbers of ED	visits no (%)		× -/	× -7	
0	49015 (71 1)	11729 (66 6)	17601 (69 4)	51517 (85 5)	129862 (75.4)
1	11041(160)	3021 (17 2)	3868 (15 2)	4966 (8 2)	22896 (13 3)
2	<u>11071 (10.0)</u> <u>1368 (6 2)</u>	1270(7.2)	1682 (6.6)	1798 (3.2)	0118 (5 3)
∠ >2	4300 (0.3)	12/0(7.2) 1585 (0.0)	1002(0.0)	1060 (2.2)	10260(6.0)
$\leq \mathfrak{I}$	4494(0.3)	1383 (9.0)	2221 (0.0)	1900 (3.3)	10200 (0.0)
numbers of IPD	v v1s1ts, no. (%)	15021 (02.0)	00100 (01.1)		15000 ((00.0)
0	62276 (90.4)	15831 (89.9)	23123 (91.1)	57596 (95.6)	158826 (92.3)
1	4101 (6.0)	1132 (6.4)	1462 (5.8)	1709 (2.8)	8404 (4.9)
2	1191 (1.7)	306 (1.7)	400 (1.6)	486 (0.8)	2383 (1.4)
≥ 3	1350 (2.0)	336 (1.9)	387 (1.5)	450 (0.7)	2523 (1.5)
Numbers of OP	D visits, no. (%)				
0	2315 (3.4)	643 (3.7)	1374 (5.4)	4498 (7.5)	8830 (5.1)
1	6570 (9.5)	1751 (9.9)	2409 (9.5)	4544 (7.5)	15274 (8.9)
2	8355 (12.1)	2105 (12.0)	2866 (11.3)	5929 (9.8)	19255 (11.2)
>3	51678 (75.0)	13106 (74.4)	18723 (73.8)	45270 (75.1)	128777 (74.8)
 Numbers of ma	lications or prese	rintions no (%)	(//	()	(,)

494

0	9944 (14.4)	2235 (12.7)	3878 (15.3)	12364 (20.5)	28421 (16.5)
1	7759 (11.3)	1787 (10.2)	2627 (10.4)	7078 (11.7)	19251 (11.2)
2	6998 (10.2)	1639 (9.3)	2404 (9.5)	6591 (10.9)	17632 (10.2)
2+	44217 (64.2)	11944 (67.8)	16463 (64.9)	34208 (56.8)	106832 (62.1)
Dosage of vaccine	e, no. (%)				
0	53946 (78.3)	13975 (79.4)	20914 (82.4)	46248 (76.8)	135083 (78.5)
1	2519 (3.7)	620 (3.5)	901 (3.6)	2576 (4.3)	6616 (3.8)
2	9979 (14.5)	2477 (14.1)	3065 (12.1)	9308 (15.5)	24829 (14.4)
≥3	2474 (3.6)	533 (3.0)	492 (1.9)	2109 (3.5)	5608 (3.3)

495 496 497 Abbreviations: AAPI, Asian American/Pacific Islander; BMI, body mass index; ED, Emergency department; IPD, Inpatient department; NHB, Non-Hispanic Black; NHW, Non-Hispanic White; OPD, Outpatient department; PMCA, Pediatric Medical Complexity; SD, Standard deviation.

^a Percentages may not total 100 because of rounding.

Outcome	BMI Status	Incident/total COVID (%) ^b	RR	LCI	UCI
	Healthy weight	514/68918 (0.7)	1 [Reference]	1 [Reference]	1 [Reference
DAGO	Overweight	137/17605 (0.8)	1.047	0.868	1.263
PASC	Obesity	199/25372 (0.8)	1.254	1.064	1.478
(009.9)	Severe obesity	552/60241 (0.9)	1.421	1.253	1.611
	<i>P</i> for trend	NA		0.001	
	Any Occurrences				
	Healthy weight	28674/68918 (41.6)	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	7637/17605 (43.4)	1.030	0.982	1.080
	Obesity	11081/25372 (43.7)	1.108	1.064	1.154
PASC symptoms and	Severe obesity	26925/60241 (44.7)	1.174	1.138	1.213
	<i>P</i> for trend	NA		< 0.001	
	Total Occurrences				
conditions	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	NA	1.053	1.000	1.109
	Obesity	NA	1.137	1.088	1.188
	Severe obesity	NA	1.182	1.142	1.223
	<i>P</i> for trend	NA		< 0.001	

Abbreviation: BMI, body mass index; LCI, lower 95% confidence interval; NA, not applicable; PASC, post-acute sequelae of SARS-CoV-2 infection; RR, relative risk; UCI, upper 95% confidence interval

^a Adjusted for age assessed BMI and entered cohort (continuous), sex, race/ethnicity, PMCA index, predominant variant, acute COVID-19 severity, numbers of emergency department visits, outpatient department, inpatient department, medications or prescriptions, and negative COVID-19 tests

^b Incident referred to the count of participants developed the outcome we interested in, total COVID referred to the count of the participants in the corresponding group, and the value in the bracket referred to the percentage of the groups who developed the outcome we interested in.

Outcome	BMI Status	Incident/total COVID (%) ^a	RR	LCI	UCI
Age, <18 yr	: (N=145975) ^{b, c}				
8/ /	Healthy weight	408/57916 (0.7)	1 [Reference]	1 [Reference]	1 [Reference
D 4 G G	Overweight	110/14994 (0.7)	1.052	0.854	1.298
PASC	Obesity	173/23198(0.7)	1.279	1.070	1.528
(U09.9)	Severe obesity	424/49867 (0.9)	1.429	1.238	1.648
	<i>P</i> for trend	NA	1,12)	0.008	1010
	Any Occurrences	1111		0.000	
	Healthy weight	23860/57916 (41.2)	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	6400/14004(42.7)	1 020		1 074
	Obesity	0001/22108(42.1)	1.020	1.053	1.074
DASC	Severa obesity	21023/40867(44.0)	1.077	1.035	1.140
FASC	D for trand	21923/49807 (44.0)	1.1/1	<0.001	1.212
symptoms		NA		<0.001	
and	I otal Occurrences	NT A	1 (D ())	1 (D ())	1.50.0
conditions	Healthy weight	NA	[[Reference]	I [Reference]	I [Reference
	Overweight	NA	1.041	0.985	1.100
	Obesity	NA	1.121	1.070	1.173
	Severe obesity	NA	1.181	1.137	1.226
	<i>P</i> for trend	NA		< 0.001	
Age, ≥18 yı	: (N=26161) ^{b, c}				
	Healthy weight	106/11002 (1.0)	1 [Reference]	1 [Reference]	1 [Reference
PASC	Overweight	27/2611 (1.0)	1.014	0.663	1.552
(100, 9)	Obesity	26/2174 (1.2)	1.142	0.742	1.758
(00).))	Severe obesity	128/10374 (1.2)	1.367	1.047	1.784
	P for trend	NA		0.049	
	Any Occurrences				
	Healthy weight	4814/11002 (43.8)	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	1228/2611 (47.0)	1.101	0.967	1.254
	Obesity	1090/2174 (50.1)	1.196	1.048	1.365
PASC	Severe obesity	5002/10374 (48.2)	1.201	1.107	1.302
symptoms	<i>P</i> for trend	NA		< 0.001	
and	Total Occurrences				
conditions	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	NA	1.140	0.987	1.317
	Obesity	NA	1.304	1.124	1.512
	Severe obesity	NA	1.191	1.090	1.302
	<i>P</i> for trend	NA		0.002	
PMAC ind	ex. no chronic cond	lition (N=105294) ^d			
10000	Healthy weight	316/41656 (0.8)	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	73/10071 (0 7)	0.965	0 749	1 243
PASC	Obesity	112/14427(0.8)	1 260	1 015	1.215
(U09.9)	Severe obesity	353/39140 (0.9)	1.200	1.015	1.303
	<i>P</i> for trend	NA	1.450	0.023	1.700
		NA		0.025	
	Healthy weight	1/01///1656 (25.9)	1 [Deference]	1 [Deference]	1 [Dafaman -
	Overweight	17714/41030 (33.8)	1 [Kelerence]	1 [Kelerence]	
DAGG	Overweight	5/18/100/1 (36.9)	0.999	0.944	1.058
PASC	Obesity	5425/1442/ (57.6) 15499/20140 (20.6)		1.064	1.170
symptoms	Severe obesity	15488/39140 (39.6)	1.184	1.141	1.228
and	<i>P</i> for trend	NA		< 0.001	
conditions	Total Occurrences				
	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference
	Overweight	NA	1.021	0.960	1.085
	Obesity	NA	1.144	1.087	1.205

506 Table 3. Estimated association of BMI status prior to the SARS-CoV-2 infection and risk of PASC 507 in subgroups based on age, PMAC index, and race and ethnicity

	Severe obesity	NA	1.195	1.149	1.243
	P for trend	NA		< 0.001	
PMAC ind	ex, non-complex/co	mplex chronic conditio	n (N=66842) ^d		
	Healthy weight	198/27262 (0.7)	1 [Reference]	1 [Reference]	1 [Reference]
DASC	Overweight	64/7534 (0.8)	1.168	0.883	1.546
PASC	Obesity	87/10945 (0.8)	1.255	0.975	1.615
(009.9)	Severe obesity	199/21101 (0.9)	1.391	1.135	1.705
	<i>P</i> for trend	NA		0.013	
	Any Occurrences				
	Healthy weight	13760/27262 (50.5)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	3919/7534 (52.0)	1.107	1.016	1.207
	Obesity	5658/10945 (51.7)	1.091	1.011	1.178
PASC	Severe obesity	11437/21101 (54.2)	1.159	1.086	1.236
symptoms	<i>P</i> for trend	NA		< 0.001	
and	Total Occurrences				
conditions	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	NA	1.132	1.029	1.246
	Obesity	NA	1.121	1.031	1.218
	Severe obesity	NA	1.156	1.077	1.240
	<i>P</i> for trend	NA		< 0.001	
Race/ethni	city. Non-Hispanic W	White (N=87275) ^e			
	Healthy weight	371/42285 (0.9)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	83/9393 (0.9)	0.960	0.758	1.216
PASC	Obesity	120/10978 (1.1)	1.298	1.058	1.592
(U09.9)	Severe obesity	333/24619 (1.4)	1.548	1.332	1.799
	<i>P</i> for trend	NA	110 10	< 0.001	
	Any Occurrences			0,0001	
	Healthy weight	17827/42285 (42.2)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	4208/9393 (44.8)	1.022	0.958	1.091
	Obesity	5090/10978 (46.4)	1.074	1.011	1.142
PASC	Severe obesity	12363/24619 (50.2)	1.224	1.171	1.280
symptoms	<i>P</i> for trend	NA	1,22 1	< 0.001	1.200
and	Total Occurrences			0,001	
conditions	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference]
••••••••	Overweight	NA	1 039	0.968	1 115
	Obesity	NA	1 105	1 034	1 182
	Severe obesity	NA	1 229	1.001	1 290
	<i>P</i> for trend	NA	1.22/	<0.001	1.270
Race/ethni	city. Hispanic (N=42)	982) e		0.001	
incer cum	Healthy weight	70/10657 (0 7)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	27/3588 (0.8)	1 108	0.712	1 725
PASC	Obesity	48/7335 (0.7)	1.138	0.786	1.648
(U09.9)	Severe obesity	129/21402 (0.6)	1.020	0.757	1.374
	<i>P</i> for trend	NA	1.020	0 446	1.0 / 1
	Any Occurrences	1 (1 L		0.110	
	Healthy weight	4758/10657 (44-6)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	1634/3588 (45 5)	1 016	0.918	1 125
	Obesity	3184/7335 (43.4)	1.045	0.959	1 140
PASC	Severe obesity	8591/21402 (40 1)	1 154	1 073	1 241
symptoms	<i>P</i> for trend	NA	1,137	0.684	1,471
and	Total Occurrences	1 1 71		0.004	
conditions	Healthy weight	NΔ	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	ΝΔ			
	Obesity	NA	1.021	0.914	1.137
	Severe chasity		1.070	0.900 1 078	1.102 1 763
	Severe obesity	INA	1.10/	1.0/0	1.203

	<i>P</i> for trend	NA	0.638		
Race/ethnicity, Non-Hispanic Black (N=33065) °					
PASC (U09.9)	Healthy weight	53/11980 (0.4)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	21/3854 (0.5)	1.210	0.729	2.008
	Obesity	23/6004 (0.4)	0.916	0.563	1.492
	Severe obesity	66/11227 (0.6)	1.326	0.908	1.937
	<i>P</i> for trend	NA	0.204		
PASC symptoms	Any Occurrences				
	Healthy weight	4665/11980 (38.9)	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	1514/3854 (39.3)	1.016	0.918	1.125
	Obesity	2370/6004 (39.5)	1.045	0.959	1.140
	Severe obesity	4827/11227 (43.0)	1.154	1.073	1.241
	P for trend	NA		< 0.001	
and	Total Occurrences				
conditions	Healthy weight	NA	1 [Reference]	1 [Reference]	1 [Reference]
	Overweight	NA	1.021	0.914	1.139
	Obesity	NA	1.076	0.980	1.182
	Severe obesity	NA	1.167	1.078	1.263
	P for trend	NA	0.002		

Abbreviation: BMI, body mass index; LCI, lower 95% confidence interval; NA, not applicable; PASC, post-acute sequelae of SARS-CoV-2 infection; RR, relative risk; UCI, upper 95% confidence interval

^a Incident referred to the count of participants developed the outcome we interested in, total COVID referred to the count of the participants in the corresponding group, and the value in the bracket referred to the percentage of the groups who developed the outcome we interested in.
 ^b Adjusted for age assessed BMI and entered cohort (continuous), sex, race/ethnicity, PMCA index, predominant variant, acute COVID-19

severity, numbers of emergency department visits, outpatient department, inpatient department, medications or prescriptions, and negative COVID-19 tests

° Stratified by the cohort entry age.

^d Adjusted for age assessed BMI and entered cohort (continuous), sex, predominant variant, acute COVID-19 severity, numbers of emergency

department visits, outpatient department, inpatient department, medications or prescriptions, and negative COVID-19 tests

^e Adjusted for age assessed BMI and entered cohort (continuous), sex, PMCA index, predominant variant, acute COVID-19 severity, numbers of emergency department visits, outpatient department, inpatient department, medications or prescriptions, and negative COVID-19 tests