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Abbreviations: AF, autofluorescence; CD3, cluster of differentiation 3; CD8, cluster of 

differentiation 8; CI, confidence interval; CPS, combined positive score; DAB, 3,3’-

diaminobenzidine; DAPI, 4′,6-diamidino-2-phenylindole; FFPE, formalin-fixed paraffin-

embedded; FID, Frechet Inception Distance; GAN, generative adversarial network; H&E, 

hematoxylin and eosin; HER2; human epidermal growth factor receptor 2; IHC, 

immunohistochemistry; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; 

mIF, multiplex immunofluorescence; NGF, normalized gradient field; NSCLC, non-small cell lung 

cancer; NTG, normalized total gradient; PanCK, pancytokeratin; PD-1, programmed cell death 1; 

PD-L1, programmed cell death ligand 1; pIHC, pseudo-immunohistochemistry; SD, standard 

deviation; TCGA, The Cancer Genome Atlas; TPS, tumor proportion score; WSI, whole slide 

image.  
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Abstract 

Virtual staining for digital pathology has great potential to enable spatial biology research, improve 

efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-

destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for 

hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel 

(DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung 

cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine 

learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E 

for histologic subtyping and virtual mIF for cell segmentation-based measurements, including 

clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor 

proportion score and combined positive score). The virtual stains reproduce key morphologic 

features and protein biomarker expressions at both tissue and cell levels compared to real stains, 

enable the identification of key immune phenotypes important for immuno-oncology, and show 

moderate to good performance across various evaluation metrics. This study extends our 

previous work on virtual staining from autofluorescence in liver disease and prostate cancer, 

further demonstrating the generalizability of this deep learning technique to a different disease 

(lung cancer) and stain modality (mIF). 

 

 

Significance 

We extend the capabilities of virtual staining from autofluorescence to a different disease and 

stain modality. Our work includes newly developed virtual stains for H&E and a multiplex 

immunofluorescence panel (DAPI, PanCK, PD-L1, CD3, CD8) for non-small cell lung cancer, 

which reproduce the key features of real stains. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308841doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308841
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

Introduction 

Lung cancer is one of the most frequently diagnosed cancers and a leading cause of mortality 

worldwide. Approximately 85% of lung cancer patients have non-small cell lung cancer (NSCLC), 

of which the most common subtypes are lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) [1,2]. Routine diagnosis of NSCLC requires hematoxylin and eosin (H&E) 

staining of tissue sections, and treatment decisions are often based on the assessment of various 

biomarkers. Protein biomarkers on tissue sections can be visualized by immunostaining 

techniques. Chromogenic immunohistochemistry (IHC) is routinely used in clinical practice [3]. 

Multiplex immunofluorescence (mIF) is well-suited for the precise quantification and colocalization 

of multiple biomarkers and is widely used in research settings [3,4]. 

 

Biomarkers characterizing the tumor and immune microenvironment are valuable for diagnosis, 

prognosis, and treatment decisions in NSCLC. Key biomarkers of interest include pancytokeratin 

(PanCK), cluster of differentiation 3 (CD3), cluster of differentiation 8 (CD8), and programmed cell 

death ligand 1 (PD-L1). PanCK is expressed in epithelial cells and is useful for the identification 

of epithelial tumors [5]. CD3 is expressed in T cells, which play an important role in the adaptive 

immune response. CD8 is predominantly expressed in cytotoxic T cells, but can also be found on 

natural killer cells and dendritic cells. PD-L1, which may be expressed in both immune cells and 

tumor cells, suppresses the activity of T cells by binding to the regulatory receptor programmed 

cell death 1 (PD-1) and contributes to the immune evasion of tumors [6]. 

 

In recent years, immune checkpoint inhibitors that block PD-1 or PD-L1 have emerged as one of 

the most successful treatment strategies for NSCLC. PD-L1 expression is a widely used predictive 

biomarker of anti-PD-1/PD-L1 immunotherapy response for NSCLC. Pathologists determine the 

tumor proportion score (TPS) by evaluating PD-L1 expression in tumor cells [7–10], whereas the 

combined positive score (CPS) considers PD-L1 expression in both immune cells and tumor cells 

[7,11]. The immune cell topography has also been increasingly recognized as an important 

predictor of immunotherapy response and disease progression, and various methods to 

characterize immune cell phenotypes have been proposed for various cancers [12,13]. For 

example, the Immunoscore classification of colorectal cancer provides a scoring system based 

on CD3 and CD8 cell densities [14,15]. 

 

The number of stains and molecular assays that can be performed is often limited by the 

availability of tissue. Variability of several factors, such as tissue preparation and staining 

differences between laboratories, also makes consistent inter-site analysis of IHC or IF results 

difficult [3,4,16]. Virtual staining is a technique that addresses these problems using computer 

vision to generate stained images from unstained, or differently stained, tissue. One advantage 

of virtual staining from unstained tissue is the non-destructive process, thereby enabling the 

conservation of tissue samples for other uses such as standard histochemical staining or 

sequencing. Several methods for imaging unstained tissue have been explored, including 

hyperspectral autofluorescence (AF), by which endogenous fluorophores are imaged at high 

spatial resolution [17,18]. Virtual stains generated from AF images have demonstrated impressive 

qualitative and quantitative performance in several diseases and stains [19,20]. Virtual IHC has 
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recently been shown to be promising for HER2 in breast cancer [21] and PIN-4 in prostate cancer 

[22]. However, there remains a lack of virtual staining applications from unstained tissue for mIF, 

with recent works only demonstrating stain transfer capabilities from H&E and IHC [23,24].  

 

In this study, we demonstrate the feasibility of generating virtual stains for H&E and mIF from AF 

in NSCLC, extending the application of virtual staining of unstained tissue specimens to more 

diseases and stains. 

Materials and Methods 

Dataset 

Data Collection and Preparation 

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from 448 participants with NSCLC 

approved for research use were procured from two biosample vendors (Avaden Biosciences, Inc., 

Seattle, WA, USA; Capital Biosciences, Inc., Gaithersburg, MD, USA). Institutional review board 

exemption was obtained for this research. Participants were 224 male (50%) and 224 female 

(50%). The age of participants ranged from 37 to 89 years, with a mean age of 69 years. The 

diagnosis consisted of 362 LUAD (80.8%), 79 LUSC (17.6%), 4 adenosquamous carcinoma 

(0.9%), and 3 undetermined (0.7%) NSCLC subtypes. 

 

Two slides from serial sections were prepared from each tissue block. Both slides were scanned 

with a custom-built hyperspectral fluorescence microscope which has been previously described 

[22], to obtain unstained AF images consisting of 20 channels. The first section was then stained 

with H&E and scanned with the Aperio AT2 Scanner (Leica Biosystems GmBH, Nussloch, 

Germany). The second section was stained with a custom mIF panel consisting of DAPI to 

visualize nuclei, and primary antibodies paired with Opal fluorophores targeting PanCK (AE1/AE3, 

Opal 520), PD-L1 (E1L3N, Opal 620), CD3 (LN10, Opal 570), and CD8 (SP239, Opal 480) (Akoya 

Biosciences, Inc., Marlborough, MA, USA). The stained section was then scanned with the Vectra 

Polaris Imaging System (Akoya Biosciences, Inc., Marlborough, MA, USA) and the component 

channels were spectrally unmixed with the inForm Tissue Analysis Software (Akoya Biosciences, 

Inc., Marlborough, MA, USA). During spectral unmixing, the residual AF signal was retained as 

an additional channel. 

 

Four additional slides were also prepared from each tissue block for use as control (two slides) 

and reserve (two slides) slides, if needed. A subset of control slides was stained for H&E and mIF 

to validate the staining protocols and examine sources of contamination that were occasionally 

observed during scanning. Reserve slides were kept unstained, for use only in case tissue was 

damaged during the handling process. 
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Data Alignment and Quality Control 

Due to the imaging by different systems, image pairs of the AF and corresponding stains on the 

same slide were globally aligned with an affine transformation using an iterative approach which 

has been previously described [19,22]. Image pairs that could not be successfully aligned, due to 

tissue distortion from the staining process, for example, were excluded from the dataset. Other 

quality control checks were also performed to exclude images with out of focus regions or large 

regions of missing tissue. Overall, 422 AF-H&E image pairs and 405 AF-mIF image pairs passed 

all alignment and quality control checks and were used for model development, while 26 AF-H&E 

image pairs and 43 AF-mIF image pairs were excluded. 

 

The antigen retrieval requirement of mIF staining is inherently harsher than H&E staining and 

more likely to create tissue warping, such as minor folds or tears. Therefore, an automatic 

algorithm to identify local regions with tissue warping was developed to exclude such artifacts. 

Patches from the globally aligned AF-mIF image pairs at the same location were converted to 

grayscale and normalized to the [0, 1] range. Using the normalized gradient field (NGF) [25] or 

normalized total gradient (NTG) [26] as the distance metric between the patches, a translational 

alignment of the patches was performed using Powell's method [27] combined with Gaussian 

pyramids with three levels [28] to speed up the convergence. The magnitude of the translational 

vector obtained was then used as an alignment score, whereby a lower score indicated better 

alignment quality. In order to determine a suitable threshold, a small subset of the training slides 

were manually annotated and compared against the alignment score. As a result, it was 

determined that any region with an alignment score greater than 6µm at 10× magnification should 

be considered misaligned and excluded from model development. No significant differences were 

observed between using NGF or NTG as the distance metric. 

Data Splits 

Cases were randomly assigned to training, validation, and testing splits for virtual stainer model 

development. The distributions of sex, age, and diagnosis for each individual split were balanced 

and there were no significant deviations from the overall dataset distribution. For H&E model 

development, the final dataset consisted of 215 training, 85 validation, and 122 testing slides. For 

mIF model development, the final dataset consisted of 245 training, 65 validation, and 95 testing 

slides. A larger number of training slides was allocated for the mIF model development due to the 

lower prevalence of certain targets, while still maintaining a reasonable number of validation and 

testing slides. 

Virtual Stainer 

Overview 

Virtual stainer models were developed to generate H&E and mIF virtual stains from unstained AF 

images. For mIF, four separate models were trained to generate DAPI + PanCK, PD-L1, CD3, 

and CD8, respectively. All models operated on patches which were then combined into whole 

slide images (WSIs) for evaluation. 
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Figure 1: Pseudo-IHC (pIHC) and segmentation algorithms were developed for mIF model 

development and evaluation. (A) Examples of mIF (top) and the corresponding pIHC (bottom) 

for PanCK, PD-L1, CD3, and CD8. As per conventional practice, the residual unmixed AF is not 

shown in the mIF to maintain appropriate visual quality. (B) Example of the segmentations of 

tumor regions based on the PanCK stain (dashed outline, green), and negative (solid outline, 

blue) and positive (solid outline, respective color) cells for PD-L1, CD3, and CD8. 

Data Sampling 

For model development, paired patches of the AF and corresponding stains were sampled from 

tissue regions of the training and validation slides. Paired patches were sampled at 40× 

magnification from the same locations and a padding of 16 pixels was added to each side of the 

corresponding stains to account for local errors in the global alignment algorithm, which was 

addressed by a shift-invariant regression loss during training and further described in Loss. 
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Therefore, the dimensions of the patches were 128×128x20 for AF, 160×160x3 for H&E, and 

160×160×1 for each mIF channel. 

 

For the H&E model, patches were uniformly sampled across all tissue regions. Overall, 30 million 

patches were sampled for training and 1000 patches were sampled for validation. The smaller 

number of patches chosen for validation was observed to produce comparable metrics with 

decreased computational times.  

 

For the mIF models, local regions with tissue warping, as determined by the automatic algorithm 

using the NGF distance metric described in Data Alignment and Quality Control, were excluded 

from sampling. Patches from tumor regions, as determined by the PanCK stain, were sampled 

with higher probabilities. Overall, for the DAPI + PanCK, CD3, and CD8 models, 10 million 

patches were sampled for training and 1000 patches were sampled for validation. For PD-L1, a 

larger number of patches were sampled for training and patches from PD-L1 positive regions, as 

determined by the intensity of the PD-L1 stain, were also sampled with higher probabilities. Due 

to the heterogeneity of PD-L1 expression in both immune cells and tumor cells, this was found to 

improve overall model performance. Overall, for the PD-L1 model, 20 million patches were 

sampled for training and 1000 patches were sampled for validation. 

Pseudo-IHC 

Pseudo-IHC (pIHC) refers to IHC-like images rendered from mIF images using an algorithm 

based on modeling absorption using the Beer-Lambert law [29,30]. Our implementation of the 

algorithm included two modifications to improve the visual quality of the pIHC images. First, a 

realistic tissue background was rendered using the unmixed residual AF signal, which adds tissue 

morphology details to the image. Second, color offsets were added to match the colors typically 

observed in real IHC images obtained using brightfield microscopy, such as in regions where no 

tissue is present. 

 

Three channels from the mIF image were used to render the corresponding pIHC image. First, 

the DAPI stain was used to render the corresponding hematoxylin stain, which labels nuclei blue-

purple. Second, the target stain was used to render the corresponding 3,3’-diaminobenzidine 

(DAB) stain, which labels the target brown. Third, the unmixed residual AF was used to render 

the corresponding tissue background. Figure 1A shows examples of the mIF image and the 

corresponding pIHC image for different targets. 

 

Note that the pIHC algorithm described here is based on pixel-wise image processing, invertible, 

and can also be used to render the mIF image from the corresponding pIHC image. More details 

are available in the Supplementary Material 1. 

 

Initial experiments were conducted to compare the effectiveness of training the mIF models to 

predict the output as mIF or pIHC virtual stains. The initial experiments showed that training the 

models to predict pIHC virtual stains, and using the inverse pIHC algorithm to render the 

corresponding mIF virtual stains, resulted in higher quality virtual stains, compared to training the 

models to directly predict mIF virtual stains. This was determined by qualitative review of 
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validation patches and WSIs. Using pIHC also enabled a more direct translation of some of the 

H&E model hyperparameters to the mIF models. 

Architecture 

The architecture of the models was based on generative adversarial networks (GANs), specifically 

the ‘pix2pix’ paired image-to-image translation approach, and has been previously described 

[19,22,31]. Briefly, the architecture consisted of a U-Net-based generator, a conditional 

discriminator, and two unconditional discriminators which operated at different magnifications of 

the image. The generator received the AF as the input and was trained to predict the 

corresponding virtual stain as the output. The discriminators received the real and virtual stains 

as the input and were trained to differentiate between the real and virtual stains. The unconditional 

discriminators received only the real and virtual stains as the input, whereas the conditional 

discriminator also received the AF as the input. 

 

Specific hyperparameters such as kernel sizes, numbers of kernels, dropout rate, and attention 

gates [32] were different and empirically determined for the H&E and mIF models. More details 

are available in the Supplementary Material 2. 

Loss 

The loss components used to train the models have been previously described [19,22]. Briefly, a 

shift-invariant regression loss was used to minimize the L1 and L2 errors between the real and 

virtual stains. Conditional and unconditional adversarial losses were used in a minimax game to 

force the generator to produce realistic images in order to fool the discriminators. A rotational 

consistency loss was used to make the output rotation invariant and prevent the model from 

learning any orientation biases. An L2 regularization loss was used to penalize large model 

weights and reduce overfitting. 

 

For the mIF models, an additional pixel-wise weighting scheme was applied in the shift-invariant 

regression loss in order to improve the quality of the target virtual stain, especially for more 

heterogenous or less prevalent targets, such as PD-L1 and CD8. Specifically, Equation 1 was 

used to weight the pixels based on the IF intensity of the target stain when calculating the loss, 

such that pixels with higher intensities were given more importance. Note that the mIF models 

were trained to predict pIHC virtual stains as described in Pseudo-IHC. Therefore, all losses were 

calculated using pIHC and the IF intensity of the target stain was used only to derive the weights 

for the pixel-wise weighting scheme. 

 

  
where 
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For the DAPI + PanCK model, the pixel-wise weighting scheme was not applied, as no significant 

improvements in quality were observed for the PanCK target stain which is highly prevalent, and 

the DAPI stain which labels nuclei was also an output of interest. For the CD8 model, all pixels 

with an IF intensity of the target stain of less than 15 were given a weight of 1, to reduce the effect 

of label noise from background and non-specific fluorescence which is further described in 

Results. 

 

Specific hyperparameters such as the weights for each loss component were different and 

empirically determined for the H&E and mIF models. More details are available in Supplementary 

Material 2. 

Training and Validation 

All model weights were randomly initialized using Glorot uniform initialization [33] and optimized 

using Adam optimization [34] to minimize the total loss on the training set. All models were trained 

with a fixed batch size. Learning rate schedules were employed to dynamically change the 

learning rate over time. Loss schedules were employed to change the relative weights of the shift-

invariant regression loss and adversarial loss components over time. Performance was monitored 

based on the L1 error and Frechet Inception Distance (FID) [35] between the real and virtual stain 

patches to ensure model convergence. The best checkpoint for each model was selected based 

on a combination of the minimum L1 and FID on validation patches, as well as qualitative review 

of the virtual stains on validation WSIs. The best checkpoint for all models was between 320,000 

and 360,000 training steps. 

 

Specific hyperparameters such as the batch size, learning rate, learning rate schedules, and loss 

schedules were different and empirically determined for the H&E and mIF models. More details 

are available in Supplementary Material 2. 

Evaluation 

Domain-specific computational methods were used to evaluate the accuracy of the H&E and mIF 

virtual stains compared to the real stains on testing slides. 

H&E 

To evaluate the accuracy of the H&E virtual stains, an independent model which has been 

previously described [36] was used for automatic histologic subtyping, and the similarity of the 

model’s segmentations on real and virtual stains was evaluated. Briefly, the model was trained 

on H&E images of LUAD cases from The Cancer Genome Atlas (TCGA) dataset to segment nine 

histologic features at 10× magnification. The histologic features include six tumor subtypes 

(acinar, cribriform, lepidic, micropapillary, papillary, solid), leukocyte aggregates, necrosis, and 

an “other” category comprising features such as normal tissue and stroma. 

 

The tumor subtypes are only applicable to LUAD cases. Therefore, the six tumor subtypes were 

combined into a single “combined tumor” category for any analysis involving non-LUAD cases (23 
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LUSC, 3 adenosquamous carcinoma, 1 undetermined). This was considered a reasonable 

approach even though the model was not specifically trained for non-LUAD cases, given that it 

was not the accuracy of the histologic subtyping model that was being evaluated, but rather the 

similarity of the model’s segmentations on real and virtual stains. 

 

Additionally, each tumor subtype is typically considered clinically-relevant only if its presence 

exceeds a certain threshold [37]. Therefore, an additional analysis for each tumor subtype was 

performed by limiting to LUAD cases in which that subtype exceeded 5% of the total tumor area 

(LUAD-5%). This excluded cases with low prevalence and may better represent clinical 

performance. 

 

Dice scores for the overlap of segmentations on the real and virtual stains were calculated, 

whereby higher values indicate better performance. 

mIF 

To evaluate the accuracy of the mIF virtual stains, several cell segmentation-based 

measurements were obtained using automatic image analysis tools developed using Visiopharm 

software (Visiopharm A/S, Hoersholm, Denmark). Briefly, cells were identified and segmented 

based on the DAPI stain and tumor regions were identified and segmented based on the PanCK 

stain. Positive cell expression of PD-L1, CD3, and CD8 was determined based on the average 

intensity of the respective stain within each segmented cell. Figure 1B shows an example of the 

segmentations. 

 

Measurements of the positive area, positive cell density, positive cell percentage, and 

computationally-derived TPS and CPS, were calculated for each stain, where relevant. 

Specifically, positive area was calculated only for PanCK, while positive cell density and positive 

cell percentage were calculated only for DAPI, PD-L1, CD3, and CD8. For DAPI, positive cell 

percentage was not calculated as the calculation is itself a function of the number of cells 

segmented based on DAPI, and would therefore always be 100%. For PD-L1 only, positive cell 

percentage was calculated as TPS and CPS to align with clinical terminology and practice. More 

details are available in the Supplementary Material 3. 

 

Additionally, a colocalization analysis which can better represent particular cell subsets was also 

performed. Specifically, CD3 and CD8 colocalization can better represent the subset of cytotoxic 

T cells, and CD3 and PD-L1 colocalization can better represent the subset of PD-L1 positive T 

cells. 

 

Analysis was performed according to three different definitions of the region of interest: 

 

1. Tissue: The entire tissue region, as determined by a tissue detection algorithm. The same 

region was used on both the real and virtual stains. This analysis was useful to measure 

the performance on the entire WSI. 
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2. Real tumor: The real tumor region, as determined by the real PanCK stain. The same 

region was used on both the real and virtual stains. This analysis was useful to measure 

the performance in the tumor region independent of the quality of the virtual PanCK stain. 

3. Respective tumor: The respective tumor regions, as determined by the real PanCK stain 

on the real stains and the virtual PanCK stain on the virtual stains. This analysis was useful 

to measure the performance in the tumor region in a fully-virtual workflow. 

 

Pearson’s correlations and absolute differences between the measurements on real and virtual 

stains were calculated, whereby higher values for correlations indicate better performance and 

lower values for absolute differences indicate better performance. 

Results 

H&E 

Qualitative Analysis 

Figure 2A shows a WSI example of the H&E real and virtual stains. Figure 2B shows a 

magnification series of concentric regions from the WSI. 

 

Overall, the virtual stains were able to reproduce key morphological features at tissue and cell 

levels such as tumor cells, tumor-infiltrating lymphocytes, and tumor-associated stroma. Certain 

subcellular features such as cell borders, nuclear size and shape, and cytoplasm appearance, as 

well as mitoses, nuclear lobation, and nucleoli, were also reproduced in the virtual stains. 

Quantitative Analysis 

Tables 1 and 2 show the average performance based on the overlap of segmentations obtained 

from automatic histologic subtyping of real and virtual stains. Figure 2C shows examples of the 

segmentations. 

 

Overall, the segmentations on real and virtual stains were very similar, despite patches often 

exhibiting multiple subtypes or ambiguous categorization. The segmentations for the combined 

tumor, leukocyte aggregates, and “other” categories showed the best performance, with Dice 

scores above 0.8, indicating good differentiation of tumor, non-tumor, and immune cells. The 

performance for the necrosis category was slightly lower, which may be attributed to low AF 

signals in necrotic regions. No significant differences were observed between LUAD and non-

LUAD cases. For LUAD cases, the Dice scores ranged from moderate (0.5 - 0.7) to good (0.7 - 

0.9) for the segmentations of the tumor subtypes. The best performance was observed for the 

segmentations of solid, acinar, and lepidic tumor subtypes, which are the most established and 

common tumor subtypes [37]. The lowest performance was observed for the segmentations of 

the cribriform tumor subtype, which is less established and more difficult to characterize than the 

other tumor subtypes [38]. The performance for all tumor subtypes improved for the subset of 
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LUAD-5% cases, with all Dice scores above 0.7, demonstrating promising performance when 

factoring in a clinical threshold. 

 

 
Figure 2: (A) Example of real (left) and virtual (right) stains for a H&E WSI. (B) Magnification 

series of real (left) and virtual (right) stains for concentric regions from the WSI at 10× (top), 20× 

(middle), and 40× (bottom) magnifications. (C) Example of the segmentations on real (left) and 

virtual (right) stains obtained from automatic histologic subtyping. 

 

Table 1: Average Dice score (mean ± SD, median) between segmentations on real and virtual 

stains of combined tumor, leukocyte aggregates, necrosis and “other” categories on testing 

slides. 

Category All (122 cases) LUAD (95 cases) Non-LUAD (27 cases) 

Combined tumor 
0.92 ± 0.05, 

0.94 
0.93 ± 0.05, 

0.94 
0.92 ± 0.04,  

0.92 

Leukocyte 
aggregates 

0.85 ± 0.06, 
0.86 

0.85 ± 0.06, 
0.86 

0.85 ± 0.06, 
 0.85 

Necrosis 
0.66 ± 0.27, 

0.76 
0.62 ± 0.29, 

0.71 
0.78 ± 0.13, 

 0.82 

Other 
0.95 ± 0.04, 

0.96 
0.95 ± 0.04, 

0.97 
0.94 ± 0.04, 

 0.95 
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Table 2: Average Dice score (mean ± SD, median) between segmentations on real and virtual 

stains of six tumor subtypes on LUAD testing slides. 

Tumor Subtype LUAD (95 cases) 
LUAD-5% (Number of cases 

meeting criteria) 

Acinar 
0.73 ± 0.17, 

0.77 
0.80 ± 0.09, 

0.82 (59) 

Cribriform 
0.56 ± 0.22, 

0.63 
0.70 ± 0.12, 

0.71 (36) 

Lepidic 
0.76 ± 0.15, 

0.79 
0.80 ± 0.09, 

0.82 (76) 

Micropapillary 
0.62 ± 0.27, 

0.69 
0.82 ± 0.06, 

0.84 (23) 

Papillary 
0.68 ± 0.25, 

0.77 
0.81 ± 0.07, 

0.82 (56) 

Solid 
0.76 ± 0.14, 

0.76 
0.79 ± 0.12, 

0.80 (76) 

mIF 

Qualitative Analysis 

Figures 3 and 4 show examples of the mIF real and virtual stains. Figure 3 shows a WSI 

composite of all mIF stains and the individual model outputs at several regions across the WSI. 

Figure 4 shows examples of key immune phenotypes which are important for immuno-oncology. 

More examples are available in Supplementary Material 4. 

 

Overall, the global distribution of the virtual stains were similar to the real stains. The virtual stains 

were able to satisfactorily reproduce key morphological features and protein biomarker 

expressions at tissue and cell levels. Importantly, the identification of key immune phenotypes 

such as PD-L1 positive, PD-L1 negative, immune inflamed, immune excluded, and immune desert 

tumors was attainable with the virtual stains [12]. The virtual stains for morphological or cell type 

biomarkers such as DAPI, PanCK, and CD3 were of higher quality and accuracy than highly 

dynamic cell state biomarkers such as PD-L1. For CD8, while the overall spatial distribution and 

relative density of positive cells were moderately accurate at the tissue level, the positive 

expression at cell level was not as accurate. Upon further inspection, high amounts of background 

and non-specific fluorescence were observed in many of the CD8 real stains, which adds label 

noise during the model training procedure, resulting in poorer performance. More details are 

available in Supplementary Material 4. 
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Figure 3: (A) Example of real (left) and virtual (right) stains showing the WSI composite for all 

mIF stains. (B-E) Examples of real (left) and virtual (right) stains from the individual models for 

DAPI + PanCK, PD-L1, CD3, and CD8 at several regions across the WSI. 
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Figure 4: Examples of real (left) and virtual (right) stains showing key immune phenotypes. 

(A) PD-L1 positive tumor. (B) PD-L1 negative tumor. (C) Immune inflamed tumor with T cell 

infiltration. (D) Immune excluded tumor with T cell accumulation in surrounding stroma. 

(E) Immune desert tumor with no T cells. 

Quantitative Analysis 

Tables 3 and 4 show the Pearson’s correlations between the measurements on real and virtual 

stains obtained from the cell segmentation-based analysis in Visiopharm software for the single 

expression and colocalization analysis, respectively. Blank entries indicate measurements that 

were not relevant for the stain as described in Materials and Methods. The average absolute 

differences and scatterplots of the measurements on real and virtual stains are available in 

Supplementary Material 4. 

 

Overall, the correlations ranged from moderate (0.4 - 0.7) to good (0.7 - 1.0) for the different 

measurements. The performance metrics were consistent with the qualitative observations 

described above, whereby virtual stains for DAPI, PanCK, and CD3 showed better performance 
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than PD-L1 and CD8. In general, there was a decrease in performance in tumor regions compared 

to tissue regions, whereby the correlations were lower in tumor regions, indicating that biomarker 

expressions in tumor regions may be more dysregulated or heterogeneous and difficult to predict. 

For PD-L1, the correlations between the measurements on real and virtual stains were 0.46 for 

TPS and 0.71 for CPS, compared to previously reported inter-observer agreements (Cohen’s 

kappa) of 0.53 - 0.72 for TPS [39–41] and 0.52 - 0.74 for CPS [39] across various studies. The 

measurements of CPS showed better correlations than TPS, indicating that PD-L1 expression 

can be predicted more accurately in immune cells than in tumor cells. This was consistent with 

the good performance of the CD3 and PD-L1 colocalization analysis, which represents PD-L1 

expression on T cells. For CD8, the background autofluorescence and non-specific fluorescence 

contributed to the false positive identification of cells. While CD8 can be expressed on natural 

killer cells and dendritic cells as well, the primary cell type of interest when staining for CD8 is 

often cytotoxic T cells. Therefore, the colocalization analysis of CD3 and CD8 enabled the specific 

analysis of cytotoxic T cells. The high quality of both the real and virtual stains for CD3 also 

reduced the false positives and improved the performance metrics. 

 

Table 3: Pearson’s correlation (95% CI) between measurements on real and virtual stains 

obtained from the cell segmentation-based analysis in Visiopharm software for PanCK, DAPI, 

PD-L1, CD3, and CD8 on testing slides. Analysis was performed according to three different 

definitions of the region of interest. 

Region Measurement PanCK DAPI PD-L1 CD3 CD8 

Tissue 

Positive area (mm2) 
0.96 

(0.94, 0.97) 
- - - - 

Positive cell density 
(cells/mm2) 

- 
0.85 

(0.79, 0.90) 
0.63 

(0.49, 0.74) 
0.89 

(0.83, 0.92) 
0.41 

(0.23, 0.56) 

Positive cell 
percentage (%) 

- - 
0.50 

(0.33, 0.64) 
0.84 

(0.77, 0.89) 
0.43 

(0.25, 0.58) 

Real 
tumor 

Positive cell density 
(count/mm2) 

- 
0.66 

(0.52, 0.76) 
0.52 

(0.36, 0.66) 
0.84 

(0.76, 0.89) 
0.50 

(0.33, 0.64) 

Positive cell 
percentage (%) 

- - 
See 

TPS and CPS 
0.79 

(0.70, 0.86) 
0.45 

(0.27, 0.60) 

TPS (%) - - 
0.46 

(0.29, 0.61) 
- - 

CPS (%) - - 
0.71 

(0.60, 0.80) 
- - 

Respective 
tumor 

Positive cell density 
(cells/mm2) 

- 
0.53 

(0.37, 0.66) 
0.52 

(0.36, 0.66) 
0.84 

(0.76, 0.89) 
0.49 

(0.32, 0.63) 

Positive cell 
percentage (%) 

- - 
See 

TPS and CPS 
0.76 

(0.66, 0.83) 
0.45 

(0.28, 0.60) 

TPS (%) - - 
0.47 

(0.29, 0.61) 
- - 

CPS (%) - - 
0.71 

(0.59, 0.80) 
- - 
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Table 4: Pearson’s correlation (95% CI) between measurements on real and virtual stains 

obtained from the colocalization analysis in Visiopharm software for CD3 and CD8, and CD3 

and PD-L1, on testing slides. Analysis was performed according to three different definitions of 

the region of interest. 

Region Measurement CD3 and CD8 CD3 and PD-L1 

Tissue 

Positive cell density 
(cells/mm2) 

0.53 
(0.38, 0.66) 

0.81 
(0.73, 0.87) 

Positive cell percentage 
(%) 

0.55 
(0.39, 0.67) 

0.73 
(0.62, 0.81) 

Real 
tumor 

Positive cell density 
(cells/mm2) 

0.56 
(0.41, 0.69) 

0.71 
(0.60, 0.80) 

Positive cell percentage 
(%) 

0.56 
(0.41, 0.69) 

0.66 
(0.53, 0.76) 

Respective 
tumor 

Positive cell density 
(cells/mm2) 

0.51 
(0.35, 0.65) 

0.75 
(0.65, 0.83) 

Positive cell percentage 
(%) 

0.53 
(0.36, 0.66) 

0.68 
(0.55, 0.77) 

Discussion 

In this study, we present virtual stainer models that can generate virtual stains for H&E and an 

immuno-oncology mIF panel (DAPI, PanCK, PD-L1, CD3, CD8) from AF images of unstained 

NSCLC tissue specimens. This work follows our previous work [19,22] and demonstrates the 

generalizability of our technique by extending its application to a different disease and stain 

modality. 

 

The H&E virtual stains accurately reproduced key morphological features at tissue, cell, and even 

subcellular levels, compared to real stains. The virtual stains also demonstrated good 

performance when used for automatic histologic subtyping. Overall, there was good differentiation 

between tumor and non-tumor regions, with Dice scores above 0.8. There was also good 

characterization of immune cells, with Dice scores of 0.85 for leukocyte aggregates. For LUAD 

cases, the differentiation between specific tumor subtypes also showed good performance, 

especially for the solid, acinar, and lepidic tumor subtypes, with Dice scores above 0.7. Therefore, 

the H&E virtual stains showed potential to be accurate enough for the diagnosis and subtyping of 

NSCLC cases, as it is routinely used for in clinical practice. We hypothesize that some of the 

differences between the segmentations on real and virtual stains may be partly attributed to the 

variability in pathologist annotations used for training the histologic subtyping model [36], whereby 

the high rates of inter-pathologist disagreement observed when subtyping adenocarcinoma [42] 

may result in the histologic subtyping model being susceptible to minor and clinically-irrelevant 

variations between the real and virtual stains. 
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The mIF virtual stains also showed good performance, reproducing key morphological features 

and protein biomarker expressions at tissue and cell levels, especially for DAPI, PanCK, and CD3. 

The identification of key immune phenotypes important for immuno-oncology was also attainable 

with the virtual stains. Overall, there was good agreement between clinically-relevant 

measurements derived from the real and virtual stains, especially for measurements of the tumor 

area, T cell density and percentage, and CPS, with correlations above 0.7. For PD-L1, the 

performance of the virtual stains was better in immune cells than in tumor cells, and further 

investigation would be required to determine the reason for this difference. We hypothesize that 

the more distinct morphology of immune cells, the heterogeneity of dysregulated PD-L1 

expression in tumor cells, as well as the difference in AF signals between immune cells and tumor 

cells, partly contribute to this difference. For CD8, we observed background and non-specific 

fluorescence in the real stains which adds label noise during the model training procedure. 

Therefore, we expect the performance of the CD8 virtual stains to considerably improve with a 

less noisy dataset, which can be obtained by using fluorophores at a different wavelength for CD8 

staining, for example, and better quality control. We aim to further improve on the performance of 

PD-L1 and CD8 virtual stains in future work. 

 

We also present a pIHC algorithm which can be used to render IHC-like images from mIF images, 

introducing modifications to existing methods [29,30] to improve the visual quality and similarity 

of pIHC images to real IHC images that pathologists are more familiar with reading and evaluating. 

The pIHC algorithm can be used in several ways. First, it enables the generation of pIHC images 

for multiple biomarkers from a single mIF image. On the other hand, the generation of real IHC 

images for multiple biomarkers would require the preparation of multiple slides containing 

consecutive sections obtained from a tissue block, which can be limited by the availability of 

tissue. The use of consecutive sections also prohibits accurate colocalization analysis of 

biomarkers, which is required for specific cell subsets and spatial analysis. Second, it enables 

flexibility in the choice of modality for different applications. For example, pIHC images may be 

preferred when pathologists review images, whereas mIF images may be preferred for the 

development of computational analysis workflows and spatial biology research. We also took 

advantage of this flexibility in our model development process, whereby using pIHC enabled a 

more direct translation of previous virtual stainer models that were developed for H&E and IHC 

images, thereby reducing model development and iteration time. Similarly, many existing 

pathology image analysis models may be developed for IHC images and the use of pIHC may 

directly enable mIF images to be applied to those models. 

 

In this study, the accuracy of the virtual stains compared to the real stains was evaluated primarily 

using computational methods. While results were promising, further validation would be required 

to establish if the virtual stains can be used in clinical or research settings as a substitute for real 

stains. Human reader studies should be performed to evaluate the diagnostic accuracy of virtual 

stains by pathologists. Previous reader studies have shown that H&E virtual stains can be 

accurate enough for pathologists to grade images using established clinical scoring systems in 

nonalcoholic steatohepatitis [19] and prostate cancer [22]. A similar reader study can be 

performed for H&E virtual stains in NSCLC based on histologic classification and subtyping. While 

mIF image analysis is often computational and there are few established scoring systems based 
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on mIF for NSCLC, more in-depth computational spatial analysis comparing the real and virtual 

stains can be performed for further validation. For example, more advanced machine learning-

based algorithms [43] could be developed to improve upon the current threshold-based algorithms 

used for cell segmentation, which can have limited accuracy in separating overlapping adjacent 

cells. Additionally, it would be important to evaluate the association with clinical outcomes or 

endpoints, in order to determine any clinical impact of the differences observed between the 

measurements on real and virtual stains. 

 

In summary, we demonstrate the feasibility of generating virtual stains for H&E and mIF from AF 

images of unstained NSCLC tissue specimens, extending the application of our previous work to 

another disease and stain modality. Virtual staining has great potential to enable spatial biology 

research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue 

samples in a non-destructive manner for future analysis. This study reinforces the potential of 

digital pathology and virtual staining to improve medical decision making and patient outcomes. 
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