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Abstract

Background

Dengue is a mosquito-borne viral disease that poses a significant public health threat in
tropical and subtropical regions worldwide. Accurate forecasting of dengue outbreaks is
crucial for effective public health planning and intervention. This study aims to assess
the predictive performance and computational efficiency of a number of statistical
models and machine learning techniques for dengue forecasting, both with and without
the inclusion of climate factors, to inform the design of dengue surveillance systems.

Methods

The study considers dengue cases in Rio de Janeiro, Brazil, as well as climate factors
known to affect disease transmission. Employing a dynamic window approach, various
statistical methods and machine learning techniques were used to generate weekly
forecasts at several time horizons. Error measures, uncertainty intervals, and
computational efficiency obtained with each method were compared. Statistical models
considered were Autoregressive (AR), Moving Average (MA), Autoregressive Integrated
Moving Average (ARIMA), and Exponential Smoothing State Space Model (ETS).
Additionally, models incorporating temperature and humidity as covariates, such as
Vector Autoregression (VAR) and Seasonal ARIMAX (SARIMAX), were employed.
Machine learning techniques evaluated were Random Forest, XGBoost, Support Vector
Machine (SVM), Long Short-Term Memory (LSTM) networks, and Prophet. Ensemble
approaches that integrated the top performing methods were also considered. The
evaluated methods also incorporated lagged climatic variables to account for delayed
effects.

Results

Among the statistical models, ARIMA demonstrated the best performance using only
historical case data, while SARIMAX significantly improved predictive accuracy by
incorporating climate covariates. In general, the LSTM model, particularly when
combined with climate covariates, proved to be the most accurate machine learning
model, despite being slower to train and predict. For long-term forecasts, Prophet with
climate covariates was the most effective. Ensemble models, such as the combination of
LSTM and ARIMA, showed substantial improvements over individual models.
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Conclusion

This study demonstrates the strengths and limitations of various methods for dengue
forecasting across multiple timeframes. It highlights the best-performing statistical and
machine learning methods, including their computational efficiency, underscoring the
significance of machine learning techniques and the integration of climate covariates to
improve forecasts. These findings offer valuable insights for public health officials,
facilitating the development of dengue surveillance systems for more accurate
forecasting and timely allocation of resources to mitigate dengue outbreaks.

Author summary

Dengue is a mosquito-borne viral disease that poses a significant public health threat in
tropical and subtropical regions worldwide. Accurate forecasting of dengue can
significantly aid in public health planning and response. In this study, we compared the
performance of various statistical models and machine learning techniques to predict
dengue cases across several timeframes. In the evaluation, we used historical dengue
case data in Rio de Janeiro, Brazil, as well as climate factors such as temperature and
humidity known to affect transmission. Methods considered included traditional
statistical models like ARIMA and SARIMAX, and advanced machine learning
approaches like Random Forest, XGBoost, SVM, LSTM, and Prophet. We found that
integrating climate data significantly improved the accuracy of forecasts. Specifically,
the LSTM model combined with climate covariates provided the most accurate
predictions overall, while Prophet was particularly effective for long-term forecasts.
Additionally, ensemble approaches that combined multiple models outperformed
individual models. This work demonstrates the potential of machine learning techniques
to provide timely and accurate predictions, and emphasizes the importance of climate
data in dengue forecasting. The study aims to support public health officials in
developing dengue surveillance systems to enable informed decision-making for
mitigating the impact of dengue outbreaks.

Introduction 1

Dengue is a viral infection transmitted through the bites of infected female Aedes 2

mosquitoes. The main vector for dengue, the Aedes aegypti mosquito, thrives in high 3

temperature and humidity, conditions that also promote viral replication. The dengue 4

virus exists in four distinct serotypes, namely, DENV-1, DENV-2, DENV-3, and 5

DENV-4. Infection with any serotype can result in dengue fever, manifesting from mild 6

febrile illness to severe forms such as dengue hemorrhagic fever or dengue shock 7

syndrome, which can be fatal. 8

Dengue represents a significant public health concern in tropical and subtropical 9

regions in the world and is now established as endemic in over hundred of countries 10

across Africa, the Americas, the Eastern Mediterranean, South-East Asia, and the 11

Western Pacific [1]. Moreover, dengue cases are projected to increase and expand into 12

new territories in the coming years as climate change alters epidemiological patterns [2]. 13

Dengue not only affects population health but also places a significant economic burden 14

on a global scale. 15

Currently, there is no universal treatment for dengue. However, various prevention 16

strategies are available, including personal protection, chemical control, and 17

environmental management of Aedes mosquitoes [3]. Enhanced surveillance is also 18

crucial for early detection and response to dengue outbreaks allowing public health 19
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authorities to respond promptly and implement control measures to allocate resources 20

in areas of higher risk and prevent further spread. 21

Forecasting dengue incidence involves various methodologies that range from 22

traditional statistical models to advanced machine learning techniques. Each method 23

offers distinct advantages and limitations in terms of accuracy, complexity, and 24

applicability. Traditional statistical methods, such as ARIMA (Autoregressive 25

Integrated Moving Average) and seasonal decomposition, have been widely used for 26

infectious disease forecasting. These models are particularly effective at capturing linear 27

relationships and seasonal patterns in time-series data. However, they often require 28

stationary data and may struggle to handle non-linear interactions or abrupt changes in 29

trends. For instance, [4] developed seasonal ARIMA models for forecasting dengue in 30

northeastern Thailand. Their models provided detailed insights into the timing and 31

intensity of outbreaks, proving practical for public health planning. [5] utilized ARIMA 32

models to predict dengue incidence in Rio de Janeiro, Brazil. Their findings suggested 33

that simple models could be effective, particularly when predicting short-term outcomes, 34

highlighting the value of using lagged cases as predictors to enhance forecast accuracy. 35

ARIMA models were also utilized by [6] to analyze dengue incidence in Recife and 36

Goiania, Brazil, emphasizing the importance of both trend and seasonality. The study 37

highlighted the challenges of forecasting during the Zika virus co-circulation, which 38

interfered with accurate dengue case predictions. [7] combined various statistical models 39

to predict peak dengue transmission in Iquitos, Peru. This strategy proved superior in 40

estimating the peak heights and total case counts, illustrating the advantages of 41

combining diverse methodologies. 42

In recent years, machine learning models have gained prominence due to their ability 43

to learn complex patterns from data without explicit programming. Techniques like 44

Random Forests, Support Vector Machines (SVM), and neural networks, including Long 45

Short-Term Memory (LSTM) networks, offer powerful alternatives to traditional models. 46

These methods can capture complex non-linear interactions and are generally more 47

flexible in handling various data types and structures. Nevertheless, machine learning 48

models often require large datasets for training and can be opaque, making 49

interpretation challenging. [8] developed and compared various machine learning 50

algorithms in Brazilian cities, showing that Random Forests, when optimized with local 51

data, yielded the lowest prediction errors. [9] applied multiple models including LSTM 52

and support vector regression in Kerala, India, with LSTM providing the most accurate 53

predictions for dengue prevalence, illustrating the model’s superior capability to capture 54

complex patterns in disease spread. [10] introduced a hybrid deep learning architecture 55

combining convolutional and recurrent neural networks for forecasting dengue incidence. 56

This novel approach proved highly effective, offering significant improvements in 57

forecasting accuracy over other deep learning models. 58

Incorporating climate and environmental information has been shown to enhance 59

both statistical and machine learning models. Temperature, rainfall, and humidity have 60

been linked to the breeding and survival rates of mosquitoes, thereby affecting dengue 61

transmission rates [11]. Models that integrate these environmental factors tend to 62

perform better in predicting dengue incidence over longer time horizons, reflecting the 63

complex interplay between the pathogen, host, and environment [12–15]. For 64

instance, [12] improved dengue surveillance in Guadeloupe, French West Indies, by 65

integrating climatic variables into SARIMA (Seasonal ARIMA) models. This approach 66

not only forecasted outbreaks with higher accuracy but also demonstrated the specific 67

impacts of temperature and humidity on dengue incidence. [16] analyzed dengue fever 68

outbreaks in Selangor, Malaysia, using several machine learning techniques with climate 69

variables as predictors. The study found that SVM (linear kernel) exhibited the best 70

overall performance, particularly in terms of specificity and precision. [17] explored the 71
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efficiency of Random Forests and artificial neural networks to forecast dengue in 72

Colombia, demonstrating that Random Forests was superior for short- to medium-term 73

dengue predictions at national and departmental levels, benefiting from the integration 74

of socio-demographic and environmental predictors. 75

In this paper, we evaluate a number of statistical models and machine learning 76

techniques for dengue forecasting. The aim is to determine which methods provide 77

superior predictive performance and computational efficiency, which could inform the 78

design of dengue surveillance systems. Several studies have compared the performance 79

of various dengue prediction methods [8, 16–21]. However, these studies have several 80

gaps which we aim to address in our evaluation. First, unlike previous studies which 81

often focus on monthly predictions, we consider forecasts at a weekly resolution. This 82

finer granularity provides a more precise and actionable scale for public health 83

decision-making. In addition, in contrast to other works that typically use a fixed 84

window approach to assess performance, we adopt a moving window strategy where 85

models are continuously trained with newly acquired data. This approach reflects what 86

would happen in real-time scenarios where data is continuously updated. Moreover, this 87

approach allows us to capture the evolving patterns and trends of dengue, enhancing 88

models’ robustness and accuracy over time. 89

Understanding the uncertainty associated with forecasts is critical for public health 90

decision-making. Our study computes uncertainty intervals and coverage probabilities, 91

providing a more comprehensive understanding of the predictions’ reliability. Many 92

other studies only report point predictions, which do not convey the inherent 93

uncertainties in the forecasts. In addition to single models, our research also compares 94

ensemble approaches that combine multiple forecasting methods that leverage the 95

unique strengths of individual models to enhance predictive accuracy. The consideration 96

of ensembles highlight the potential of these approaches for dengue forecasting. 97

Additionally, we assess the models’ performance across several forecast horizons, 98

from short-term (1-4 weeks) to long-term (8-12 weeks) predictions. In contrast to other 99

studies that often focus on a single forecast horizon, this comprehensive evaluation 100

allows us to understand the models’ strengths and limitations across different time 101

scales, providing a more detailed picture of their forecasting capabilities. Finally, we 102

report the computational time required to run each forecasting method. This aspect is 103

particularly important in settings with limited resources, where the time and cost 104

associated with running complex models can be prohibitive. 105

In our evaluation, we utilize weekly cases in Rio de Janeiro, Brazil, a region that 106

faces frequent dengue epidemics. Dengue cases were obtained from InfoDengue [22], a 107

system that partially automates the collection, organization, and analysis of climate and 108

epidemiological data of dengue and other arboviruses in municipalities across Brazil. 109

The methods considered in the analysis include statistical and machine learning 110

methods known for their demonstrated effectiveness in time series forecasting applied to 111

epidemiology. Specifically, we utilize the statistical methods Autoregressive (AR), 112

Moving-Average (MA), ARIMA [23,24], and Exponential Smoothing (ETS) [25], known 113

for their robustness in analyzing time-dependent patterns. We also consider Seasonal 114

ARIMA with eXogenous variables (SARIMAX) [24] and Vector Autoregression 115

(VAR) [23,26] models, which allow us to integrate external variables and assess their 116

impact alongside historical disease trends. Additionally, we explore machine learning 117

techniques like Random Forest [27], XGBoost [28], SVM [29,30], LSTM [31,32], and 118

Prophet [33]. These methods are selected for their advanced capabilities in modeling 119

complex interactions and non-linear relationships [34,35], applicable both with and 120

without climate covariates. Finally, we consider ensemble approaches that combine 121

statistical and machine learning approaches. 122
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The rest of the paper is organized as follows. In Section Dengue and climate data in 123

Rio de Janeiro, Brazil, we describe the study region and the dengue and climate data 124

utilized for the comparison of the methods. Section Methodology covers the statistical 125

methods and machine learning techniques employed, as well as the evaluation metrics 126

for comparison. Section Results presents the results, categorizing them into statistical 127

models, machine learning techniques, and ensemble approaches, both with and without 128

covariates. This illustrates the effectiveness of each method along with their 129

computational efficiency. The paper concludes with a discussion of the findings and 130

their implications for dengue surveillance. 131

Dengue and climate data in Rio de Janeiro, Brazil 132

Rio de Janeiro, situated in southeastern Brazil, is a vast urban area known for its high 133

population density and subtropical climate (Figure 1). With a population exceeding 16 134

million [36], the city is particularly susceptible to dengue fever, largely because of the 135

conducive environment for the proliferation of Aedes aegypti mosquitoes. The warm, 136

humid climate in the area provides an optimal breeding habitat for these mosquitoes, 137

facilitating the replication of dengue viruses. 138

Fig 1. Map of South America with Rio de Janeiro marked by a red point.

Dengue is a notifiable disease within Brazil’s public health framework, requiring 139

health workers to report suspected cases through a structured notification process. This 140

process culminates in a national database managed by the Ministry of Health, which, 141

despite the limitation that only a fraction of cases are laboratory-confirmed, provides 142

invaluable incidence indicators for disease monitoring and response. 143

The InfoDengue system [22] offers a semi-automated pipeline for data collection, 144

harmonization, and analysis at the municipal level. This system generates crucial 145

indicators of the epidemiological situation of dengue and other arboviruses such as Zika 146

and Chikungunya, facilitating timely and informed public health responses. In addition 147

to the reported disease cases, InfoDengue incorporates weather data, acknowledging the 148
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significant impact of climate on arbovirus transmission. Specifically, temperature and 149

humidity data, sourced from airport weather stations and satellite imagery, are provided 150

to understand and predict disease spread patterns. 151

Figure 2 displays the weekly cases of dengue reported in Rio de Janeiro from 2016 to 152

2023. As seen in the graph, dengue cases display significant variability with an average 153

of approximately 295 cases, and notable peaks reaching up to 3127 cases. The months 154

with higher dengue cases typically occur between March and May, consistent with 155

known seasonal patterns in Brazil [37–39]. Figure 3 illustrates the patterns of median 156

weekly temperature and humidity over the same period. Notably, temperature and 157

humidity exhibit opposite trends, when temperature is high, humidity tends to be low, 158

and vice versa. The median weekly temperature over the study period was 23.15°C, with 159

values ranging from 15.60°C to 30.55°C. Humidity levels showed an average of 79.36%, 160

fluctuating between 54.20% and 91.90%, reflecting seasonal variations. Temperature 161

tends to peak during the summer months, while humidity shows some variability across 162

seasons. The fluctuations in these climate factors often align with changes in dengue 163

cases, underscoring their importance in predicting disease transmission. 164
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Fig 2. Dengue cases per week in Rio de Janeiro, Brazil.
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Fig 3. Weekly temperature and humidity in Rio de Janeiro, Brazil.

Methodology 165

We compare the predictive performance and computational time of a number of 166

statistical methods and machine learning techniques to forecast dengue cases using a 167

moving window strategy. In this strategy, also known as a rolling forecast or rolling 168

window approach, the model is trained on a fixed-size segment of historical data to 169

predict future values. As new data becomes available, the window moves forward by one 170

or more time points, dropping the oldest data in the set and incorporating the most 171

recent data for subsequent predictions. This method is particularly advantageous for 172

forecasting tasks where the relationship between past and future values may change over 173

time. 174

For the purpose of predicting dengue cases in Rio de Janeiro, we implemented a 175

moving window strategy with a fixed window size of 6 years (Figure 4). This window 176
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size was selected to capture the long-term trends and seasonal patterns of dengue cases 177

while providing a sufficiently large dataset for model training. Initially, the training 178

window consisted of 2016-01-03 to 2021-12-26 and was moved one week until 2023-12-24. 179

The forecasting horizon was set to 1, 2, 3, 4, 8, and 12 weeks ahead, allowing us to 180

evaluate the models’ performance over short to medium-term predictions. In the 181

following sections, we describe the statistical methods and machine learning techniques 182

employed, the procedure to compute the associated uncertainty intervals, and the 183

performance evaluation metrics utilized for comparison. 184
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Fig 4. Illustration of the moving window strategy for dengue case
forecasting.

Statistical models for dengue forecasting 185

The statistical models considered to predict dengue include Autoregressive (AR(1)), 186

Moving Average (MA(1)), Autoregressive Integrated Moving Average (ARIMA) [23, 24], 187

and Exponential Smoothing State Space Model (ETS) [25]. These models were chosen 188

for their ability to capture various patterns in time series data, such as trends, 189

seasonality, and autocorrelation. In addition, we use models that incorporate 190

temperature and humidity as covariates to capture the influence of these factors on 191

dengue transmission. These models are Vector Autoregression (VAR) [23,26] and 192

Seasonal ARIMAX (SARIMAX) [24]. Furthermore, to account for the delayed effects of 193

climatic factors on dengue incidence, VAR and SARIMAX models are also fitted using 194

lagged variables ranging from 1 week to 4 weeks. Previous studies support this 195

approach, indicating that temperature and humidity at a lag of one month are 196

positively associated with dengue incidence [40,41]. Let Xt represent the number of 197

dengue cases at time t. The statistical models employed are specified as follows: 198

• The Autoregressive Model (AR(1)) predicts future values based on a combination 199

of past values. It is defined as 200

Xt = ϕXt−1 + ϵt,

where ϕ is the coefficient that measures the influence of the immediately 201

preceding value (Xt−1), and ϵt is the white noise error term at time t. This model 202

is particularly effective for data showing a strong correlation with its immediate 203

past value. 204

• The Moving Average Model (MA(1)) model captures the relationship between an 205

observation and a residual error from a moving average model applied to lagged 206

observations. It is represented as 207

Xt = µ+ ϵt + θ1ϵt−1,
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where µ is the mean of the series, ϵt is the white noise error term, and θ1 is the 208

coefficient for the lagged error term. This model is effective in smoothing out 209

short-term fluctuations and identifying patterns that persist over time. 210

• The Autoregressive Integrated Moving Average (ARIMA) model combines the AR 211

and MA models and integrates differencing to make the data stationary. It is 212

denoted as ARIMA(p, d, q), where p is the order of the AR term, d is the degree 213

of differencing, and q is the order of the MA term. The general form of an 214

ARIMA model is 215

∆dXt = ϕ1∆
dXt−1 + · · ·+ ϕp∆

dXt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q,

where ∆d denotes differencing d times to achieve stationarity. ARIMA models are 216

versatile and can model data with trends and seasonal components. 217

• The Exponential Smoothing State Space Model (ETS) model accounts for trends 218

and seasonality in the data through exponential smoothing. The general form of 219

the ETS model can be written as 220

Xt = lt−1 + bt−1 + st−m + ϵt,

where lt is the level of the series, capturing the long-term average behavior; bt is 221

the trend, indicating the direction and speed of the change; st is the seasonal 222

component, capturing periodic fluctuations; m is the period of seasonality, and ϵt 223

is the error term. ETS models are particularly useful for capturing complex 224

seasonality patterns in time series data. 225

• The VAR model captures the linear interdependencies among multiple time series. 226

It generalizes the AR model by allowing for more than one evolving variable. All 227

the variables in a VAR are treated symmetrically; each variable has an equation 228

explaining its evolution based on its own lags and the lags of the other model 229

variables. For a system of n time series (in our case, dengue cases, temperature, 230

and humidity), a VAR model of order p (VAR(p)) can be written as follows: 231

Vt = A1Vt−1 + · · ·+ApVt−p + ϵt,

where Vt is a vector of time series variables including dengue cases, temperature, 232

and humidity at time t, Ai are coefficient matrices, and ϵt is a vector of error 233

terms. VAR models are suitable for capturing the dynamic relationships between 234

multiple time series, such as dengue cases, temperature, and humidity. 235

• Seasonal ARIMAX (SARIMAX) extends the ARIMA model by incorporating 236

exogenous variables (X) and seasonal components (S). It is a powerful and flexible 237

model that can account for complex behaviors in time series data. It is 238

represented as SARIMAX(p, d, q)(P, D, Q) s, where p, d, q are the non-seasonal 239

parameters, P,D,Q are the seasonal parameters, and s is the length of the 240

seasonal cycle. Let Xt be the number of dengue cases at time t, and let Zt be the 241

vector of exogenous variables (i.e., temperature and humidity), the SARIMAX 242

model can be represented as 243

∆d∆D
s Xt = ϕ1∆

d∆D
s Xt−1+ · · ·+ϕp∆

d∆D
s Xt−p+ ϵt+ θ1ϵt−1+ · · ·+ θqϵt−q +βZt.

SARIMAX is particularly effective in incorporating seasonal effects and external 244

influences on dengue transmission. 245
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Machine learning techniques for dengue forecasting 246

We also consider various machine learning techniques that have demonstrated significant 247

potential in enhancing dengue forecasting by utilizing both historical dengue case data 248

and additional climate covariates such as temperature and humidity. Our selection 249

includes a diverse array of models, each chosen for their unique strengths in dealing 250

with complex epidemiological data, and their flexibility allows for the integration of 251

lagged variables, providing a richer analysis that accounts for past data trends and 252

environmental influences. These methods include decision tree-based models like 253

Random Forest and XGBoost, as well as Support Vector Machine (SVM), Long 254

Short-Term Memory (LSTM) networks, and Prophet. 255

For this study, we utilize these machine learning methods in two scenarios: using 256

only historical dengue case data, and incorporating temperature and humidity as 257

covariates. Similar to the statistical methods, we also incorporate lagged variables from 258

1 to 4 weeks to capture delayed effects of climatic factors on dengue incidence. The 259

machine learning methods are specified as follows: 260

• Random Forest [27], known for its simplicity and effectiveness, it is an ensemble 261

learning method that constructs multiple decision trees during training and 262

outputs the average prediction of the individual trees. Each tree in the forest is 263

built from a bootstrap sample of the training data, and at each split, a random 264

subset of features is considered. This method is effective in reducing overfitting 265

and improving generalization. For dengue forecasting, Random Forest can model 266

historical case data, making it suitable for capturing the stochastic nature of 267

dengue transmission. 268

• Extreme Gradient Boosting (XGBoost) [28] is an advanced implementation of 269

gradient-boosted decision trees, which has gained popularity due to its speed and 270

performance, which stems from its ability to do gradient boosting in a more 271

efficient way, making it particularly suited for large datasets. It builds trees 272

sequentially, where each subsequent tree focuses on correcting the errors of the 273

previous trees. This method enhances model accuracy and robustness by 274

combining multiple weak learners into a strong learner. XGBoost’s ability to 275

handle missing values and incorporate regularization makes it well-suited for 276

dengue forecasting. 277

• Support Vector Machine (SVM) [29,30] for regression, known as Support Vector 278

Regression (SVR), attempts to find a function that deviates from the actual 279

observed values by a value no greater than a specified margin while balancing the 280

complexity of the model. SVR is particularly effective for capturing non-linear 281

relationships in the data. When applied to dengue forecasting, SVR can model 282

the complex and non-linear interactions between historical dengue cases and 283

climatic factors. 284

• Long Short-Term Memory (LSTM) networks [31, 32] is a type of recurrent neural 285

network capable of learning order dependence in sequence prediction problems. 286

LSTM cells have internal mechanisms called gates that regulate the flow of 287

information, making them highly effective for learning from sequences of data, 288

such as weekly dengue case reports, where past information is crucial for 289

predicting future events. LSTM networks can learn the temporal patterns in 290

dengue case data and the influence of lagged climatic factors such as temperature 291

and humidity, which allows LSTMs to forecast future dengue incidences with 292

enhanced accuracy. 293
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• Prophet [33] is a forecasting tool that models time series data with strong seasonal 294

effects. It is a procedure for forecasting time series data based on an additive 295

model, decomposing the time series into trend, seasonality, and holiday effects. It 296

works well with time series that have strong seasonal effects and historical trends, 297

making it ideal for predicting dengue cases because of its robust handling of 298

seasonal variations and its capability to model non-linear trends influenced by 299

yearly and weekly cycles of dengue cases. By adjusting its parameters, Prophet 300

can also integrate additional regressors such as temperature and humidity, 301

aligning closely with the seasonal patterns that affect dengue transmission. 302

Ensemble approaches 303

Aiming to enhance the accuracy and stability of dengue prediction techniques, we also 304

employed ensemble approaches that averaged the forecast outputs from both the 305

best-performing statistical models and machine learning techniques independently 306

trained on historical data. This approach is designed to harness the complementary 307

strengths of each model type, namely, the statistical model’s efficacy in capturing linear 308

trends and seasonality, and the machine learning model’s ability to understand complex, 309

non-linear relationships in data sequences. Thus, the ensemble approaches mitigate 310

individual model prediction errors, potentially reducing the overall forecast variance 311

without excessively complicating the model structure. 312

Uncertainty intervals 313

Adaptive conformal prediction [42–45] is a technique used to construct prediction 314

intervals that account for time-dependent changes in the data distribution, making it 315

particularly suitable for time series data. This method adjusts the prediction intervals 316

dynamically based on nonconformity scores to provide more accurate and reliable 317

intervals. We use adaptive conformal prediction to compute uncertainty intervals 318

associated to each of the methods under consideration. 319

For each time t and forecast horizon h, the nonconformity score is defined as the 320

residual at time t for h steps ahead calculated as the difference between the actual and 321

predicted values from the time series model: 322

residualt,h = actualt+h − predictedt,h.

For a window size W and time t, residuals are considered from t−W to t. Thus, the set 323

of nonconformity scores within the window at time t for a forecast horizon h is 324

{residualt−W,h, residualt−W+1,h, . . . , residualt,h}.

The quantiles of these nonconformity scores are then computed to determine the 325

prediction intervals. Specifically, the lower and upper bounds of the prediction interval 326

at each time step t for forecast horizon h are given by 327

lower boundt,h = predictedt,h −Q1−α/2,h,

upper boundt,h = predictedt,h +Qα/2,h,

where Q1−α/2,h and Qα/2,h are the quantiles of the residuals within the window for the 328

h-step ahead forecast, and α is the significance level (e.g., 0.05 for a 95% prediction 329

interval). For the k-th quantile at forecast horizon h, the corresponding value is given by 330

Qk,h = inf

{
q ∈ R :

1

W

t∑
i=t−W

I{nonconformity scorei,h ≤ q} ≥ k

}
,
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where I is the indicator function. 331

The prediction interval is then adjusted dynamically at each time step based on 332

these scores. This adaptive update ensures that the prediction intervals remain accurate 333

as the underlying data distribution evolves, providing more reliable intervals that can 334

better account for time-dependent changes in the data. 335

Methods implementation 336

Statistical models AR(1), MA(1), ARIMA, SARIMAX, and ETS are implemented using 337

the R package forecast [46], while the VAR model is implemented using the R package 338

vars [47]. Machine learning models Random Forest and XGBoost are implemented 339

using the Python libraries scikit-learn [48] and xgboost [28], respectively. SVM is 340

implemented using scikit-learn, LSTM networks are implemented using the 341

TensorFlow library [49], and Prophet is implemented using the prophet library [50]. 342

For reproducibility purposes, we provide a GitHub repository with the codes, which can 343

be found at 344

https://github.com/ChenXiang1998/Assessing-Dengue-Forecasting-Methods. 345

Performance evaluation metrics 346

To assess the predictive performance of the statistical models and machine learning 347

techniques considered, we employed four primary metrics, namely, Mean Absolute Error 348

(MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), 349

and 95% Coverage Probability. These metrics provide a comprehensive view of the 350

performance of the models, considering both the magnitude and direction of prediction 351

errors, and help highlight the strengths and weaknesses in dengue forecasting methods. 352

In addition, we also compare the computational efficiency of the forecasting techniques 353

considered by measuring the duration that a technique takes to complete its training 354

and prediction processes. This comparison provides insights on the practicality of 355

deploying each method in real-world situations, where computational resources and 356

response times are often limited. It also assists public health workers on which models 357

to deploy, balancing the need between predictive accuracy and computational efficiency. 358

Let yi and ŷi represent, respectively, the actual and forecast number of dengue cases, 359

and let n be the number of observations. The Mean Absolute Error (MAE) measures 360

the average magnitude of the errors in a set of predictions, without considering their 361

direction. It is calculated as the average of the absolute differences between the 362

forecasted values and the actual values: 363

MAE =
1

n

n∑
i=1

|yi − ŷi|.

The Mean Absolute Percentage Error (MAPE) expresses the accuracy as a 364

percentage, which provides a relative measure of the errors. It is calculated as the 365

average of the absolute percentage differences between the predicted and actual values: 366

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ .
The Root Mean Squared Error (RMSE) is a quadratic scoring rule that measures the 367

average magnitude of the error. It is defined as the square root of the average of 368

squared differences between prediction and actual observation: 369

June 12, 2024 11/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308827doi: medRxiv preprint 

https://github.com/ChenXiang1998/Assessing-Dengue-Forecasting-Methods
https://doi.org/10.1101/2024.06.12.24308827
http://creativecommons.org/licenses/by/4.0/


RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

The 95% Coverage Probability assesses the proportion of actual dengue cases that 370

fall within the 95% prediction intervals provided by the models. A well-calibrated model 371

should have approximately 95% of the observations within this interval. It is a measure 372

of the reliability of the predictive intervals. 373

Results 374

In this section, we evaluate the predictive performance of the statistical models, 375

machine learning techniques, and ensemble approaches considered. We provide the 376

methods’ predictive accuracy in terms of MAE, RMSE, and MAPE across various 377

forecast horizons. Then, we provide the 95% coverage probability and the average width 378

of the uncertainty intervals of all models across various forecast horizons. A comparison 379

of the computational efficiency of each method is also provided. In the Supporting 380

information, Figure S1 shows a comparison of the predictions obtained by the best 381

performing methods for different time horizons. Figures S2 to S5 depict boxplots of the 382

absolute error, |yi − ŷi|, and absolute percentage errors,
∣∣∣yi−ŷi

yi

∣∣∣, obtained with each 383

method. Specifically, Figure S2 and Figure S3 correspond to methods that only use 384

dengue cases, while Figure S4 and Figure S5 show boxplots for the methods using 385

covariates. In all figures, boxplots are shown in the order from best to worst approach 386

forecasting method. 387

Performance of statistical models 388

Table 1 shows the accuracy metrics for the statistical models that did not include 389

covariates, namely, AR(1), MA(1), ARIMA, and ETS. Among these models, ARIMA 390

stands out as the most consistent performer across varying forecast horizons. Its ability 391

to blend autoregressive (AR), differencing (I), and moving average (MA) components 392

allows it to capture both short-term trends and long-term seasonal patterns effectively. 393

Table 1. Accuracy of the statistical models without covariates at various
forecast horizons.

AR(1) MA(1) ARIMA ETS
Week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 83.28 19.93% 127.03 82.72 19.49% 124.61 78.26 18.25% 124.33 78.66 19.17% 126.71
2 114.99 26.59% 176.96 114.62 26.03% 175.04 114.61 25.05% 179.33 118.36 26.52% 185.13
3 139.51 33.02% 211.01 144.65 32.90% 216.32 143.84 31.39% 221.81 146.24 36.07% 223.62
4 178.87 39.48% 269.14 182.26 39.85% 274.49 175.38 36.07% 277.48 186.66 44.12% 292.18
8 314.44 62.00% 457.62 323.80 62.68% 465.38 308.92 56.32% 461.73 392.21 89.16% 578.60
12 432.34 81.05% 608.53 436.55 81.86% 612.83 396.91 64.95% 583.04 649.15 150.31% 917.47

For 1-week ahead forecasts, ARIMA exhibited the lowest MAE at 78.26 cases and 394

the lowest MAPE at 18.25%, indicating its superior performance for immediate 395

forecasting compared to other models. The ETS model closely followed, with an MAE 396

of 78.66 cases and a slightly higher MAPE of 19.17%. The AR(1) and MA(1) models 397

showed slightly higher errors but were competitive in their forecasting ability. In terms 398

of RMSE, ARIMA also had the lowest value (124.33), making it the most accurate at 399

this horizon. 400

Extending the forecast horizon to 4 weeks ahead, we observed an increase in the 401

errors across all models, as expected due to the increasing uncertainty with longer 402

forecast periods. ARIMA maintained a relatively lower MAE and MAPE, affirming its 403

June 12, 2024 12/25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308827doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308827
http://creativecommons.org/licenses/by/4.0/


consistency in performance across the short-term forecast horizons. For instance, 404

ARIMA’s MAE and MAPE at 4 weeks were 175.38 and 36.07%, respectively, which 405

were the best among the considered models. 406

As the forecast horizon expanded to 8 and 12 weeks, all models’ performance 407

naturally deteriorated, reflecting the inherent challenge of predicting dengue cases over 408

longer periods. Notably, the ARIMA model’s performance remained robust relative to 409

the other models, with the lowest MAE of 308.92 and 396.91 for 8 and 12 weeks ahead, 410

respectively. However, the ETS model’s error metrics significantly increased, with a 411

notable jump to 392.21 (MAE) and 89.16% (MAPE) at 8 weeks and 649.15 (MAE) and 412

150.31% (MAPE) at 12 weeks, suggesting that it may be less suitable for medium- and 413

long-term forecasting in the absence of covariates. 414

In an effort to enhance the predictive accuracy of the statistical models, we 415

considered SARIMAX and VAR models that included temperature and humidity 416

covariates, both with and without lagged covariates. Results corresponding to these 417

models are shown in Table 2. 418

Table 2. Accuracy of the statistical models with covariates temperature and
humidity at various forecast horizons.

SARIMAX SARIMAX Lag VAR VAR Lag
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 79.24 17.25% 128.36 81.80 25.23% 125.36 78.10 25.49% 123.49 77.74 24.44% 116.24
2 114.63 24.27% 181.58 114.74 36.96% 167.61 118.08 40.70% 175.92 108.63 35.11% 166.80
3 143.39 30.85% 222.82 136.62 39.64% 200.87 148.71 48.08% 214.39 137.41 43.72% 207.91
4 173.52 36.59% 278.54 160.28 39.96% 246.61 179.45 55.57% 267.68 167.53 48.79% 259.62
8 316.86 57.84% 473.41 279.15 54.86% 414.65 313.80 65.08% 444.61 295.42 55.03% 438.32
12 408.08 67.88% 598.16 375.15 73.33% 536.71 391.64 64.77% 566.66 386.34 62.41% 579.80

In the short-term forecast horizon of 1 week, SARIMAX outperformed others, 419

achieving the lowest MAPE of 17.25% and an MAE of 79.24 cases. When considering 420

lagged covariates, SARIMAX Lag’s performance slightly declined, with an MAE of 421

81.80 cases and a MAPE of 25.23%. VAR showed competitive performance with an 422

MAE of 78.10 cases but a higher MAPE of 25.49%. 423

As the horizon extends to 4 weeks, the predictive accuracy decreased across all 424

models. SARIMAX continued to demonstrate strong performance, with an MAE of 425

173.52 cases and a MAPE of 36.59%. The inclusion of lagged covariates in 426

SARIMAX Lag resulted in an MAE of 160.28 and a MAPE of 39.96%, indicating a 427

slight performance degradation. VAR exhibited an MAE of 179.45 cases and a MAPE 428

of 55.57%, while VAR Lag had an MAE of 167.53 and a MAPE of 48.79%. 429

For 8 and 12 weeks ahead forecasts, the performance of all models continued to 430

decline. SARIMAX Lag, however, consistently maintained a lower error rate relative to 431

other models, with an MAE of 279.15 and 375.15 and an MAPE of 54.86% and 73.33% 432

for 8 and 12 weeks ahead, respectively. VAR showed increased errors, with an MAE of 433

313.80 and 386.34 for 8 and 12 weeks, respectively. The VAR Lag model’s performance 434

was comparatively better, with an MAE of 295.42 and 386.34 for the same horizons. 435

Overall, incorporating temperature and humidity covariates improved the models’ 436

predictive accuracy. The SARIMAX model, in particular, demonstrated superior 437

performance compared to ARIMA, indicating that these covariates are valuable for 438

short-term predictions. Additionally, models incorporating lagged variables, such as 439

SARIMAX Lag and VAR Lag, showed enhanced predictive capability for medium- and 440

long-term forecasts. This suggests that lagged variables can significantly improve the 441

accuracy of dengue case predictions over longer periods. 442
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Performance of machine learning techniques 443

In this section, we describe the performance of the five machine learning techniques 444

considered, namely, SVM, Random Forest, XGBoost, LSTM and Prophet. Table 3 445

shows the accuracy measures MAE, RMSE, and MAPE across various forecast horizons 446

for the machine learning techniques that did not use covariates. Table 4 shows the 447

accuracy metrics for the machine learning techniques that included temperature and 448

humidity covariates. The results are provided for tecniques that used covariates for the 449

same week as well as for lagged covariates. 450

Table 3. Accuracy of the machine learning techniques considered without
covariates at various forecast horizons.

SVM Random Forest XGBoost LSTM Prophet
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 82.82 19.15% 130.67 88.68 19.64% 134.50 102.62 23.14% 156.12 85.93 24.49% 119.29 218.66 53.08% 310.40
2 109.07 27.15% 167.34 126.00 27.79% 190.03 140.66 31.10% 211.66 102.24 28.13% 147.88 245.05 58.19% 347.63
3 136.60 37.57% 202.48 163.20 35.15% 241.21 178.32 38.60% 263.13 126.80 32.58% 188.77 261.06 60.45% 369.58
4 166.93 50.25% 242.89 199.46 42.09% 294.61 214.94 45.21% 313.84 159.45 37.46% 236.60 270.79 61.08% 381.99
8 276.98 110.60% 385.94 333.41 64.03% 477.84 345.77 66.23% 493.68 300.81 59.73% 425.95 314.91 65.50% 441.47
12 372.64 186.12% 500.56 438.43 81.90% 613.14 448.13 84.01% 624.45 418.23 83.15% 576.56 351.92 70.84% 487.07

Table 4. Accuracy of the machine learning techniques considered with
covariates temperature and humidity at various forecast horizons.

SVM Random Forest XGBoost LSTM Prophet
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 112.29 29.84% 176.15 410.44 119.94% 621.41 439.89 151.00% 644.90 71.35 22.31% 101.53 200.20 46.62% 293.64
2 138.34 36.41% 215.68 418.29 119.06% 628.82 440.81 139.93% 646.74 89.50 23.56% 130.71 222.88 49.96% 326.45
3 165.67 46.73% 248.43 416.61 80.38% 628.41 431.51 93.65% 636.03 114.73 26.24% 173.90 247.76 54.57% 353.17
4 193.32 57.77% 280.87 425.16 79.53% 635.42 452.01 92.57% 653.74 148.74 32.14% 223.35 265.58 57.98% 373.31
8 289.62 108.35% 405.34 444.25 69.99% 652.34 461.87 78.97% 660.34 292.91 57.01% 416.62 316.96 64.81% 444.14
12 360.53 175.58% 492.24 463.77 69.96% 667.65 465.48 73.89% 665.71 410.96 79.92% 573.32 342.47 61.86% 495.31

SVM-Lag Random Forest-Lag XGBoost-Lag LSTM-Lag Prophet-Lag
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 188.99 50.10% 310.12 414.14 143.38% 603.79 412.62 172.51% 610.86 83.58 28.87% 117.39 208.55 77.77% 299.80
2 205.94 56.69% 338.36 422.68 142.14% 613.06 433.29 210.35% 627.08 102.1 28.27% 155.82 235.76 65.11% 339.18
3 223.76 63.06% 364.19 424.42 117.13% 616.01 416.41 145.61% 611.33 132.8 30.88% 201.65 259.27 58.71% 369.47
4 245.03 70.38% 391.97 428.85 109.80% 621.38 427.03 154.94% 612.99 166.45 34.97% 251.28 280.24 59.53% 394.74
8 303.25 85.87% 470.16 439.87 71.77% 641.60 431.1 74.68% 630.37 304.93 60.16% 438.11 347.77 70.88% 479.95
12 341.82 121.50% 513.45 454.75 68.21% 655.17 446.64 71.04% 646.80 422.09 82.63% 586.77 389.37 74.56% 540.32

For 1-week ahead forecasts, SVM exhibited the lowest MAE at 82.82 cases and the 451

lowest MAPE at 19.15%, indicating its strong short-term predictive ability. LSTM also 452

performed well, with an MAE of 85.93 cases and a MAPE of 24.49%, showing its 453

competitive edge for immediate forecasting. Random Forest and XGBoost showed 454

slightly higher errors but were still effective, with MAEs of 88.68 and 102.24 cases, 455

respectively. Prophet, however, showed much higher errors, with an MAE of 218.66 456

cases and a MAPE of 53.08%, indicating its limitations in short-term forecasting. 457

Extending the forecast horizon to 4 weeks, we observed an increase in the errors 458

across all models. LSTM model demonstrated the lowest MAE at 159.45 cases and a 459

MAPE of 37.46%, indicating its robustness in medium-term forecasting. SVM, while 460

having a higher MAE of 166.93, still maintained a relatively lower MAPE of 50.25%. 461

XGBoost showed an MAE of 199.46 cases and a MAPE of 42.09%, performing better 462

than Random Forest and Prophet at this horizon. Prophet continued to exhibit higher 463

errors with an MAE of 270.79 cases and a MAPE of 61.08%, reinforcing its unsuitability 464

for medium-term forecasts. 465

For 8 and 12 weeks ahead forecasts, all models’ performance naturally deteriorated 466

due to the increasing uncertainty over longer periods. LSTM continued to show the 467

lowest errors with an MAE of 300.81 for 8 weeks ahead. However, for the 12-week 468

horizon, Prophet exhibited the best performance with the lowest MAE of 351.92 cases 469

and a MAPE of 70.84%. This indicates that while Prophet is not suitable for short-term 470

forecasts, it shows strong predictive capabilities for very long-term forecasts. 471

Overall, the machine learning models’ performance varied across different forecast 472

horizons, with SVM and LSTM models showing superior accuracy for short-term and 473
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medium-term predictions, respectively. Prophet, despite its poor short-term 474

performance, demonstrated notable effectiveness in long-term forecasting. 475

Incorporating covariates, LSTM was the best performer, achieving the lowest MAE 476

of 71.35 cases and a MAPE of 22.31% for 1-week ahead forecasts. This model continued 477

to show the best performance across all forecast horizons up to 12 weeks, with an MAE 478

of 410.96 cases and a MAPE of 79.92%. However, the other models showed significantly 479

higher errors when covariates were included, particularly the tree-based models such as 480

Random Forest and XGBoost. For example, Random Forest with covariates had an 481

MAE of 410.44 and a MAPE of 119.94% for 1-week ahead, which did not improve 482

substantially over longer horizons. 483

Lagged covariates negatively impacted the performance of all machine learning 484

models across all forecast horizons, worsening MAE, MAPE and RMSE values, 485

indicating potential overfitting due to the redundant of lag data. The lagged models, 486

including SVM-Lag, Random Forest-Lag, XGBoost-Lag, LSTM-Lag, and Prophet-Lag, 487

exhibited higher errors across all forecast horizons compared to their counterparts 488

without lagged covariates. For instance, SVM-Lag had an MAE of 188.99 cases and a 489

MAPE of 50.10% for 1-week ahead, with the performance deteriorating over longer 490

horizons to an MAE of 341.82 and a MAPE of 121.50% at 12 weeks. Similarly, the 491

LSTM-Lag model, despite having some competitive metrics for short-term forecasts, 492

showed significant error increases for longer horizons. 493

Prophet with covariates showed improved performance compared to its counterpart 494

without covariates, particularly for long-term forecasts. For 12 weeks ahead, Prophet 495

with covariates had an MAE of 342.47 and a MAPE of 61.86%, making it effective for 496

very long-term predictions. However, like other models, its short-term performance 497

remained relatively weak. 498

Overall, while incorporating temperature and humidity covariates improved the 499

LSTM model’s predictive accuracy significantly, other models did not benefit similarly 500

and, in many cases, performed worse. Additionally, the use of lagged covariates 501

generally led to poorer performance, suggesting that these models may suffer from 502

overfitting when lagged variables are included. Prophet with covariates, although not 503

performing well in the short-term, continued to show strong predictive capabilities for 504

very long-term forecasts. 505

In summary, LSTM including covariates dominated the short- to mid-term horizons 506

(i.e., 1 to 8 weeks), providing consistently low errors across these intervals. Prophet 507

proved to be a reliable model for long-term forecasting, excelling at 12 weeks with its 508

ability to identify and capture longer-term patterns in dengue case data. LSTM and 509

Prophet demonstrate complementary strengths. Specifically, LSTM is highly effective 510

for immediate and mid-term predictions, while Prophet is better suited for capturing 511

long-term trends. 512

Performance ensemble approaches 513

In this section, we discuss the performance of the ensemble models, which combine 514

statistical methods and machine learning approaches to enhance predictive accuracy. 515

The choice of models for the ensembles was based on their individual performance 516

metrics. By averaging the best-performing statistical models and machine learning 517

models, we aimed to leverage the strengths of each model. 518

For predictions using dengue cases alone, we created an ensemble model by averaging 519

the forecasts of the ARIMA and LSTM models. Table 5 presents the performance 520

metrics for this ensemble model compared to the individual ARIMA and LSTM models. 521

The LSTM-ARIMA ensemble shows significant improvements over the individual 522

ARIMA and LSTM models. For instance, for 1-week ahead forecasts, the ensemble 523

model achieved the lowest MAE of 69.98 cases and a MAPE of 17.38%. This 524
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Table 5. Accuracy of ensemble model of LSTM & ARIMA compared with
ARIMA and LSTM without covariates at various forecast horizons.

LSTM ARIMA ARIMA LSTM
week

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 69.98 17.38% 108.27 78.26 18.25% 124.33 85.93 24.49% 156.12
2 97.10 21.89% 148.67 114.61 25.05% 179.33 102.24 28.13% 211.66
3 126.15 27.54% 189.53 143.84 31.39% 221.81 126.80 32.58% 263.13
4 154.43 32.19% 242.39 175.38 36.07% 277.48 159.45 37.46% 313.84
8 286.53 52.97% 427.47 308.92 56.32% 461.73 300.81 59.73% 493.68
12 379.67 67.79% 555.60 396.91 64.95% 583.04 418.23 83.15% 624.45

outperformed both ARIMA and LSTM models individually, which had MAEs of 78.26 525

and 85.93 cases, respectively. The ensemble model also exhibited the lowest RMSE of 526

108.27, indicating enhanced predictive accuracy. 527

As the forecast horizon extends, the LSTM-ARIMA ensemble continues to 528

demonstrate superior performance, particularly noticeable at 4 weeks ahead, where the 529

ensemble’s MAE and MAPE were 154.43 cases and 32.19%, respectively, compared to 530

higher errors in the individual models. Although the performance of all models declines 531

over longer horizons, the ensemble approach still maintains a comparative advantage, 532

highlighting its robustness in dengue case forecasting. 533

For predictions including temperature and humidity covariates, we created several 534

ensemble models. These included combinations of SARIMAX, SARIMAX-Lag, and 535

VAR-Lag with LSTM, as well as a more complex ensembles 536

LSTM-SARIMAX-VAR Lag and LSTM-SARIMAX-Lag-VAR-Lag. Table 6 presents the 537

performance metrics for these ensemble models compared to the individual models. 538

Table 6. Accuracy of ensemble model of LSTM, SARIMAX & VAR
compared with the individual models with covariates temperature and
humidity at various forecast horizons.

SARIMAX SARIMAX Lag VAR Lag LSTM
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 79.24 17.25% 128.36 81.80 25.23% 125.36 77.74 24.44% 116.24 71.35 22.31% 101.53
2 114.63 24.27% 181.58 114.74 36.96% 167.61 108.63 35.11% 166.8 89.50 23.56% 130.71
3 143.39 30.85% 222.82 136.62 39.64% 200.87 137.41 43.72% 207.91 114.73 26.24% 173.90
4 173.52 36.59% 278.54 160.28 39.96% 246.61 167.53 48.79% 259.62 148.74 32.14% 223.35
8 316.86 57.84% 473.41 279.15 54.86% 414.65 295.42 55.03% 438.32 292.91 57.01% 416.62
12 408.08 67.88% 598.16 375.15 73.33% 536.71 386.34 62.41% 579.8 410.96 79.92% 573.32

LSTM-SARIMAX LSTM-SARIMAX Lag LSTM-VAR Lag LSTM SARIMAX VAR-Lag LSTM-SARIMAX Lag-VAR Lag
week MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
1 65.24 15.82% 103.52 66.17 18.83% 102.59 57.92 20.83% 89.73 57.86 17.36% 94.03 59.71 20.19% 95.23
2 92.17 18.69% 144.27 93.98 25.89% 141.95 85.68 26.23% 133.39 87.84 23.09% 139.12 90.22 28.87% 138.29
3 118.90 24.11% 184.84 118.90 28.64% 180.90 113.80 29.96% 178.01 113.00 25.87% 183.03 114.20 31.37% 180.19
4 147.79 29.89% 238.06 148.80 31.88% 229.42 146.64 34.63% 228.74 141.41 30.24% 233.89 143.98 34.41% 229.31
8 286.15 52.25% 430.82 275.72 48.64% 409.70 279.33 51.82% 424.89 271.46 48.97% 428.42 272.45 50.21% 419.20
12 385.61 68.16% 563.90 380.10 67.51% 546.64 391.35 69.36% 587.54 382.19 66.10% 578.15 380.73 64.88% 573.84

When including covariates, the LSTM-SARIMAX ensemble performed better than 539

the individual LSTM and SARIMAX models in short to medium forecast horizons. For 540

example, for 1-week ahead forecasts, the LSTM-SARIMAX ensemble achieved the 541

lowest MAE of 65.24 cases and a MAPE of 15.82%, outperforming the individual LSTM 542

and SARIMAX models. The ensemble also showed the lowest RMSE of 103.52, 543

indicating a significant improvement in predictive accuracy. However, as the forecast 544

horizon extends, the performance advantage of the ensemble models becomes less 545

pronounced. For instance, at 12 weeks ahead, the complex ensemble of 546

LSTM-SARIMAX-Lag-VAR-Lag demonstrated an MAE of 380.73 cases and a MAPE of 547

64.88%, which was not significantly better than the individual models. This suggests 548

that while complex ensembles may show occasional improvements, these are not 549

consistent across all metrics, hinting at potential overfitting or inefficiencies due to 550

increased model complexity. 551

Overall, the ensemble approaches show promise, particularly in short to 552

medium-term forecasts. By combining the strengths of multiple models, the ensembles 553

can provide more accurate and reliable predictions. However, careful consideration must 554
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be given to the potential drawbacks of increased complexity and the risk of overfitting, 555

especially in longer forecast horizons. 556

Uncertainty intervals 557

In this section, we consider the 95% uncertainty intervals for each of the individual 558

models and the top performing ensemble approaches, and provide their corresponding 559

95% coverage probabilities and average interval widths. Table 7 and Table 9 present the 560

95% coverage probabilities for models using dengue cases alone and including climate 561

covariates, respectively. Table 8 and Table 10 display the average width of the 562

uncertainty intervals for models using dengue cases alone and including climate 563

covariates, respectively. 564

Table 7. 95% coverage probability of the uncertainty intervals of models
using cases alone

Week
Statistical models Machine learning models Ensemble

AR(1) MA(1) ARIMA ETS SVM RF XGBoost LSTM Prophet LSTM ARIMA
1 88.46% 88.46% 86.54% 87.50% 75.73% 90.38% 87.50% 80.77% 78.85% 83.65%
2 89.42% 90.38% 88.46% 84.62% 76.70% 90.38% 91.35% 86.54% 84.62% 89.42%
3 91.35% 91.35% 92.31% 83.65% 81.55% 91.35% 92.31% 90.38% 87.50% 92.31%
4 93.27% 93.27% 92.31% 85.58% 84.47% 94.23% 93.27% 91.35% 88.46% 92.31%
8 90.38% 90.38% 88.46% 79.81% 89.32% 90.38% 90.38% 90.38% 85.58% 90.38%
12 85.58% 85.58% 86.54% 75.96% 83.50% 86.54% 86.54% 86.54% 85.58% 86.54%

Table 8. Average width of the uncertainty intervals of models using cases
alone

Week
Statistical models Machine learning models Ensemble

AR(1) MA(1) ARIMA ETS SVM RF XGBoost LSTM Prophet LSTM ARIMA
1 362.85 356.35 395.18 335.26 412.05 411.82 478.14 343.56 858.24 333.64
2 575.24 563.12 575.84 480.79 568.55 615.88 696.32 514.02 965.86 468.90
3 716.57 757.53 741.74 603.25 712.56 796.76 903.85 683.67 1038.23 661.30
4 897.53 935.67 970.22 803.09 856.58 977.07 1045.36 852.74 1094.66 841.25
8 1440.92 1486.77 1505.23 1220.31 1353.92 1511.77 1548.26 1465.60 1346.44 1483.38
12 1881.42 1877.10 1973.47 1880.60 1678.33 1856.88 1901.31 1837.23 1579.96 1881.55

Table 9. 95% coverage probability of the uncertainty intervals of models
including covariates

Week
Statistical models Machine learning models Ensemble

SARIMAX SARIMAX Lag VAR Var Lag SVM RF XGBoost LSTM Prophet LSTM SARIMAX
1 83.65% 85.58% 78.85% 75.96% 73.08% 75.00% 75.00% 80.77% 80.77% 82.69%
2 90.38% 89.42% 87.50% 75.96% 77.88% 87.50% 87.50% 83.65% 90.38% 91.35%
3 92.31% 88.46% 86.54% 74.04% 82.69% 89.42% 88.46% 91.35% 91.35% 92.31%
4 91.35% 90.38% 86.54% 76.92% 83.65% 90.38% 89.42% 92.31% 91.35% 92.31%
8 88.46% 89.42% 87.50% 75.96% 89.42% 91.35% 90.38% 90.38% 84.62% 90.38%
12 86.54% 86.54% 83.65% 75.00% 86.54% 86.54% 86.54% 86.54% 79.81% 86.54%

Table 10. Average width of the uncertainty intervals of models including
covariates

Week
Statistical models Machine learning models Ensemble

SARIMAX SARIMAX Lag VAR Var Lag SVM RF XGBoost LSTM Prophet LSTM SARIMAX
1 392.05 412.44 402.72 354.21 560.02 1678.31 1668.07 306.98 795.44 303.93
2 570.76 531.70 585.18 533.60 882.41 1724.57 1723.47 457.93 918.22 448.20
3 747.85 679.51 736.93 710.49 1018.40 1761.29 1754.48 617.84 1045.29 639.15
4 964.53 889.74 945.25 828.14 1114.13 1812.38 1792.54 778.38 1172.60 802.21
8 1517.52 1456.77 1418.95 1421.72 1311.92 1974.08 1937.82 1368.89 1358.01 1430.66
12 1983.28 1826.20 1759.12 1708.77 1594.97 2088.01 2051.51 1761.05 1368.09 1845.90

As we can see from the results, all models exhibit an increase in average interval 565

width over time, while their coverage probability remains relatively stable, near 90%. In 566
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the Supporting information, an illustration of the uncertainty intervals computed with 567

SARIMAX and LSTM with covariates for various forecast horizons are shown in Figures 568

S6 and S7. When using dengue case data alone, all models show consistent coverage 569

probabilities across different forecast horizons. ARIMA, for instance, maintains a high 570

coverage probability, averaging around 86.5% in predicting 1 week ahead and slightly 571

increasing to 92.31% in predicting 3 weeks and 4 weeks ahead, then remain the same 572

86.54% at 12 weeks ahead. However, it shows one of the highest interval widths of 573

395.18 for 1 week ahead predictions, indicating some uncertainty in its predictions. The 574

LSTM model, on the other hand, starts with a coverage probability of 80.77% for 1 575

week ahead, increasing to 86.54% by 12 weeks ahead. Its interval width is 343.56 for 1 576

week ahead, expanding to 1837.23 for 12 weeks ahead. Compared to ARIMA, LSTM 577

demonstrates a slightly lower coverage probability but a more significant increase in 578

interval width over time. 579

With the inclusion of climate covariates, we see improvements in the models’ 580

performance. SARIMAX starts with a high coverage probability of 83.65% in 1 week 581

ahead, which increases to 86.54% by 12 weeks ahead. Its interval width ranges from 582

392.05 in 1 week to 1983.28 in 12 weeks. Compared to ARIMA, SARIMAX shows 583

slightly worse coverage probability but similar trends in interval width expansion. The 584

LSTM model with climate covariates also starts strong with 80.77% coverage in 1 week 585

and increases to 86.54% by 12 weeks. Its interval width ranges from 306.98 in week 1 to 586

1761.05 in week 12, showing an overall better performance than using dengue cases 587

alone. 588

The ensemble models LSTM ARIMA and LSTM SARIMAX achieve a similar 589

performance as the individual models across different weeks. The coverage probabilities 590

are in the range of 82.69% to 92.31%. For LSTM ARIMA, the interval width starts at 591

333.64 in week 1 and rises to 1881.55 by week 12. LSTM SARIMAX has interval width 592

ranging from 303.93 in 1 week to 1845.90 in 12 weeks. 593

Computational efficiency 594

In this section, we compare the computational efficiency of the statistical models and 595

machine learning techniques used for dengue forecasting. The computation times 596

reported are the total times taken to generate all weekly predictions from January 2022 597

to December 2023 across all forecast horizons, namely, 1, 2, 3, 4, 8, and 12 weeks. The 598

models were run on a MacBook Pro (13-inch, 2020) with processor 2 GHz quad-core 599

Intel Core i5, and memory 16 GB 3733 MHz LPDDR4X. 600

Figure 5 illustrates the computational time required for running each model. The 601

left-hand side of the bar plot displays the computational times for models using only 602

dengue cases. On the right-hand side, the bar plot shows the computational times for 603

models incorporating temperature and humidity covariates. Computational times are on 604

a square root scale to accommodate the order of magnitude differences. 605

For models using dengue cases alone, computational times vary significantly between 606

statistical models and machine learning techniques. Statistical models, such as AR and 607

MA, are exceptionally fast, taking less than 0.5 seconds each. This efficiency is primarily 608

due to their simpler mathematical foundations, which involve fewer computations. 609

ARIMA takes 16.16 seconds, which is significantly longer but still considerably faster 610

compared to most machine learning models. The increased time for ARIMA is due to its 611

more complex structure, which is capable of capturing intricate temporal dependencies. 612

In the realm of machine learning, LSTM, despite its superior predictive accuracy, 613

has a notably high computation time of 724.83 seconds. This significant computational 614

demand reflects the complexity of LSTM in modeling long-term dependencies and 615

capturing intricate patterns in the data. Random Forest, another effective machine 616

learning model, requires 650.03 seconds, also indicating its intensive computational 617
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Fig 5. Computational time of each forecasting method.

nature. Prophet, with a computation time of 28.29 seconds, offers a more efficient 618

alternative among machine learning models, providing a reasonable trade-off between 619

computational cost and accuracy. 620

When incorporating temperature and humidity covariates, the computational times 621

reflect similar trends. The SARIMAX model, which was highly effective in utilizing 622

covariates for accurate predictions, takes 28.61 seconds. This is relatively efficient, 623

considering the model’s ability to handle seasonality and multiple covariates. The VAR 624

model, although simpler, is extremely fast at 1.29 seconds, making it suitable for quick, 625

real-time forecasting. 626

Among the machine learning models, LSTM with covariates continues to require 627

substantial computation time, clocking in at 767.93 seconds. This underscores the 628

model’s complexity and its ability to integrate and learn from covariate data, enhancing 629

predictive accuracy at a high computational cost. Prophet, taking 55.50 seconds, 630

balances complexity and efficiency, making it a practical choice for many forecasting 631

scenarios involving covariates. 632

In summary, statistical models like ARIMA and SARIMAX offer a good balance of 633

computational efficiency and predictive accuracy, especially when covariates are 634

involved. Machine learning techniques like LSTM, while providing superior accuracy, 635

require significantly more computational resources. The choice between these models 636

depends on the specific requirements of the forecasting task, with simpler statistical 637

models being preferable for real-time applications in settings where computational 638

resources are limited, and more complex machine learning models suitable for scenarios 639

where predictive accuracy is paramount. 640

Discussion 641

This research assesses the predictive performance and computational efficiency of a 642

number of statistical and machine learning techniques for dengue forecasting, both with 643

and without the inclusion of climate covariates. The study utilizes dengue cases as well 644

as temperature and humidity in Rio de Janeiro, Brazil, a region prone to dengue 645

outbreaks where data is readily available from the InfoDengue system [22]. The 646

statistical models considered include AR(1), MA(1), ARIMA, ETS, VAR, and 647

SARIMAX. Machine learning techniques utilized are SVM, Random Forest, XGBoost, 648

LSTM, and Prophet. The study provides a thorough assessment of the forecasting 649

performance of these methods, as well as ensemble approaches that combine individual 650

methods, across various time frames. 651
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Unlike other performance evaluations, we generate weekly predictions that assess the 652

predictive accuracy of the methods at actionable scales. The flexibility in handling 653

different forecast horizons (i.e., 1, 2, 3, 4, 8, and 12 weeks ahead) conveys the utility of 654

the forecasting system for both immediate response planning and longer-term strategic 655

interventions. Additionally, we compute uncertainty intervals to convey the reliability of 656

point estimates. Our evaluation also includes the computational efficiency of each 657

model, which is an important consideration in resource-constrained environments. 658

In our implementation, we use a moving window strategy that allows models to 659

continuously adapt to new data, capturing the evolving patterns and trends in dengue 660

incidence. This adaptability is crucial for accurate predictions, especially in the context 661

of a disease influenced by various fluctuating factors such as climate, population 662

movement, and public health interventions. The results highlight the nuanced 663

capabilities of each method, which can inform the implementation of dengue 664

surveillance systems and the allocation of resources to combat dengue outbreaks. 665

Among the statistical models evaluated, ARIMA emerged as the best model when 666

using only historical case data. Its simplicity, rapidity and robust predictive accuracy 667

make it a reliable choice for short to medium-term forecasts. ARIMA’s ability to 668

capture temporal dependencies effectively contributed to its strong performance. 669

However, the inclusion of climate covariates significantly enhanced its predictive power 670

through the SARIMAX model. By accounting for climate factors such as temperature 671

and humidity, SARIMAX provided a more comprehensive analysis, leading to improved 672

accuracy. Moreover, the use of lagged covariates in SARIMAX further enhanced 673

long-term prediction capabilities, addressing the inherent uncertainties associated with 674

extended forecast horizons. 675

The Long Short-Term Memory (LSTM) model, particularly when combined with 676

climate covariates, proved to be the most accurate machine learning model overall. 677

LSTM’s recurrent neural network structure excels at handling non-linear temporal 678

patterns, making it highly effective in capturing the complex dynamics influenced by 679

climate factors. This resulted in consistently lower errors across all forecast horizons. 680

Despite being slower to train and predict due to its computational complexity, LSTM’s 681

superior accuracy makes it an unmatched choice for highly precise predictions. The 682

model’s ability to integrate and learn from additional covariate data further bolstered 683

its performance, especially in the context of medium to long-term forecasts. 684

For long-term forecasts (i.e., 12 weeks), the Prophet model with climate covariates 685

demonstrated the best accuracy. Prophet’s strength lies in its ability to identify and 686

adapt to long-term patterns, making it particularly effective for distant predictions. The 687

inclusion of climate covariates enabled Prophet to capture seasonal variations and other 688

long-term trends more accurately. While Prophet may not match the short-term 689

accuracy of models like LSTM or ARIMA, its performance in long-term forecasting 690

highlights its utility in scenarios where understanding and predicting extended trends 691

are crucial. 692

In addition to evaluating individual models, we explored the potential benefits of 693

ensemble approaches by combining the strengths of the best-performing statistical and 694

machine learning models. By averaging forecasts from both statistical and machine 695

learning models, the ensembles capitalized on the strengths of each method, resulting in 696

more robust and reliable predictions. The use of ensemble models, particularly those 697

combining ARIMA and LSTM for cases alone and SARIMAX with LSTM for models 698

including covariates, demonstrates significant promise in advancing the accuracy and 699

reliability of dengue predictions. 700

Our study has some limitations that indicate areas for future research. First, we 701

evaluate the methods in a single geographical location, namely, Rio de Janeiro. Future 702

research could explore the generalizability of these models by applying them to different 703
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geographical areas with different climatic and socio-economic conditions. This would 704

help to validate the models’ robustness and enhance their utility in diverse settings. In 705

addition, we considered temperature and humidity as covariates in some of the models. 706

While these are critical factors for dengue transmission, additional variables such as 707

population density, mobility patterns, socio-economic factors, and land use changes 708

could also play significant roles in dengue dynamics [11]. Future studies should consider 709

incorporating a broader range of predictive factors which could improve the models’ 710

accuracy and provide a more comprehensive understanding of dengue transmission 711

mechanisms. 712

Moreover, we primarily focused on the assessment of the predictive accuracy and 713

computational efficiency of different models. While these are crucial aspects, future 714

research could also examine the interpretability and usability of the models from a 715

public health perspective. Ensuring that the models are not only accurate but also 716

interpretable is essential to implement strategies for disease prevention and control. 717

Lastly, exploring the use of spatial models that borrow information of close or connected 718

regions [51,52], and advanced machine learning techniques, such as deep reinforcement 719

learning [53,54], could further enhance dengue forecasting capabilities. 720

To conclude, this study provides a thorough evaluation of dengue prediction 721

methods, showcasing how statistical methods, advanced machine learning models, and 722

climate covariates yield valuable insights for proactive disease surveillance. Our findings 723

provide evidence to inform the development of more robust and comprehensive models 724

that better support public health efforts. By leveraging dengue forecasts, officials can 725

optimize resource allocation, implement timely control measures, and reduce the impact 726

of dengue outbreaks on the population. 727

Supporting information 728

S1 Comparison of the predictions obtained by the best performing 729

statistical and machine learning techniques for different time horizons. 730

S2 Boxplots of the absolute errors obtained by the forecasting methods 731

when using only cases. 732

S3 Boxplots of the absolute percentage errors obtained by the forecasting 733

methods when using only cases. 734

S4 Boxplots of the absolute errors obtained by the forecasting methods 735

when including covariates. Ensemble refers to the best ensemble approach using 736

covariates which is LSTM and SARIMAX. 737

S5 Boxplots of the absolute percentage errors obtained by the forecasting 738

methods including covariates. Ensemble refers to the best ensemble approach using 739

covariates which is LSTM and SARIMAX. 740

S6 Real cases, predictions, and 95% uncertainty intervals computed with 741

SARIMAX across various forecast horizons. 742

S7 Real cases, predictions, and 95% uncertainty intervals computed with 743

LSTM including covariates across various forecast horizons. 744
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