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ABSTRACT  

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer’s disease 

(AD), but their relative performance in predicting future cognitive decline among 

cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison 

study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and 

medial temporal lobe Tau-PET signal showed similar associations with cognitive decline 

on a global cognitive composite test (R2PET=0.32 vs R2PLASMA=0.32, pdifference=0.812) and 

with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs 

HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were 

superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential 

selection using plasma p-tau217 and then Tau-PET reduced the number of participants 

required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-

tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar 

performance for predicting future cognitive decline in CU individuals, and their 

sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma 

p-tau217) is useful for screening in clinical trials in preclinical AD. 
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In recent years, there has been a substantial increase in the availability of biomarkers that 

reflect the core Alzheimer’s disease (AD) neuropathological hallmarks, specifically 

Amyloid-b (Ab) plaques and tau neurofibrillary tangles.1 Tau-PET has shown excellent 

diagnostic accuracy and strongly associations with both concurrent and longitudinal 

cognitive decline, outperforming established AD biomarkers like Amyloid-PET and 

structural MRI across the clinical continuum of AD.1-7 However, Tau-PET is expensive 

and labor intensive, has inadequate availability and its sensitivity to detect the earliest 

stages of tau aggregation is limited. This is particularly troublesome in individuals with 

preclinical AD who harbor AD pathology but have not (yet) developed symptoms.8 The 

recent advent of blood-based biomarkers of AD pathology potentially offers a low cost, 

non-invasive and scalable alternative.9 Within the swiftly evolving realm of plasma 

biomarkers, plasma p-tau217 (phosphorylated-tau at threonine 217) has demonstrated 

excellent performance in detecting AD pathology, distinguishing between AD and non-

AD neurodegenerative disorders, and predicting future clinical progression.10-16 

However, in contrast with Tau-PET, plasma p-tau217 provides no regional information 

on AD pathology, its continuous values are less representative of the full dynamic range 

of tau pathology and its signal represents a mix of tau and Ab pathology and is therefore 

a less tau-specific biomarker.17-19 In  cognitively impaired individuals, Tau-PET has 

shown superior performance to plasma p-tau217 in predicting future cognitive 

decline.20,21 In cognitively unimpaired (CU) individuals, however, it is yet unclear 

whether there is a meaningful difference in prognostic utility between Tau-PET and 

plasma p-tau217 biomarkers.22 Determining which of the two biomarkers is the strongest 

predictor of future cognitive deterioration in initially CU individuals is of utmost 

importance as clinical trials are increasingly recruiting participants with preclinical AD 

to enable early intervention. This information would become even more crucial if 
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treatments such as  lecanemab23 and donanemab24 are found to be effective in preclinical 

AD, as this would require large-scale screening of CU populations for AD pathology. 

Therefore, we performed a large-scale head-to-head comparison study between Tau-PET 

(from which signal was extracted from reporter regions covering the medial temporal lobe 

[Tau-PETMTL] and the temporal neocortex [Tau-PETNEO]5) vs plasma p-tau217. We 

assessed their associations with longitudinal cognitive decline and diagnostic progression 

to mild cognitive impairment (MCI). Additionally, we examined whether and how plasma 

p-tau217 and Tau-PET can be combined to further increase their prognostic accuracy and 

to optimize recruitment strategies for clinical trials.  

 

RESULTS 

Participants  

We included 1534 CU participants from nine cohorts with Tau-PET and plasma p-tau217 

data available at baseline, of whom 413 (26.7%) were Ab-positive on PET (see Table-1 

and Extended-Data Table-1 for data by cohort). The mean±standard deviation age of 

the participants was 68.4±10.0 years, 53.8% were females and the follow-up duration was 

3.8±1.8 years. The associations between Tau-PET and plasma p-tau217 levels were 

moderate (plasma p-tau217 vs Tau-PETMTL, ρ[95%CI] = 0.42 [0.38-0.46], p<0.001; 

plasma p-tau217 vs Tau-PETNEO, ρ=0.34 [0.30- 0.39], p<0.001, Extended-Data Figure-

1).  

 

Prediction of future decline in cognitive function 

First, we examined across all participants whether the tau biomarkers individually and 

combined were associated with cognitive decline over time on the modified preclinical 

Alzheimer cognitive composite (mPACC5). We selected the mPACC5 because it is a 
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sensitive measure that can reliably detect longitudinal changes over time in CU 

populations, and is therefore often used as an outcome measure in research studies and 

clinical trials focusing on preclinical AD.25,26 mPACC5 slopes were generated using 

linear mixed effects models and then used as dependent variable in linear regression 

models adjusting for age, sex, years of education, APOE e4 carriership and cohort. The 

analysis showed that plasma p-tau217 concentrations (R2[95%CI]= 0.32 [0.27-0.35], 

corrected Akaike Information Criterion [AICc]=- 3766), Tau-PET uptake in the medial 

temporal lobe (Tau-PETMTL, R2= 0.32 [0.27-0.36], AICc= -3773 and Tau-PET uptake in 

the temporal neocortex (Tau-PETNEO, R2= 0.31 [0.25-0.35], AICc= -3751) were all better 

predictors of longitudinal cognitive decline than basic models that included age, sex, 

education and cohort with APOE e4 status (R2= 0.24 [0.20-0.27], AICc= -3617) or 

without APOE e4 status (R2= 0.23 [0.19-0.26], AICc= -3603) (Figure-1a-b, Extended-

Data Table-2/3). There were no significant differences between single biomarker 

models, i.e. between plasma p-tau217 and Tau-PETMTL (p=0.812), between plasma p-

tau217 and Tau-PETNEO (p=0.699), and between Tau-PETMTL and Tau-PETNEO 

(p=0.404). Combined biomarker models, i.e., plasma p-tau217 and Tau-PETMTL (R2= 

0.36 [0.30-0.40], AICc= -3849) and plasma p-tau217 and Tau-PETNEO (R2= 0.35 [0.29-

0.40], AICc= -3841) were more strongly associated with longitudinal mPACC5 decline 

than the single biomarker models (all p<0.01). The relative contribution of each 

biomarker in the combined models further indicated their complementary value, as e.g., 

in the combined plasma p-tau217 and Tau-PETMTL model, of all explained mPACC5 

variance 15% was explained by plasma p-tau217 alone, 17% by Tau-PETMTL alone, 24% 

was shared variance and the remaining 43% was explained by covariates (Figure-1c, 

Extended-Data Table-4). The results were overall consistent across cohorts (Extended-

Data Figure-2/3 and Extended-Data Table-5).  
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Next, we repeated the same set of analyses with mPACC5 as the outcome measure in 

Amyloid-PET positive CU individuals only (n=379). This analysis yielded a largely 

similar pattern compared to analyses in the entire sample (Figure-1d-e, Extended-Data 

Table-2/3). The single biomarker models including plasma p-tau217 (R2= 0.30 [0.19-

0.36], AICc= -497), Tau-PETMTL (R2= 0.33 [0.22-0.40], AICc= -515) or Tau-PETNEO 

(R2= 0.35 [0.22-0.43], AICc= -523) outperformed the basic models with and without 

APOE e4 status (R2=0.16[0.07-0.21], AICc= -428 for both). Further, there were no 

differences between the three single biomarker models (plasma p-tau217 vs Tau-PETMTL, 

p=0.344; plasma p-tau217 vs Tau-PETNEO, p=0.287; Tau-PETMTL vs Tau-PETNEO, 

p=0.693). Also, combined biomarker models, i.e., plasma p-tau217 and Tau-PETMTL (R2= 

0.38 [0.27-0.45], AICc= -546) and plasma p-tau217 and Tau-PETNEO (R2= 0.39 [0.27-

0.47], AICc= -550), were more strongly associated with longitudinal mPACC5 decline 

than their respective single biomarker models (both p<0.01). Among Ab-positive CU 

individuals, the relative contribution of the Tau-PET measures in the combined model 

was substantially greater than in the entire study population, i.e., Tau-PETMTL 34% vs 

17% and Tau-PETNEO 58% vs 15%, which was not the case for plasma p-tau217 (15% vs 

17%, Figure-1c-f, Extended-Data Table-4). 

 

Prediction of clinical progression to Mild Cognitive Impairment (MCI) 

Next, we examined across all participants whether the tau biomarkers individually and 

combined were associated with the rate of clinical progression to MCI using Cox 

proportional hazard models, adjusting for age, sex, years of education, cohort and APOE 

e4 carriership. The analysis revealed that higher baseline plasma p-tau217 (Hazard 

ratio[HR]= 1.57 [1.44-1.71], AICc= 2099), Tau-PETMTL (HR= 1.63 [1.50-1.77], AICc= 
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2077) and Tau-PETNEO (HR= 1.42 [1.33-1.51], AICc= 2111) levels were all associated 

with an increased risk for future progression to MCI (all p<0.001, Figure-2a-b, 

Extended-Data Table-6/7). The individual fluid vs neuroimaging tau biomarker models 

did not differ from each other (plasma p-tau217 vs Tau-PETMTL, p=0.340; plasma p-

tau217 vs Tau-PETNEO, p=0.571), while the performance of Tau-PETMTL was slightly 

better than that of Tau-PETNEO (p=0.046).	The	fit	was	improved	for	the	plasma p-tau217 

model when adding Tau-PETMTL (∆AICc= -52, p=0.005) or Tau-PETNEO (∆AICc= -30, 

p=0.018, Extended-Data Table-6/8). Likewise, the model fit also improved when adding 

plasma p-tau217 to Tau-PETMTL (∆AICc= -30, p=0.007) and to Tau-PETNEO (∆AICc= -

42, p=0.001). The results were largely consistent across cohorts (Extended-Data Figure-

4/5).  

 

When repeating the same set of analyses in Ab-positive CU individuals only (n=403), we 

found a largely similar pattern (Figure-2c-d, Extended-Data Table-6/7). Baseline 

plasma p-tau217 (HR= 1.56 [1.37-1.77], AICc= 1133), Tau-PETMTL (HR= 1.54 [1.39-

1.70], AICc=1109) and Tau-PETNEO (HR= 1.34 [1.25-1.43], AICc= 1126) levels were all 

associated with an increased risk for future progression to MCI (all p<0.001). The 

individual Tau biomarker models did not differ from each other (plasma p-tau217 vs Tau-

PETMTL, p=0.270; plasma p-tau217 vs Tau-PETNEO, p=0.754; Tau-PETMTL vs Tau-

PETNEO, p=0.244). Adding Tau-PET to plasma p-tau217 models improved the model fit 

when adding Tau-PETMTL (∆AICc= -41, p=0.002) and Tau-PETNEO (∆AICc= -25, 

p=0.03, Extended-Data Table-6/8). The model fit also slightly improved when adding 

plasma p-tau217 to either Tau-PETMTL (∆AICc= -17, p=0.043) or Tau-PETNEO (∆AICc= 

-18, p=0.049). 
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A two-step approach to reduce the sample size in clinical trials 

Then we tested whether and how a two-step sequential approach (i.e., plasma p-tau217 

followed by Tau-PET) could reduce the number of participants needed for a preclinical 

AD trial using longitudinal changes in cognitive function as primary outcome.	Significant 

sample size reductions can already be achieved in the first step, i.e., using only plasma p-

tau217. When using the mPACC5 as outcome measure, assuming 80% power and α=0.05 

in a 4-year clinical trial with annual repeated testing, selecting participants with plasma 

p-tau217 levels in Quartiles 2-4 (i.e., Q2-4, excluding the lowest 25% of plasma p-tau217) 

would result in a 32[14-41]% reduction of the number of required participants compared 

to including the entire study population (Figure-3). Selecting participants in plasma p-

tau217 Q3-4 and Q4 further reduced the required sample size by 63[48-69]% and 81[72-

86]%, respectively. Using clinical progression to MCI as an outcome measure yielded 

similar results, i.e., plasma p-tau217 Q2-4: 29[22-36]%, Q3-4: 56[48-63]% and Q4: 

82[76-87]%, Figure-4. In the second step, Tau-PET measures further reduced the 

required sample size. For example, in the population with plasma p-tau217 concentrations 

in Quartiles 3-4, selecting participants with Tau-PET in Quartile 4 would further reduce 

the sample size from 63[48-69]% (plasma p-tau217) to 89[82-91]% (Tau-PETMTL, 

Figure-3) or to 85[77-89]% (Tau-PETNEO, Extended Figure-6) when using the 

mPACC5 as the outcome measure. Another example, in the population with plasma p-

tau217 concentrations in Quartile 4, selecting participants with Tau-PET in Quartiles 3-4 

would further reduce the sample size 82[76-87]% (plasma p-tau217) to 88[82-94]% (Tau-

PETMTL, Figure-4) or to 94[91-97]% (Tau-PETNEO, Extended Figure-7) when using 

clinical progression to MCI as the outcome measure. The estimated sample size 

reductions for all plasma p-tau217 and Tau-PET quartile combinations are presented in 

Extended Table-9. Repeating the same set of analyses but now restricted to Ab-positive 
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CU individuals showed that similarly large sample size reductions can be achieved in this 

population (Extended Figure-8). 

 

Characterization of different combined plasma p-tau217 and Tau-PET groups   

Finally, we aimed to characterize the groups resulting from combining different plasma 

p-tau217 and Tau-PETMTL quartiles in terms of Ab-positivity, rates of mPACC5 decline 

and progression to MCI, as well as the number of participants that would be included 

based on each combination relative to the full dataset. For this purpose, we created four 

different groups based on increasingly restrictive tau biomarker combinations: A) a 

“liberal” group consisting of participants with plasma p-tau217 levels in Q2-Q4 and then 

Tau-PETMTL uptake in Q2-Q4 of those selected by plasma, B) a “moderate” group 

consisting of plasma p-tau217 levels in Q3-Q4 and then Tau-PETMTL uptake in Q3-Q4, 

C) a “plasma p-tau217 Q4 only” group consisting of individuals with plasma p-tau217 

levels in Q4 regardless of Tau-PET, and D) a “conservative” group consisting of plasma 

p-tau217 levels in Q4 and then Tau-PETMTL uptake in Q4. Figure-5a-c indicates a 

progressively worse outcome for individuals from approach A to D, with an increasing 

proportion of Ab-positive individuals from the liberal (A) to the conservative (D) 

threshold approach (from 39.8% to 95.6%), more rapid decline on the mPACC5 (from 

standardized-b= -0.06±0.09 to -0.15±0.12) and a greater proportion of CU individuals 

who progressed to MCI (from 17.0% to 40.1%). Furthermore, the proportion of 

participants that would be included in a hypothesized clinical trial with the mPACC5 as 

an outcome measure decreased from 56.2% (of the entire population) when using the 

liberal threshold approach to only 6.2% when using the conservative threshold approach 

(Figure-5d). Notably, there were no group differences between the plasma p-tau217 Q4-

only approach vs the moderate combined threshold approach for mPACC5 decline 
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(standardized-b= -0.09±0.10 vs -0.09±0.10), proportion with progression to MCI (26.0% 

vs 26.5%) and the proportion of participants selected (25.0% vs 25.0%), and only a 

modest difference in Ab-positivity (i.e., 61.4% vs 71.7%). The same set of analyses using 

Tau-PETNEO instead of Tau-PETMTL yielded similar results (Extended Figure-9). 

Detailed group characterizations for all the other possible combinations are presented in 

Extended Table-10 (i.e., Ab-positivity, mPACC5 decline and clinical progression) and 

Extended Table-11 (i.e., age, sex, APOE status and years of education).  

 

We also calculated the projected costs that could be saved in a hypothetical trial with 

mPACC5 or MCI progression rates as an outcome measure using the same four groups 

as above. When assuming a 1:15 ratio (i.e., cost of 1 Tau-PET scan equals 15 plasma p-

tau217 assessments) and using Tau-PETMTL, both the plasma p-tau217 Q4 only (C)  group 

(96.9%) and the conservative combined (D) group (96.5% cost reduction) yielded 

substantially higher cost reducations compared to the moderate (B) group (85.4%) and 

especially the liberal (A) group (53.9%) when using mPACC as an endpoint (Extended 

Figure-10a, Tau-PETNEO results are presented in Extended Figure-10b). Using the same 

ratio (1:15) but now using clinical progression as the endpoint, the plasma p-tau217 Q4 

only (C)  group yielded the highest cost reduction (88.2%), followed by the conservative 

combined (D) group (70.4%), the moderate (B) group (53.0%) the liberal (A) group 

(25.9%, Extended Figure-11a, Tau-PETNEO results are presented in Extended Figure-

11b). 

 

DISCUSSION 

In this multicohort study, we investigated whether Tau-PET or plasma p-tau217 is more 

strongly associated with future cognitive decline among 1534 CU individuals and 
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whether they would provide complementary information in screening approaches for 

clinical trials. This is a timely research question as both tau biomarkers are frequently 

incorporated into clinical trials, and often in combination as they reflect different aspects 

of tau pathophysiology. According to the draft revised AD criteria by the Alzheimer’s 

Association Workgroup, plasma p-tau217 is a Core 1 biomarker (T1) of phosphorylated 

and secreted AD tau, while Tau-PET is a Core 2 biomarker (T2) of AD Tau 

proteinopathy.27 In this study, we observed comparably strong associations between 

plasma p-tau217 and Tau-PET with cognitive decline on a sensitive global cognitive 

composite test (i.e., mPACC5) and with clinical progression to MCI in CU individuals. 

Importantly, models including both plasma p-tau217 and Tau-PET consistently 

outperformed single biomarker models, suggesting that plasma p-tau217 and Tau-PET 

provide complementary information. Simulations showed that a two-step approach (i.e., 

plasma p-tau217 first, followed by Tau-PET in individuals with high plasma p-tau217 

only) could substantially reduce the number and cost of recruiting participants for a 

preclinical AD clinical trial with mPACC5 or progression to MCI as the primary 

endpoint. We conclude that plasma p-tau217 and Tau-PET showed similar associations 

with future cognitive decline in a CU population, that both tau biomarkers provide 

complementary information, and that their sequential use (i.e., plasma p-tau217 followed 

by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical 

trials in preclinical AD. 

 

A main finding of this study is that there were no statistical differences between plasma 

p-tau217 concentrations and Tau-PET uptake in their associations with future cognitive 

changes in a CU population. This is in contrast with cognitively impaired populations, 

where Tau-PET generally outperforms plasma p-tau217 in terms of prognostic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308824doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

accuracy.20,21 This discrepancy between disease stages might be explained by the 

differences in underlying pathophysiology and subsequent temporal dynamics of the two 

tau biomarkers. Plasma p-tau217 measures the hyperphosphorylated tau protein in soluble 

forms and has been shown to change very early in the disease process.28 Post-mortem 

studies indicated that ante-mortem plasma p-tau217 levels are associated with the density 

of both neurofibrillary tau tangle and Ab plaque pathology in the brain.18,29 It is 

conceivable that this mix of Ab- and tau-related signals reflected by plasma p-tau217 

levels contributed to its non-inferiority versus Tau-PET for predicting cognitive change 

over time in this early population. For instance, Ab toxicity might impact synaptic 

function or neuroinflammation, which could subsequently influence cognitive 

performance.30 In contrast, Tau-PET signal largely represents the presence of aggregated 

paired helical filaments of the tau protein forming insoluble neurofibrillary tangles.31 In 

vivo studies have shown that positive Tau-PET scans are relatively rare in CU individuals 

(i.e., ~5-10% among Ab-positive CU individuals in a temporal meta-ROI)3,4 and post-

mortem studies have indicated that a positive [18F]Flortaucipir Tau-PET scan 

(quantitatively or by visual read) represents tau pathology in Braak stages IV and 

above.32,33 Altogether, this indicates that substantial changes on a Tau-PET scan occur in 

rather advanced clinical and biological stages of AD, which may explain why Tau-PET 

in the current mix of Ab-positive and Ab-negative CU individuals did not outperform 

plasma p-tau217 in predicting future cognitive decline. We also observed no marked 

differences between Tau-PETMTL and Tau-PETNEO, which may appear contradictory with 

our previous study where the Tau-PETNEO-positive group exhibited a considerably worse 

prognosis.34 This discrepancy can be explained by the different group definitions used in 

the current study (quartile-based) compared to the previous (binary cut-offs). In the 

previous study, the Tau-PETNEO positive group comprised a relatively small proportion 
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of the overall CU population (~4%). As a result, even in the highest quartile (Q4) of the 

current study, most individuals are Tau-PET negative. This attenuates the overall 

association between Tau-PET and cognitive decline, and dilutes the association even 

further for the Tau-PETNEO group. 

 

Since there were no clear distinctions between the two tau biomarkers in individual 

models, plasma p-tau217 should be prioritized over Tau-PET as a standalone screening 

tool in CU populations due to its major practical advantages. However, simultaneous 

modelling of plasma p-tau217 and Tau-PET consistently led to a more accurate forecast 

of subsequent cognitive decline compared to single biomarker models. We therefore 

tested a two-step sequential approach, which involved selecting participants based on 

plasma p-tau217 as the first step and then performing Tau-PET as the second step. This 

approach decreased the cost of selecting appropriate participants for clinical trials by 

drastically reducing the number of required Tau-PET scans and participants for screening. 

This was mainly achieved by selecting from the entire CU study population the subset of 

individuals that are at highest-risk for short-term cognitive decline due to their elevated 

levels of both baseline plasma p-tau217 and Tau-PET.  In such a workflow (see Figure-

3a), the participants’ eligibility in terms of inclusion (e.g., age, cognitive status) and 

exclusion (e.g., the absence of major neurological or psychiatric disorders) criteria would 

be assessed first. Next, participants would be further triaged based on their plasma p-

tau217 levels, where “low/negative” participants would not undergo a Tau-PET scan as 

their risk for future cognitive decline would be low, while “high/positive” participants 

would undergo a Tau-PET scan to further refine their risk profile.35 The degree of Tau-

PET uptake can then be utilized to assign CU individuals on a continuum ranging from 

intermediate (i.e., “high/positive” plasma p-tau217, “low/negative” Tau-PET) to high 
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(i.e., “high/positive” results on both plasma p-tau217 and Tau-PET) risk for future 

progression. The final pre-screening decision will be based on factors such as the 

acceptable rate of screening failures, trial duration, expected effect size of the drug or 

intervention and whether the trial is a primary or secondary intervention strategy. The 

framework depicted in Figure-3a is primarily conceptual, and we recognize that 

numerous crucial decisions need to be made during its implementation. This includes, 

among other factors, determining the criteria for “high/positive” vs “low/negative” for 

both plasma p-tau217 and Tau-PET, deciding whether to use p-tau217 alone or in 

combination with other plasma biomarkers (e.g., Ab42/40), identifying the target region-

of-interest for Tau-PET quantification and selecting a quantitative threshold and/or visual 

read metric for Tau-PET.36,37  

 

The main strength of this study is the multicenter approach that yielded a sufficient 

sample size for a robust head-to-head comparison between Tau-PET and plasma p-tau217 

as well as a thorough assessment of their potential complementary value. The main 

limitations of the study are related to the inherent challenges of a multi-center study that 

was not co-designed from the start. We aimed to optimize pooling of data across cohorts 

by standardizing biomarkers values using CU Ab-negative participants. We 

acknowledge, however, that there may still be residual heterogeneity caused by use of 

different Amyloid-PET and Tau-PET tracers and different p-tau217 assays, as well as the 

use of different neuropsychological tests to generate mPACC5 scores. To mitigate this, 

we present both the pooled (main report) and cohort-specific (supplement) results. 

Moreover, we did not have plasma p-tau217 cut-offs available from all cohorts and 

instead used either continuous (z-scores) or categorical (quartiles) data for the analyses. 

Additionally, Tau-PET may have been at a slight disadvantage compared to plasma p-
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tau217, as Tau-PET data were more often analyzed locally, whereas plasma p-tau217 was 

predominantly analyzed centrally at Lund University. Future studies using predefined 

cut-offs for both plasma p-tau217 and Tau-PET, preferentially in a more diverse 

population in terms of ethnicity, socioeconomic status and medical comorbidities, are of 

importance to establish the generalizability of our findings.  

 

In summary, our data suggest that plasma p-tau217 and Tau-PET show similar 

associations with future cognitive decline and clinical progression in a CU population. 

We also showed that plasma p-tau217 and Tau-PET provide complimentary information 

and that a two-step approach (i.e., plasma p-tau217 followed by Tau-PET) substantially 

reduces the number of required Tau-PET scans and screened participants. Altogether, our 

data support the feasibility of a clinical trial design in which all participants undergo 

screening with plasma p-tau217, but only a subset with high/abnormal plasma p-tau217 

will undergo Tau-PET.   
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Table 1. Participant characteristics 

 All participants  Ab+ participants only 

N 1534 413 

Age, years 68.4±10.0 72.6±8.2 

Sex, % female 53.8 55.2 

Education, years 14.2±3.3 13.8±3.4 

MMSE score 28.9±1.2 28.6±1.4 

APOE e4 status, % carriers 37.0 56.7 

Ab-status, % positive 26.9 100 

Follow-up duration, years 3.8±1.8 3.6±1.7 

Follow-up visits, median (range) 3 (2-8) 3 (2-8) 

Plasma p-tau217, z-score 0.43±1.35 1.62±1.46 

Tau-PETMTL, z-score 0.27±1.40 1.27±1.83 

Tau-PETNEO, z-score 0.18±1.47 0.89±2.17 

mPACC5, baseline score 0.05±0.75 -0.24±0.77 

mPACC5, annual change -0.041±0.079 -0.12±0.15 

% Progression to MCI 11.2 26.9 

 
 
Values represent means ± standard deviations unless otherwise indicated. The following variables had 
missing data: Ab status (n=1, 0.1%), mPACC (n=142, 9.2%), MMSE (n=8, 0.5%, Progression to MCI 
(n=42, 2.7%). 
 
Ab = Amyloid-beta, APOE = Apolipoprotein, MCI = Mild cognitive impairment, MMSE = Mini-Mental 
State Examination, mPACC5 = Modified preclinical Alzheimer cognitive composite, MTL = Medial 
temporal lobe, NEO = Neocortical, PET = Positron emission tomograpy.
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Figure 1. Plasma p-tau217 and Tau-PET prediction of future cognitive decline  

 

a, d, Scatterplots showing the association between cognitive change over time on the mPACC5 and the tau 
biomarkers (Quartile 1-3 vs Quartile 4) across all participants (a) and Ab+ participants (d) only. The 
shadow area indicated the 95% confidence interval. b, e, Explained variance (R2, inside the bar plot) and 
model fit (corrected Akaike criterion, outside the bar plot) for various models predicting longitudinal 
change on the mPACC5 across all participants (b) and Ab+ (d) participants only. Errorbars represent the 
95% CI. c, f, Partial explained variance (R2) for combined biofluid and neuroimaging models predicting 
longitudinal change on the mPACC5 across all participants (c) and Ab+ (f) participants only. **p<0.01, 
***p<0.001.  
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Figure 2. Plasma p-tau217 and Tau-PET prediction of progression to mild cognitive impairment 

 

a, c, Survival curves for progression to mild cognitive impairment (Quartile 1-3 vs Quartile 4) across all 
participants (a) and Ab+ (c) participants only, including a table of total number of participants available at 
each time point. The dashed line in c indicates the time point at which 50% of a group had progressed to 
MCI, and the shadow area indicated the 95% confidence interval. b, d, Model fit (corrected Akaike 
criterion) for various models predicting future clinical progression to mild cognitive impairment across all 
participants (b) and Ab+ (d) participants only. Errorbars represent the 95% CI. 
* p<0.05, **p<0.01, ***p<0.001.  
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Figure 3. A two-step recruitment approach for clinical trials in preclinical Alzheimer’s disease 
using the mPACC as outcome measure 
 
 

 

a, conceptual framework of a sequential two-step recruitment strategy of a clinical trial in preclinical 
Alzheimer’s disease using a cognitive endpoint. b, the obtained sample size reduction using sample 
selection based on different percentiles (75th, 50th and 25th) of baseline plasma p-tau217 levels in step 1 
followed by the selection based on the same percentiles (75th, 50th and 25th) of the Tau-PETMTL 
measurement in step 2 with mPACC5 as the primary endpoint. Note that 100% in step 2 refers to the 
participants selected by plasma p-tau217 in step 1. Errorbars represent the 95% CI. c shows the calculated 
sample size reductions for various plasma p-tau217 and Tau-PETMTL quartile combinations 
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Figure 4. Clinical trial sample size reductions through a two-step recruitment strategy when using 
clinical progression to mild cognitive impairment as an outcome measure 
 

 

a, the obtained sample size reduction using sample selection based on different percentiles (75th, 50th and 
25th) of baseline plasma p-tau217 levels in step 1 followed by the selection based on the same percentiles 
(75th, 50th and 25th) of the Tau-PETMTL measurement in step 2 with clinical progression to mild cognitive 
impairment as the primary endpoint. Note that 100% in step 2 refers to the participants selected by plasma 
p-tau217 in step 1. Errorbars represent the 95% CI. b shows the calculated sample size reductions for 
various plasma p-tau217 and Tau-PETMTL quartile combinations. 
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Figure 5. Characterization of different plasma p-tau217/Tau-PETMTL groups on relevant trial measures 

 

 

This figure shows how different group compositions based on their baseline plasma p-tau217 and Tau-
PETMTL levels are related to various relevant trial metrics, including the proportion of Ab+ individuals (a), 
annual mPACC5 slope (b), proportion of initially cognitively unimpaired individuals that progress to mild 
cognitive impairment during a 4-year trial (c), and the proportion of individuals from the entire population 
that fall within the group definitions described on the x-axis (d). Errorbars in b represent the 95% CI. 
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METHODS 

Participants 

We included 1534 participants from the Swedish BioFINDER-1 (n=39, NCT01208675) 

and BioFINDER-2 (n=481, NCT03174938) studies at Lund University7,38, the Mayo 

Clinic Olmsted Study of Aging39 (MCSA, n= n=363), the Australian Imaging Biomarkers 

and Lifestyle Study of Ageing40 (AIBL, n=180), the Knight ADRC at Washington 

University (n=109), the Translational Biomarkers in Aging and Dementia (TRIAD, 

n=124) and the PRe-symptomatic EValution of Experimental or Novel Treatments for 

Alzheimer’s Disease (PREVENT-AD, n=112) at McGill University, the Wisconsin 

Registry for Alzheimer’s Prevention (WRAP, n=82) at the University of Wisconsin-

Madison, and the SCIENCe project41, which is part of the Amsterdam Dementia Cohort 

(ADC, n=44). A brief description of each cohort is provided in Extended-Data Table-

12. All participants were i) cognitively unimpaired at baseline defined by 

neuropsychological test scores within the normative range given an individuals’ age, sex 

and educational background, ii) had Amyloid-PET available to determine Ab status, iii) 

underwent a Tau-PET scan and blood sampling within a maximum 1 year interval, and 

iv) had at least one clinical follow-up visit available. Follow-up data was collected until 

November 1st, 2023. Written informed consent was obtained from all participants and 

local institutional review boards for human research approved the study.  

 

Amyloid-PET status  

Ab status was determined using center-specific cut-offs or visual read metrics using 

[18F]flutemetamol PET for BioFINDER-1 and BioFINDER-2, [11C]Pittsburgh 

compound-B PET for MCSA, Knight ADRC and WRAP, [18F]florbetapir PET for ADC, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24308824doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24308824
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

and [18F]NAV4694 for TRIAD, PREVENT-AD and AIBL, see Extended-Data Table-

13 for details. 

 

Tau PET  

Tau-PET was performed using [18F]flortaucipir for BioFINDER-1, MSCA, Knight 

ADRC, and ADC cohorts, using [18F]MK6240 for TRIAD, AIBL and WRAP and  using 

[18F]RO948 for BioFINDER-2. Data were centrally processed at Lund University for 

BioFINDER-1, BioFINDER-2, and ADC, and locally processed for the other cohorts, 

following previously described procedures (see Extended-Data Table-14). In line with 

our previous study34, we generated Tau-PET standardized uptake value ratios (SUVR) for 

a medial temporal lobe (MTL; unweighted average of bilateral entorhinal cortex and 

amygdala) and a neocortical temporal (NEO; weighted average of bilateral middle 

temporal and inferior temporal gyri) region-of-interest.3,42  

 

Plasma p-tau217 

Plasma p-tau217 levels were measured using an immunoassay developed by Lilly 

Research Laboratories (IN, USA) on a Meso Scale Discovery platform at Lund University 

for BioFINDER-1, BioFINDER-2, ADC, WRAP, PREVENT-AD and Knight ADRC43 

and at the Mayo Clinic for MSCA15. For AIBL and TRIAD a plasma p-tau217+ assay 

developed by Janssen R&D (CA, USA) on a Single Molecule Array (Simoa) HD-X 

platform was used.22 The correspondence between the two plasma p-tau217 assays used 

in this study have been shown to be high in a direct head-to-head comparisons study.44 

 

Clinical outcome measures 
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We used both continuous and binary measures of clinical progression. First, we examined 

cognitive trajectories using a sensitive composite measure specifically developed to 

detect cognitive changes in preclinical stages of AD (i.e., the modified preclinical 

Alzheimer cognitive composite 5 [mPACC525,45]). The mPACC5 consists of tests 

capturing episodic memory, executive function, semantic memory and global cognition.25 

Individual neuropsychological tests were z-transformed using the baseline test scores of 

Ab-negative participants in each cohort as reference group and then averaged to obtain a 

composite z-score. The composition of the mPACC5 for each cohort is described in 

Extended-Data Table-15. Second, we examined progression from CU to MCI. MCI was 

established using the Petersen criteria46 and is defined as significant cognitive symptoms 

as assessed by a physician, in combination with cognitive impairment on one or multiple 

domains (e.g., memory, executive functioning, attention, language) that is below the 

normative range given an individuals’ age, sex and educational background, but not 

sufficiently severe to meet diagnostic criteria for dementia.47  

 

Statistical analyses 

All statistical analyses were performed in R version 4.3.1. Statistical significance for all 

models was set at p<0.05 two-sided, without correction for multiple comparisons. To 

enable pooling of the data across cohorts, we z-transformed both Tau-PET SUVR’s and 

plasma p-tau217 concentrations based on the mean and the standard deviation of the 

Ab negative participants within each cohort. We conducted two sets of main analyses, in 

which we examined i) the individual and combined utility of the tau biomarkers for their 

associatons with longitudinal cognitive decline on the mPACC5 and with clinical 

progression from CU to MCI, and ii) a sequential two-step approach for participant 

selection in a preclinical AD trial with a cognitive endpoint. 
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Tau-PET and plasma p-tau217 vs mPACC5 change and progression to MCI 

Within these analyses, we performed three different statistical models, including i) only 

plasma p-tau217 concentration as a (continuous) predictor, ii) only a Tau-PET measure 

as (continuous) predictor (i.e., Tau-PETMTL or Tau-PETNEO SUVR), or iii) including 

plasma p-tau217 and one of the Tau-PET measures (i.e., Tau-PETMTL or Tau-PETNEO 

SUVR) simultaneously as predictors. Additionally, we tested two basic models, model 1 

including age, sex, years of education and cohort, and model 2 consisting of the model 1 

variables and APOE e4 carriership. We calculated change in mPACC5 using linear mixed 

models with random time slopes and random intercept using the lme4 package. 

Subsequently, these slopes were entered as the dependent variable in linear regression 

models with plasma p-tau217 and/or Tau-PET as predictors, while adjusting for age, sex, 

education, cohort and APOE e4 carriership. Differences in model performance was 

assessed by comparing differences in R2 by bootstrapping (1,000 repetitions with 

resample, boot package). Partial R2 were calculated to assess the specific contribution of 

each predictor in the combined plasma p-tau217 and Tau-PET models (rsq package).  

 

Next, we examined progression from cognitively unimpaired to MCI using Cox 

proportional hazard models, adjusting for age, sex, years of education, APOE-e4 

carriership and cohort using the continuous variables as predictors. For individuals who 

progressed to MCI we used the respective times at diagnostic progression to MCI for the 

analyses. To compare the predictive value of Tau-PET vs plasma p-tau217 for diagnostic 

conversion, we compared the difference in AICc using bootstrapping procedures (1,000 

repetitions with resample). In secondary analyses, all the above-mentioned analyses were 

repeated in Ab positive participants. 
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To assess potential differences between cohorts we performed several sensitivity 

analyses. First, for the associations between the tau biomarkers and mPACC5 decline we 

examined the effect sizes and total variance explained in all the previous models for each 

cohort independently (Extended-Data Figures-2/3). To that end, we applied the same 

linear regression models used in the main analyses to each cohort separately, without 

including cohort as a covariate. Similarly, we performed Cox proportional hazards 

models in all cohorts independently to calculate the hazard ratios and C-indices 

(Extended-Data Figures-4/5). Finally, we calculated the root mean square error (RMSE) 

of the predictions for each cohort when it was excluded from the training set. To do this, 

we calculated the cognition slopes for all cohorts combined, regressed out the cohort 

variable using a linear regression model, and then trained a model (with age, sex, and 

APOE as covariates) on all cohorts except one, subsequently predicting cognitive decline 

in the excluded cohort. We then calculated the RMSE from the difference between the 

predicted vs the observed data. 

 

A two-step approach for participant selection in a preclinical AD trial  

To derive optimal sample size reduction for a clinical trial, we generated a data-driven 

estimate of the complementary value of Tau-PET and plasma p-tau217 when 

implementing a sequential two-step approach (i.e., plasma p-tau217 first, followed by 

Tau-PET). First, we calculated the obtained sample size reduction when assuming 80% 

power to detect a 30% change in cognitive change (mPACC5) in a 4-year clinical trial 

(with annual repeated testing). Sample size was then defined by using different percentiles 

(75th, 50th and 25th) of the participants’ baseline plasma p-tau217 levels using the 

lmmpower function in the longpower package. The approach was repeated selecting the 
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75th, 50th and 25th percentiles of the new participants’ Tau-PET measures. Percentage 

of participants needed compared to the entire study population and the plasma-selected 

sample are reported. Similar analyses were performed for progression to MCI, using the 

ssizeCT.default function from the powerSurvEpi package. In this analysis, we aimed to 

detect a 30% reduction of events (i.e., progression to MCI) at 80% power.  

 

Next, we compared the characteristics of the sample included and excluded from the 

hypothetical clinical trial based on the different approaches presented. We focused on 

four combinations based on the participants selected on their plasma p-tau217 (step 1) 

and the Tau-PETMTL (step 2) levels, i.e., A) a “liberal” group comprising quartile 2 to 

quartile 4 (Q2-Q4) of plasma p-tau217 levels and Q2-Q4 of Tau-PET of those selected 

by plasma, B) a “moderate” group consisting of individuals within Q3-Q4 of plasma p-

tau217 levels and Q3-Q4 of Tau-PET of those selected by plasma, C) plasma p-tau217 

Q4-only, and D) a “conservative” group consisting of individuals within Q4 of plasma p-

tau217 levels and Q4 of Tau-PET of those selected by plasma. We compared the 

proportion of Ab-positivity, the mPACC slopes, the proportion of progressors to MCI 

and the final number of participants included based on the selection criteria between these 

groups. Finally, we investigated the percentage of cost reductions of such approaches for 

participant selection in a hypothetical clinical trial using either mPACC5 or progression 

to MCI as the outcome measure assuming 80% power to detect a 30% change mPACC5 

or progression to MCI in a 4-year clinical trial (with annual repeated clinical 

assessments). We provided percentage cost reductions using different ratios of costs for 

Tau-PET vs plasma p-tau217; 1:5 (i.e., cost of 1 Tau-PET scan resembling 5 plasma p-

tau217 assessments), 1:10. 1:15 and 1:20. 
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