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Abstract: Pharmacogenomics promises improved outcomes through individualized prescribing. 
However, the lack of diversity in studies impedes clinical translation and equitable application of 
precision medicine. We evaluated the frequencies of PGx variants, predicted phenotypes, and 
medication exposures using whole genome sequencing and EHR data from nearly 100k diverse 
All of Us Research Program participants. We report 100% of participants carried at least one 25 
pharmacogenomics variant and nearly all (99.13%) had a predicted phenotype with prescribing 
recommendations. Clinical impact was high with over 20% having both an actionable phenotype 
and a prior exposure to an impacted medication with pharmacogenomic prescribing guidance.  
Importantly, we also report hundreds of alleles and predicted phenotypes that deviate from 
known frequencies and/or were previously unreported, including within admixed American and 30 
African ancestry groups. 
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Main Text: 
Introduction 

The National Institutes of Health’s All of Us Research Program (All of Us) aims to accelerate 
precision medicine by recruiting one million diverse participants with a focus on those 
previously underrepresented in research(1). As of Winter 2024, >750,000 participants have been 5 
enrolled, >400,000 have contributed electronic health record (EHR) data, and nearly 250,000 
have undergone whole genome sequencing (WGS). All of Us provides value to participants 
through continuous engagement and elective return of hereditary disease risk and 
pharmacogenomics (PGx) reports. 
 10 

PGx can significantly impact drug efficacy and toxicity. Many commonly prescribed 
medications have genotype-guided dosing or drug selection recommendations in their Food and 
Drug Administration (FDA) approved labeling or in guidelines developed by the Clinical 
Pharmacogenetics Implementation Consortium (CPIC). There are >300 medications with PGx 
information in drug labeling and >25 guidelines which cover >100 gene-drug pairs with CPIC 15 
level A evidence with a guideline representing the highest level of evidence(2). Implementation 
of PGx in clinical practice has demonstrated reduced cardiovascular adverse events through use 
of genotype-guided antiplatelet therapy(3, 4). A multi-gene panel guided treatment has further 
demonstrated reduced adverse event (5). 
 20 

Despite the strong evidence supporting the use of PGx data in clinical practice, broader 
implementation is limited in part by the relative paucity of data on the frequency of variants, 
alleles, and predicted phenotypes across diverse biogeographical groups. European populations 
are overrepresented in genetic research representing a vast majority of genome wide association 
studies to date(6, 7). Small sample sizes and the use of targeted genotyping assays or whole 25 
exome sequencing (WES) which are unable to interrogate every variant within PGx genes also 
limit characterization of rare variants and the discovery of novel haplotypes(8, 9). Further, while 
several studies have captured the incidence or prevalence of PGx medication prescribing among 
large health systems or using payer data, they have lacked the genetic data to estimate the true 
impact of PGx by linking medication exposure with clinically actionable variants for an 30 
associated gene in the same patients(10-13). Studies that have included genetic data have been 
limited in discovery due to integrated call sets generated from combining imputed array data 
with WES, which are unable to characterize all known PGx variants(9, 14). More recently, 
evaluation of over 200k UK Biobank participants demonstrated the utility of large cohorts in the 
discovery of novel haplotypes and estimation of known PGx allele and phenotype 35 
frequencies(15). However, it still lacked the diversity and the WGS data necessary to accurately 
estimate PGx allele and phenotype frequencies in all groups.  
 

To characterize PGx genetic diversity, we report the frequency of PGx variants, alleles, and 
predicted phenotypes in 16 well-established PGx genes using WGS data from nearly 100,000 All 40 
of Us participants. Frequencies of variants were compared against existing reference databases 
and frequencies of rare variants and genotypes were identified. We then estimate the real-world 
impact of PGx by determining the proportions of participants who have potentially actionable 
findings; a predicted PGx phenotype and exposure to a medication with a prescribing 
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recommendation from CPIC or the FDA. This study represents one of the largest and the most 
diverse PGx datasets with linked medication exposures events to date. 

Results 
 

Demographics 5 

Table 1 shows the characteristics of the participants with available WGS data (n=98,590), EHR 
data (n=372,082), and those who had both WGS and EHR data (n=98,553). The average age of 
the participants was relatively similar across the three groups at 54.61, 54.02, and 54.61 
respectively. The majority of the participants reported female sex at birth at 59.76%, 59.79%, 
and 59.79% respectively. Of the participants with available WGS data, the genetic ancestry 10 
groups with the highest frequency were the EUR, AFR, and the AMR genetic ancestry groups at 
50.38% (49,668), 23.22% (22,897), and 16.12% (15,893) as presented in Figure 1A.  

 
WGS variant analysis 

WGS data for 955 variants was extracted for 98,590 participants. None of the variants were 15 
excluded due to low quality based on the All of Us Genomic Research Data Quality Report and 
no samples were dropped due to low call rate. Using a variant call rate cutoff of 0.98, five 
variants were dropped from any further analysis (CYP2B6 c.329G>T, CYP2B6 c.296G>A, 
CYP2B6 c.785A>G, SLCO1B1 c.1738C>T, and NUDT15 c.156C>G). CYP2B6 was dropped as a 
whole as the three dropped variants would have affected haplotype assignment for >50% of 20 
participants. Two variants (ABCG2 c.421C>A and NUDT15 c.7973C>T) from the AMR genetic 
ancestry group failed to meet HWE. Genotype concordance between WGS and genotyping array 
for these two variants across all samples (n=95,596 overlapping) and within the AMR group 
(n=14,601 overlapping) were >99%. Therefore, these variants were included in the remaining 
analysis as the deviation from HWE is unlikely to be due to genotyping error. Overall, every 25 
participant carried at least one PGx variant with a median of nine (Figure 1B). Variant 
frequencies overall and by genetic ancestry are presented in table S1. 
 

PGx Haplotyping 
Stargazer and orthogonal analysis using PharmCAT produced very similar results disagreeing on 30 
only 0.12% (1,819/1,478,850) of all genotype calls. These differences were in CYP2C19 
(n=949), SLCO1B1 (n=697), VKORC1 (n=96), G6PD (n=59), UGT1A1 (n=7), ABCG2 (n=5), 
CYP2C9 (n=3), DPYD (n=2) and CYP3A5 (n=1). Importantly, most (64.65%; 1,176/1,819) of the 
differing genotype calls resulted in the same predicted phenotype. Therefore, the overall 
difference in the predicted phenotypes was only 0.04% (643/1,478,850). No notable differences 35 
were observed due to genetic ancestry. Stargazer and PharmCAT allele frequencies overall and 
split by genetic ancestry are reported in table S4. Similar analyses of phenotype frequencies are 
reported in table S5. 

 
Using Stargazer, 99.48% (1,471,158/1,478,850) of gene/gene region calls were successfully 40 
assigned a genotype. Similarly, excluded variants resulted in SLCO1B1 *45 and *46 calls being 
called as *1 and *15 respectively and NUDT15 *12 was called as *1. The primary reason for an 
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inability to assign a single genotype was due to a participant carrying >2 alleles which 
represented 81.23% (6,248/7,692) of the unsuccessful calls. Other reasons were an inability to 
distinguish between more than one possible genotype (13.55%; 1,042/7,692) and an inability to 
assign a genotype call based on the composite of variants identified in a given sample (did not 
meet any known core allele definitions) (5.23%; 402/7,692). A small (1.53%; 22,573/1,478,850) 5 
proportion of genotype calls returned >2 alleles (>1 allele for G6PD XY samples) for a gene 
suggesting incomplete haplotype definitions for these genes. Of the 98,590 participants, 16.50% 
(16,264/98,590) and 5.94% (5,854/98,590) had >2 alleles for DPYD and CYP4F2 respectively. 
All genotype counts with >2 alleles are presented in table S6. Once CYP4F2 is excluded due to a 
recent PharmVar update which added a novel *4 allele that is the combination of *2 and *3, 10 
24.03% (5,501/22,897) of participants in the AFR group had at least one gene with >2 alleles, 
representing 40% more participants than the next highest group of MID at 17.10% (33/193). 

 
SLCO1B1 indeterminate phenotypes were found to be unusually high in the AFR group at 
22.83% (5,227/22,897; Figure 2) primarily the result of relatively common *27, *41, and *43 15 
alleles (4.78%, 3.20%, and 2.59% respectively) whose function has not yet been characterized 
versus allele frequencies that are ≤0.006 (table S4) in all other groups (excluding OTH). Similar 
results were observed for TPMT indeterminate phenotypes in the AFR group at 9.19% 
(2,105/22,897) due to undefined function for *8 and *24 alleles (2.54% and 2.35% respectively). 
 20 

Most (98.18%; 96,791/98,590) participants carried an actionable phenotype for at least one gene 
and 87.98% (86,744/98,590) carried an actionable phenotype for at least 2 genes based on CPIC 
guidelines. This expands to 99.13% (97,734/98,590) for at least 1 gene and 93.29% 
(91,971/98,590) for at least 2 genes when expanding to include FDA recommendations. This 
effect is caused by the UGT1A1 intermediate metabolizer phenotype which is considered 25 
actionable for irinotecan by the FDA and does not yet have a guideline in CPIC. Actionable 
phenotypes were most commonly observed in UGT1A1 (59.25%; 58,413/98,590), CYP2C19 
(59.10%; 58,264/98,590), and VKORC1 (52.93%; 52,186/98,590). The overall frequency of 
actionable phenotypes was high and similar across ancestry groups, ranging from 97.55% in the 
AMR group to 99.91% in the EAS group. However, there are notable differences between 30 
genetic ancestry groups in the frequency of actionable phenotypes within individual genes such 
as with ABCG2 which was substantially more common in the EAS group at 10.84% versus the 
AFR group at 0.07% as shown in Figure 3. Similarly, most participants in the AFR group 
(72.44%) carried an actionable phenotype for CYP3A5 compared to the EUR group (12.70%). 

 35 

Although phased data was not available at this time, UGT1A1 *37 was never observed alone in a 
sample; it was always in combination with the *80 allele. Further, *27 was observed only in the 
presence of both *28 and *80, likely representing a single haplotype. This could explain 31/34 
UGT1A1 genotype calls with >2 alleles in table S6. CYP2C19 *2 and *30 were also commonly 
observed together and representing 28/163 instances of participants carrying >2 alleles for 40 
CYP2C19. Similarly, TPMT *8 and *33 represent all (n=11) instances of multiple alleles 
observed for this gene. Additional novel combinations that help to explain samples with >2 
alleles include SLCO1B1 *4 +*27, *26+*37 and CYP2C9 *5+*36, *9+*36, *9+*11. 
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Frequency comparisons 
Frequencies were compared within genetic ancestry groupings to external, gold standard 
repositories (gnomAD and CPIC) whenever variants, non-reference alleles, and phenotypes have 
a known frequency >0. The OTH group was excluded as it is a heterogeneous population without 
a mapped comparator. Allele and phenotype frequencies were not compared for CACNA1S and 5 
RYR1 due to the rarity of finding variants within these genes. Variant frequencies were similar to 
gnomAD with only 5.85% (58/992) of the variant-genetic ancestry comparisons being below the 
p-value cutoff and that most (35/58) were within the AMR group (Fig 4A; table S7). However, 
absolute differences in the frequencies were minimal, typically (55/58) less than 2%. Of the 
available biogeographical allele frequencies within CPIC, 25.75% (111/431) did not match All of 10 
Us genetic ancestry allele frequencies (Fig 4B; table S7). The AFR (n=41) group had the most 
alleles where the frequencies were significantly different from CPIC, whereas the AMR, EAS, 
MID, and SAS groups had much fewer allele frequencies which did not match CPIC at 10, 10, 2, 
and 10 respectively. Further, 35.78% (73/204) of the phenotype comparisons failed to match the 
respective biogeographical group frequencies within CPIC (Fig 4C; table S7). 41/73 differing 15 
frequencies were found to be significantly higher in All of Us than previously reported. The AFR 
genetic ancestry group was significantly different than reported CPIC frequencies for every 
phenotype for SLCO1B1, TPMT and UGT1A1. For example, the SLCO1B1 decreased function 
phenotype was found to be at 10.38% (2,351/22,897) in All of Us for the AFR group while it was 
reported as 1.98% within CPIC in the African/African American biogeographical group. 20 

 
Identification of unknown frequencies 

Overall, 491 allele and 129 phenotype frequencies by genetic ancestry groups (excluding OTH) 
were reported for the first time (these alleles and phenotypes were previously unknown or 
reported as “0” for a frequency within CPIC) per table S8 and Figure 5. The AMR and AFR 25 
groups had the highest number of previously unknown allele frequencies at 33.60% (165/491) 
and 24.25% (124/491) respectively. Fewer novel frequency estimates were made in the MID and 
SAS populations at 8.15% (40/491) and 5.70% (28/491) respectively; likely due to more limited 
sample size within this initial All of Us data release. 
 30 

PGx medication exposures among All of Us participants 
EHR data was extracted for 372,082 participants with 68,576,017 medication exposure events. 
Participants had an average of 184 medication exposure events. Many 
(45.91%;170,829/372,082) participants had exposure to at least 1 medication with CPIC A 
guidance with a range of 0-24. When including additional medications that had FDA PGx 35 
guidance, 47.27% (175,895/372,082) of participants had an exposure to at least one PGx 
medication with a range of 0-29. The most common PGx medication exposures include 
ondansetron, ibuprofen, and omeprazole at 27.80% (103,434/372,082), 20.07% 
(74,683/372,082), and 14.15% (52,643/372,082) as shown in Figure 6. table S9 represents the 
overall prevalence of all PGx medications. 40 

 
Medication exposure with actionable phenotype 
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Of the participants who had both WGS and EHR data, 20.74% (20,442/98,553) carried an 
actionable phenotype for a medication that was part of a CPIC level A gene-drug pair which they 
have previously been exposed to. This rises only slightly to 20.80% (20,500/98,553) when 
expanding to include FDA PGx medications. When considering only CPIC medications, the 
most common PGx medication exposures in participants with an actionable phenotype for at 5 
least one associated gene were omeprazole, pantoprazole, and atorvastatin at 10.11% 
(9,960/98,553), 7.58% (7,473/98,553), and 3.77% (3,712/98,553) respectively as shown in 
Figure 7B. The genes with the most common actionable phenotype with an associated PGx 
medication exposure were CYP2C19, SLCO1B1, and CYP2C9 at 15.09% (14,878/98,553), 
4.68% (4,617/98,553), and 2.78% (2,736/98,553) respectively as shown in Figure 7A. 10 

 
Discussion 

All of Us provides a unique opportunity to evaluate the frequency of PGx variants, actionable 
phenotypes, and associated medication exposures in one of the largest and most diverse cohorts 
with available WGS and EHR data. In the current analysis, we report all known variant, allele, 15 
and phenotype frequencies from 98,590 diverse participants across 15 pharmacogenes (excludes 
CYP2B6). We report 100% of participants carried at least one PGx variant and nearly all 
(99.13%) had a predicted phenotype for a gene which has a recommendation for a change in 
prescribing. Many allele (26%) and phenotype (36%) frequencies were found to deviate 
significantly from gold standard databases. A significant number of allele (491) and phenotype 20 
(129) frequencies for specific genetic ancestries have been estimated for the first time. Similarly, 
many novel haplotypes from known allele combinations are reported, demonstrating the value of 
a large diverse All of Us cohort with WGS data. Importantly, over 20% of participants had an 
actionable phenotype and previous exposure to a medication with CPIC or FDA PGx prescribing 
guidance for that phenotype, emphasizing the broad, real-world value of PGx. 25 

 

The comparison of calculated frequencies to known gold standard databases represents 
opportunities to evaluate existing frequencies and determine where gaps exist in current 
knowledge. Variant frequency comparisons to gnomAD matched well with most of the 
differences representing minimal absolute differences. Comparisons to CPIC, however revealed 30 
larger differences, particularly in SLCO1B1 and UGT1A1 as well as the AFR and AMR groups 
where most allele and phenotype frequencies did not match CPIC. It is important to note that 
CPIC computes diplotype frequencies using data from studies with available allele frequencies 
based on HWE principle and then computes phenotype frequencies from the computed 
diplotypes. This process has the potential to expand the margin of error within the data. These 35 
previously established allele and phenotype frequencies are also negatively impacted due to use 
of targeted PGx assays or exome data that may not interrogate all variants, small sample sizes 
that are not capable of accurately capturing the frequency of rare alleles, and limited diversity in 
prior studies(16). Collectively, this has resulted in many allele and phenotype frequencies that 
are either unknown or reported as 0 which limits the number of comparisons that are possible. 40 
This can be clearly observed in table S3 where only 14 allele and 16 phenotype frequency 
comparisons (out of 185 and 54 respectively) be made to CPIC for the AMR group. The EAS, 
MID, and SAS groups appeared to match CPIC frequencies better, however this is likely 
attributed to the more limited numbers in this early release of All of Us data that better match the 
studies used to calculate the known frequencies within CPIC. The All of Us cohort represents one 45 
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of the largest cohorts of participants from African ancestry at nearly 23k participants at the time 
this study was performed. The size of the cohort allowed for accurate estimation of allele 
frequencies and represented the group with the highest number of allele frequencies (n=41) that 
deviated from CPIC. The most notable frequency discovery is that every calculated phenotype 
frequency for the AFR group for SLCO1B1, TPMT, and UGT1A1 was significantly different than 5 
in CPIC. This further highlights the underrepresentation of participants from African ancestry in 
genomic studies as a whole(6).  
 

All of Us has particular value in understanding the frequency of rare variants because of the size 
of the cohort, comprehensiveness in genotyping approach, and the genetic diversity. Large 10 
biobank analyses demonstrate value to the field through improved understanding of haplotype 
frequencies which guides allele selection on clinical tests, aids in quality control for existing tests 
and allows clinical teams to estimate the impact of a panel design. In a recent UK Biobank 
analysis of over 200k participants, the frequency of 430 allele frequencies were computed for the 
first time compared to 491 values within this All of Us analysis(15). First, in UK Biobank many 15 
of the novel frequencies were computed in CYP2B6 and CYP2D6. In this All of Us analysis, we 
did not report CYP2B6 haplotypes because of stringent quality control. CYP2D6 was not 
characterized because the initial release of genetic data did not include CRAM files that are 
needed to accurately characterize structural variants and haplotypes. Although CYP2D6 allele 
frequencies were computed in UK Biobank, these data would not represent accurate haplotype 20 
frequencies without structural variant characterization. Exclusion of CYP2C Cluster allele 
frequencies to match values not included within the UK Biobank analysis gives a true gene to 
gene comparison of 285 vs 479. Despite All of Us having less than half the number of 
participants of the UK Biobank analysis at the time of these analyses, the difference clearly 
demonstrates the lack of knowledge on diverse cohorts and the power of having both expanded 25 
diversity with WGS data within All of Us. The computed frequencies provide further knowledge 
to improve equitable application of precision medicine through improved guidance of PGx 
clinical testing. 

 
Many genotype calls suggested a sample was carrying >2 alleles. These situations represent 30 
important opportunities to update known haplotype definitions. DPYD genotypes could have 
more than two alleles due to the length of the gene that results in haplotype blocks instead of 
distinct haplotypes(17). CYP4F2 has previously been shown in phased data that samples can 
carry the *2 and *3 variants on a single strand(9, 18) and has recently been updated by PharmVar 
with a new *4 allele which is defined as the combination of the *2 and *3 alleles. UGT1A1 35 
haplotypes have not yet been characterized by PharmVar despite the presence of a CPIC 
guideline and therefore leaves the potential for novel combinations of variants/alleles as was 
observed in the *80+*28+*27 haplotype(19). The UGT1A1 *80+*28+*27 and CYP2C19 *30+*2 
haplotypes observed in All of Us participants were also recently identified among UK Biobank 
participants(15). TPMT *8+*33 has previously been described by GeT-RM in a trio as a novel 40 
*46 allele, however this allele definition has not yet been incorporated into CPIC but is 
recognized by the TPMT nomenclature committee(20, 21). The remaining combinations 
represent novel haplotypes and present an opportunity to update allele definitions within CPIC 
and PharmVar for these genes to better represent the haplotypes that are observed in diverse 
populations(22). Samples where a genotype call could not be assigned due to the combination of 45 
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variants that were observed can also be identified from the dataset and represent additional 
opportunities for improved haplotype characterization. 

 
Haplotype calling using Stargazer and PharmCAT demonstrated very high genotype and 
predicted phenotype concordance. Both tools attempt to resolve the genotype call for a gene by 5 
matching identified variants with known allele definitions. The small differences observed may 
be attributable to the assumptions that each tool makes about input data contribute to minor 
calling differences. The first difference is that PharmCAT considers suballeles as possible allele 
assignments whereas Stargazer does not. PharmCAT considers no calls for variants as a possible 
variant whereas Stargazer assumes the variant is homozygous reference. In genes where there is 10 
only a single variant defined by CPIC and the variant is not called for the sample, PharmCAT is 
unable to assign a genotype whereas Stargazer assigns the reference allele. With unphased data 
such as in the current analysis, both tools assume all variants are on the same chromosome strand 
(cis conformation). However, if all variants cannot be phased to the same chromosome strand, 
Stargazer resolves the haplotype by attempting to assign as many variants that define a single 15 
haplotype with any remaining variants being assigned to the second haplotype (i.e 4:1 is 
preferred over 3:2). PharmCAT instead provides all possible genotypes for the given set of 
variants. If PharmCAT identifies a combination of variants that do not translate to a known allele 
definition, the genotype is not called for the sample. Stargazer attempts to call any allele that is 
possible with the given set of variants, otherwise the sample is assigned the reference allele. 20 
Lastly, Stargazer uses Beagle as part of its pipeline which can impute missing genotype calls that 
are identified with high accuracy, although this occurrence has been found to be rare (<50 
genotype calls). Overall, our data show that these differing approaches rarely resulted in 
differing calls and therefore unlikely had a significant impact on the frequencies reported.  

 25 

The clinical impact of PGx is clear as where 1 in 5 of participants had an actionable phenotype 
and previous exposure to a medication with CPIC or FDA PGx prescribing guidance for that 
phenotype. Despite the high prevalence of PGx medication exposure events, the observed 
prevalence in All of Us is likely an underestimate since All of Us captures primarily inpatient 
medication exposures, all topical products were excluded, and important pharmacogenes (e.g. 30 
CYP2D6, HLA-A, HLA-B) were not included in the current genetic analysis. Importantly, the 
prevalence of PGx medication exposure events were found to be higher than previously reported 
data from large health systems(11, 13, 14). Similarly, prevalence of participants who have had an 
exposure to medications with associated actionable phenotypes were higher than previously 
reported rates in large biobank studies(9, 14). We attribute this difference for two reasons. First, 35 
CPIC continues to evaluate literature and update existing guidelines with addition of new 
medications(23) as well as developing new guidelines(24, 25). Some or all of these guidelines 
were not available when previous studies were conducted and therefore resulted in prevalence 
rates that were lower than what was observed within the current data from All of Us. Further, 
these studies were limited to an integrated call set consisting of WES and imputed array 40 
compared to WGS in All of Us and are unable to evaluate all known PGx variants. 
 

Limitations 
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The analysis focused on all genes that were part of a CPIC Level A gene-drug pair, but had 
notable exclusions (e.g. CYP2D6, HLA-A, HLA-B, and MT-RNR1). MT-RNR1 is within 
mitochondrial DNA, which was not available at the time of this study. CYP2D6 and the HLAs 
were excluded because BAM/CRAM files were not yet available at the time of this study. 
Similarly, CYP2C19 (*36, *37) and SLCO1B1 (*48, *49) both have structural variants, however 5 
these are expected to be rare and could not be not characterized at this time. During haplotype 
calling, variants were excluded in NUDT15 and SLCO1B1 in addition to CYP2B6 as a whole. 
This limited characterization of differences between a *12 and *1 in NUDT15, *45 and *1 in 
SLCO1B1, *46 and *15 in SLCO1B1. These alleles are expected to be rare based on overall 
variant frequencies within gnomAD (v3.1.2) at 0.00008 for NUDT15 *12 and 0.0016 for 10 
c.1738C>T defined for both *45 and *46 in SLCO1B1. CYP2B6 is known to present a challenge 
in genotyping using short-read WGS due to the highly homologous pseudogene CYP2B7 which 
has limited accuracy in characterizing variants(26). Further, while the All of Us dataset, provides 
an exceptional opportunity to link genetic, medication exposure, and phenotypes, medication 
exposure data are limited by whether a participant provided EHR data, and the amount of data 15 
contained in EHRs of the recruiting organization. Medication data may therefore be inconsistent 
between participants and may not include all medication exposures from each participant (e.g. 
may be missing over the counter medication exposures or some prescribing events when they 
occurred externally). Medication exposure events that included topical products or ambiguous 
formulations for a medication that could be topical were also excluded and represented roughly 20 
6% of medication exposures. Overall, incomplete medication exposure information likely 
underestimated the true prevalence rate of medication exposure events that could be impacted by 
PGx. Lastly, while the All of Us cohort is diverse compared to other large datasets, it currently 
has low representation from some biogeographical groups in these early data releases. As All of 
Us achieves its goals to recruit participants that are traditionally underrepresented in research, we 25 
expect diversity will continue to expand and increase the value of these data.  
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All data used in this analysis is available through the All of Us Researcher Workbench. 5 
The code is made available as a demonstration project within a featured workspace titled 
“Demo - Pharmacogenomics (PGx) variant frequency and medication exposures”. 
Further, the PGx haplotype calls from both Stargazer and PharmCAT are available to all 
users for additional genotype-phenotype discovery and can be accessed through the 
featured workspace. 10 
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Figure 1: Genetic ancestry and variant distribution. Percentage of participants binned to each 
of the genetic ancestry super-populations (A). Distribution of the number of PGx variants 
observed in each participant (B). 
  20 
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Figure 2: Phenotype frequency by genetic ancestry. NF: Normal Function, DF: Decreased 
Function, PF: Poor Function, AS: Activity Score, VA: Variant Absent, VP: Variant Present, NM: 
Normal Metabolizer, IM: Intermediate Metabolizer, PM: Poor Metabolizer, US: Uncertain 5 
Susceptibility, MHS: Malignant Hyperthermia Susceptibility, UM: Ultrarapid Metabolizer, RM: 
Rapid Metabolizer 
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Figure 3: Frequency of actionable phenotypes. Predicted phenotypes were used to identify the 
frequency of actionable phenotypes by gene and genetic ancestry.  
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Figure 4: Comparison of calculated frequency and expected frequencies. Calculated variant 
frequencies compared to gnomAD (A). Allele (B) and phenotype (C) frequencies compared to 
CPIC. 

 5 
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Figure 5: Newly computed allele and phenotype frequencies. Allele (A) and phenotype (Fig 
B) frequencies that were previously unknown or reported as 0 (Green). Frequencies previously 
known (Blue) and phenotype frequencies that remain unknown (Red). Allele frequencies that are 
unknown are not provided as the true number of possible alleles in each genetic ancestry 5 
population is unknown. 
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Figure 6: Prevalence of PGx medication exposures. Medication exposure prevalence overall 
for all PGx medications and for each of the top 10 most common medications (A). Prevalence of 
genes associated with medication exposures (B).  

 5 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.24304664doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.12.24304664


Submitted Manuscript: Confidential 
Template revised November 2023 

21 
 

 

Figure 7: PGx medication exposures in participants with actionable phenotypes.  Frequency 
of genes with actionable phenotypes associated with medication exposures (A). Frequency of a 
medication exposure while also carrying an actionable phenotype for an associated gene (B).  
Colors represent the associated gene for which the participant carries an actionable phenotype. 5 
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Characteristic WGS EHR WGS + EHR 
N 98,590 372,082 98,553 
Age - mean (range) 54.61 (19-107) 54.02 (19-122) 54.61 (19-107) 
Sex at Birth - no. (%) 
- Female 58,920 (59.76) 222,463 (59.79) 58,920 (59.79) 
- Male 38,133 (38.68) 138,817 (37.31) 38,133 (38.69) 
- Intersex 22 (0.02) 79 (0.02) 22 (0.02) 
- Other/Missing 1,515 (1.54) 10,723 (2.88) 1,478 (1.50) 
Imputed Sex - no. (%) 
- XX 59,680 (60.53) 59,652 (60.53) 59,652 (60.53) 
- XY 38,167 (38.71) 38,167 (38.71) 38,167 (38.71) 
- Other 743 (0.75) 743 (0.75) 743 (0.75) 
Gender - no (%) 
- Female 58,647 (59.49) 220,800 (59.34) 58,647 (59.51) 
- Male 37,970 (38.51) 138,127 (37.12) 37,970 (38.53) 
- Non Binary 160 (0.16) 919 (0.25) 160 (0.16) 
- Transgender 117 (0.12) 464 (0.12) 117 (0.12) 
- Other/Missing 1,760 (1.79) 11,772 (3.16) 1,659 (1.68) 
Genetic Ancestry - no (%)  
- European (EUR) 49,668 (50.38) 49,654 (50.38) 49,654 (50.38) 
- African/African American (AFR) 22,897 (23.22) 22,879 (23.21) 22,879 (23.21) 
- American Admixed/Latino (AMR) 15,893 (16.12) 15,889 (16.12) 15,889 (16.12) 
- East Asian (EAS) 2,113 (2.14) 2,113 (2.14) 2,113 (2.14) 
- South Asian (SAS) 940 (0.95) 940 (0.95) 940 (0.95) 
- Middle Eastern (MID) 193 (0.20) 193 (0.20) 193 (0.20) 
- Other (OTH) 6,886 (6.98) 6,885 (6.99) 6,885 (6.99) 

Table 1: Participant demographics 
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