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Background: Tumor heterogeneity is associated with poor prognosis and drug 

resistance, leading to therapeutic failure. Here, we aim to utilize tumor evolution 

analysis to decode the intra- and inter-tumoral heterogeneity of high-grade serous 

ovarian cancer (HGSOC), unraveling the correlation between tumor heterogeneity and 

prognosis as well as chemotherapy response through single-cell and spatial 

transcriptomic analysis. 

Methods: We collected and curated 28 HGSOC patients single-cell transcriptomic 

data from five datasets. Then, we developed a novel text mining-based machine 

learning approach to deconstruct the evolutionary patterns of tumor cell functions. 

This allowed us to identify key tumor-related genes within different evolutionary 

branches, elucidate the microenvironmental cell compositions that various functional 

tumor cells depend on, and analyze the intra- and inter-heterogeneity of tumors and 

their microenvironments in relation to prognosis and chemotherapy response in 

HGSOC patients. We further validated our findings in two spatial and seven bulk 

transcriptomic datasets, totally 1,030 patients. 

Results: By employing transcriptomic clusters as proxies for functional clonality, we 

identified a significant increase in tumor cell state heterogeneity, which was strongly 

correlated with patient prognosis and treatment response. Furthermore, increased 

intra- and inter-tumoral functional clonality was associated with the characteristics of 

cancer-associated fibroblast (CAF). We also found that the spatial proximity between 

CXCL12-positive CAF and tumor cells, mediated through the CXCL12/CXCR4 

interaction, is highly positively correlated with poor prognosis and chemotherapy 

resistance in HGSOC. Finally, we constructed a panel of 24 genes through statistical 

modeling, that are highly correlated with CXCL12-positive fibroblasts and can predict 

both prognosis and chemotherapy response in HGSOC. 

Conclusions: Our study offers insights into the collective behavior of tumor cell 

communities in HGSOC, as well as potential drivers of tumor evolution in response to 

therapy. Functional analyses and experiments revealed a strong association between 

CXCL12-positive fibroblasts and tumor progression as well as treatment outcomes. 

Our findings provide an important theoretical basis for clinical HGSOC treatment. 
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Introduction 

Ovarian cancer (OC) ranks first in mortality among gynecologic malignancies 

[1]. High-grade serous ovarian cancer (HGSOC) is the most common and deadly 

subtype of OC [2]. Over 75% of HGSOC patients are diagnosed at an advanced stage 

with extensive malignant ascites and omental metastasis [3]. Complete staging 

surgery followed by platinum-based chemotherapy is the standard treatment for 

HGSOC [4]. However, over 25% of patients develop chemotherapy resistance within 

6 months of initial treatment, and 70% experience recurrence within 2-3 years, 

ultimately succumbing to acquired drug resistance [5]. Therefore, platinum drug 

resistance is the primary cause of poor prognosis, recurrence, and death in HGSOC 

patients. Identifying clinical indicators that are closely associated with platinum 

chemotherapy resistance and HGSOC treatment prognosis is of great importance. 

Tumor heterogeneity is a crucial factor influencing patient prognosis and 

treatment outcomes, which consists of inter-tumor (tumor by tumor) and intra-tumor 

(within a tumor) heterogeneity [6]. Intertumor heterogeneity mainly from different 

patients which induced by diverse genetic mutations, epigenetic modifications and 

transcriptional alterations. While, intra-tumoral heterogeneity refers to the presence of 

different cell types with varying functional characteristics within a tumor, resulting 

from interactions between tumor cells and distinct tumor microenvironment (TME) 

[6]. 

Previous research has primarily focused on intertumoral heterogeneity, analyzing 

genomic characteristics to obtain molecular subtypes of tumors, identify different 

patient subgroups, and select targeted therapies. For instance, four molecular subtypes 

have been identified in HGSOC: mesenchymal, immunoreactive, differentiated, and 

proliferative [7]. Among these, the immunoreactive subtype demonstrates a better 

prognosis and treatment response [7]. Identifying different mutational characteristics 

is crucial for treatment selection in patients. The BRCA1/2, TP53, and genes in the 

PI3K/AKT/mTOR pathway, which are frequently altered in ovarian cancer, serve as 

prime targets for clinical diagnosis and therapy [8]. However, intra-tumoral 

heterogeneity cause drug resistance, leading to therapeutic failure [6]. Thus, we need 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


to integrate molecular features of both inter-tumor and intra-tumor heterogeneity with 

functional heterogeneity to improve patient subclassification and response to therapy. 

Tumor heterogeneity is thought to adhere to the fundamental principles of 

Darwinian evolution, where individual cells harboring heritable mutations that 

enhance adaptability gain a survival advantage [9]. Natural selection drives clonal 

expansion, leading to the emergence of subclones with varying proliferative, 

migratory, and invasive capabilities [10]. The evolution of adaptive clones occurs 

within the dynamic tissue environment known as the tumor microenvironment (TME), 

forming a complex local tumor ecosystem. Changes within the TME further influence 

genetic diversification and phenotypic outcomes, driving the compositional tumor 

heterogeneity [11-13]. Therefore, identifying the distinct tumor cell clone subtypes 

within HGSOC and the microenvironment cell types they interact with, exploring the 

interactions between the microenvironment and tumor cells, and elucidating the 

patterns of tumor evolution are crucial for the treatment and prognosis prediction of 

HGSOC. 

The TME composed of stromal cells, immune cells, extracellular matrix, and a 

variety of soluble factors, can influence tumor progression and response to therapy 

[13]. The utilization of single-cell and spatial transcriptomics technologies has 

significantly advanced the investigation of heterogeneity in HGSOC [7, 14]. For 

example, the presence of tumor-associated macrophages (TAMs) has been associated 

with poor prognosis in HGSOC, as these cells can promote angiogenesis, 

immunosuppression, and chemoresistance [15]. TGF-β-driven cancer-associated 

fibroblasts, mesothelial cells and lymphatic endothelial cells predicted poor outcome, 

while plasma cells correlated with more favorable outcome of HGSOC [7]. 

It becomes increasingly evident that understanding the evolutionary trajectories 

of tumor and TME cells is paramount to developing more effective and personalized 

treatment strategies [16]. It should explore the multifaceted intra-tumor heterogeneity 

and the role of the tumor microenvironment in shaping the evolutionary dynamics of 

ovarian cancer [17]. Understanding the biodiversity and clonality could provide 

conceptual knowledge about evolving tumor cell community with the ultimate goal of 
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improving patient outcomes. 

Materials and methods  

Preprocessing of Single-Cell RNAseq Data 

Raw gene expression matrices were processed by Seurat R package (version 3.2.3) 

[18]. Cells of low quality were filtered out based on two criteria: 1) Cells with fewer 

than 1000 unique molecular identifiers (UMIs) or with less than 100 genes detected; 2) 

Cells with more than 30% of their UMIs originating from mitochondrial genes. For 

each sample, gene expression matrices were normalized using the LogNormalize 

method via the NormalizeData function, and highly variable genes were identified 

using the scran package [19]. Dimensionality reduction was performed with Principal 

Component Analysis (PCA), where the number of principal components was selected 

based on the JackStraw function. Cell clusters were identified using the FindClusters 

function and visualized through Uniform Manifold Approximation and Projection 

(UMAP). Differential genes between clusters were calculated by the Wilcoxon 

rank-sum test, with a family-wise error rate set at 5%.  

Identification of Tumor Cells 

 Copy number variations (CNVs) were estimated in each individual cell by 

analyzing the averaged expression profiles across chromosomal intervals. The initial 

estimation of CNVs for each chromosomal region was conducted using the infercnv R 

package (version 1.0.4)( inferCNV of the Trinity CTAT Project.  

https://github.com/broadinstitute/inferCNV). In epithelial cells, CNVs were 

determined by comparing the expression levels derived from the single-cell RNA 

sequencing (scRNA-seq) dataset, with a cutoff value of 1 and a noise filter set at 0.2. 

For each sample, gene expression data were re-standardized, and the values were 

constrained within the range of -1 to 1. The CNV for each cell was then calculated as 

the sum of the squares of the CNV values across the respective regions. 

Calculation of Epithelial Cells Scores 

 We employed the expression levels of epithelial scores based on the expression of 

five well-established markers: KRT19, KRT7, KRT18, KRT8 and EPCAM, as reported 

in previous studies [20]. 
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Tumor Evolution Analysis 

Selection of Representative Tumor Cells 

 Input the clustering information from Seurat, and simultaneously identify the 

tumor cell subgroups using the previously mentioned CNV method. 

 Utilize the normalized matrix to calculate the Principal component (PC) scores 

for each cell. Subsequently, employ the Wilcoxon rank-sum test to obtain PCs that 

show significant differences between classes (FDR < 0.05). Finally, select the top 10 

genes with the highest absolute coefficients of the differentially expressed PCs as the 

characteristic genes for the corresponding principal components. 

 Employ the characteristic genes obtained from the tumor subgroups, and then 

apply the TF-IDF (Term Frequency-Inverse Document Frequency) method. This 

technique is typically used in information retrieval and text mining to evaluate how 

important a word is to a document in a collection or corpus. In the context of gene 

expression analysis, TF-IDF can be used to identify the most relevant genes in the 

tumor subgroups based on their frequency and uniqueness across the dataset. 
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  normalized gene expression matrix defined above. 

Within the TF-IDF method, set the lower quartile of a gene's expression across all 

cells as the threshold. If a gene's expression is below this threshold, set its expression 

to 0. This approach ensures that only genes with a certain level of expression are 

considered significant, effectively filtering out genes that are expressed at very low 

levels across the cells. After applying the TF-IDF method to obtain the gene weight 

matrix ��,�, calculate the 95th percentile (A) of each gene's weight across all cells and 

set the lower threshold for gene weights at 0.25 * A. Any gene weight below this 

threshold in ��,� is set to 0, resulting in a corrected ��,� matrix. Subsequently, for 

each cell group, sum the weights of the characteristic genes to derive a total weight 

and set the cutoff value T to establish the cell weight threshold utilizing the formula: 
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where Q1, Q2 and Q3 represent lower quartile, median and upper quartile value 

separately. Cells with score higher than T are identified representative tumor cells. 

Clustering and refinement 

 Utilizing the high-purity tumor cells obtained in the first step for each tumor 

subgroup, we employed the SC3 method for consensus clustering to obtain 

subclassification labels for each subgroup. Subsequently, we merged the subcategories 

of each subgroup to identify those with statistically significant differences. 

Specifically, we first extracted the top 1000 highly variable genes from the PCA of 

high-purity malignant cells. For each subgroup's subclassification obtained through 

consensus clustering method SC3 [21], we trained a support vector machine (SVM) 

model using the first 10 principal components and validated the classification 

accuracy through ten-fold cross-validation. Following this, we randomly shuffled the 

labels to perform a permutation test (randomly shuffled 100 times), which allowed us 

to calculate the classification significance P-values between each pair of clusters. 

These P-values were then sorted in descending order, and an iterative merging process 

was conducted until the largest P-value was less than 0.05, at which point the iteration 

ceased. Through this method, we were able to identify the subclusters within each 

tumor subgroup that were of the highest purity and had statistically meaningful 

classifications. 

Hierarchical evolutionary analysis 

 We intersect the features derived from TF-IDF with those obtained through PCA 

and obtain tumor-associated feature genes. Utilizing these genes, above high-purity 

tumor cells and the purified subpopulations of each subgroup, we compute the mean 

expression values of the corresponding subgroup's feature genes to generate a 

pseudo-bulk dataset. We then apply the removeBatchEffect function in the Limma 

package (version 3.58.1) to remove for batch effects across various datasets. 

Subsequently, we perform hierarchical evolutionary analysis between subgroups using 

the pvclust function from the pvclust package (version 2.2, nboot=1,000).  

According to the aforementioned step, we are able to obtain highly purified 

subpopulations within tumors, facilitating the analysis of intratumoral heterogeneity. 
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Additionally, this method allows us to establish hierarchical evolutionary relationships 

among samples to obtain BR1, BR2 and BR3, thereby shedding light on their 

intertumoral heterogeneity. Importantly, it also enables the identification of genes that 

are indicative of the tumor characteristics specific to the entire ovarian cancer 

population. 

Cell Type Enrichment Analysis 

 Each cell subtype encompassed a range of tumor stages, for which we computed 

enrichment scores (EScores) to quantify their prevalence at different stages. These 

EScores, reflecting the ratio of subtype cell numbers at specific stages to their overall 

distribution, highlighted when a subtype was predominantly enriched, with values 

greater than 1 signifying enrichment at that stage [20]. 

WGCNA analysis in cell subclusters and acquisition of fibroblast-related Genes 

 The normalized expression matrix was utilized to construct a weighted gene 

co-expression network via the WGCNA R package (version 1.69). To mitigate the 

impact of noise and outliers, analysis was carried out on 'pseudo cells', which 

represent the average gene expression of ten randomly selected cells within each 

distinct cell type [22]. Network construction was achieved using the 

`blockwiseModules` function, applying the default settings. For each identified 

module, a principal component analysis was performed using the module eigengenes. 

The correlation between module eigengenes and cell type metadata was calculated to 

evaluate the relevance of each module using Pearson's correlation test. Subsequently, 

hub genes within significant modules were identified based on their modular 

connectivity, which refers to the absolute value of Pearson's correlation between genes 

(module membership), and their relationship with clinical traits, defined as the 

absolute value of Pearson's correlation between individual gene expression and cell 

type. Perform WGCNA analysis in the fibroblast subpopulations of datasets 

GSE154600 and GSE165897 [23], and take the intersection of characteristic genes of 

cell subpopulations significantly infiltrating in the BR3 branch as the final 

fibroblast-related characteristic genes, which will be used for the construction of the 

risk prognosis and drug resistance analysis model below. 
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Similarity analysis among cell subpopulations 

Utilize the acquired single-cell subpopulations and the union of characteristic 

genes obtained through WGCNA. Calculate the mean expression levels of these genes 

in each subpopulation and sample phenotype (the evolutionary branch to which the 

sample belongs). Use the R package ggcor (https://github.com/hannet91/ggcor) to 

compute the correlations between cell subpopulations and between cell 

subpopulations and phenotypes, and visualize these correlations. 

Clustering of bulk RNA data samples 

 Bulk RNA data were retrieved from the Cancer Genome Atlas (TCGA; 

https://www.cancer.gov/tcga) and GEO dataset, respectively. Subsequently, NMF 

clustering methods were performed on the normalized expression data using the NMF 

R package (version 0.23).  

Mapping Analysis of Single-Cell and Bulk RNA Subpopulations 

 To establish the correspondence between the inter-tumor clusters obtained from 

single-cell evolutionary analysis and the clusters identified through clustering 

methods in bulk, we first extract the characteristic gene sets from the single-cell BR1, 

BR2, and BR3 subpopulations. Subsequently, we employ a hypergeometric test to 

calculate the enrichment scores of the bulk RNAseq samples within these three gene 

sets. We then select the connections with the highest enrichment scores that are 

significantly enriched as the mapping relationship between single-cell and bulk 

RNAseq samples. 

Friends analysis 

The Friends analysis approach assesses the functional correlation among various 

genes within a pathway, suggesting that the interaction of a gene with others in the 

same pathway enhances its likelihood of expression. This methodology is widely 

adopted to identify crucial genes. Utilizing the R package GOSemSim [24], we 

calculated the functional correlations among genes linked to the prognosis of 

high-grade serous ovarian carcinoma (HGSOC) and drug resistance. 

Spatial Transcriptome Data Analysis 

 Raw gene-spot matrices were analyzed with the Seurat package (version 3.2.3) in 
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R. Spatial transcriptome data were qualitatively controlled using parameters including 

total spots, media UMIs/spot, median genes/spot, median mitochondrial genes/spot. 

Spots used in the subsequent analysis were filtered for minimum detected gene count 

of 200 genes while genes expressed in fewer than 3 spots were removed 

(Supplementary Table 2). Normalization across spots was performed with the 

SCTransform function. Dimensionality reduction and clustering were performed with 

principal component analysis (PCA) at a resolution of 1 with the first 30 PCs. We 

conducted cluster analysis using FindClusters, and then utilized the standardized 

expression matrix to calculate the average expression levels of immune-related genes 

(PTPRC, CD2, CD3D, CD3E, CD3G, CD5, CD7, CD79A, MS4A1, CD19) [25]. The 

subpopulation with the highest expression levels was selected as the normal control. 

We employed the InferCNV method to identify subpopulations of tumor cells. 

Subsequently, using the RegionNeighbours function from the R package STutility 

(version 1.1.1, https://ludvigla.github.io/STUtility_web_site/), we determined the cells 

at the tumor edge. We then used the FindMarkers function to calculate the 

differentially expressed genes in the region adjacent to the tumor edge. 

Immune Infiltration Analysis 

 We assessed the immune score of various immune cells in HGSOC patients by 

employing xCell (R package, version 1.1) on RNA-seq datasets and microarray 

datasets [26]. The microarray datasets underwent quantile normalization, while the 

RNA-seq dataset was quantified in terms of FPKM. 

In Vitro Functional Assays 

To investigate the role of the CXCL12/CXCR4 signaling pathway in ovarian 

cancer, siRNA was used to knock down CXCR4 in SKOV3 cells. The knockdown 

effects of different siRNA sequence were detected by qRT-PCR and Western blot 

respectively. The CCK8 assay was utilized to examine changes in cell viability after 

CXCL12 treatment and to determine the optimal cytokine concentration. 

Subsequently, cellular viability was monitored in the presence of the optimal 

concentration of CXCL12 to discern the variations induced by CXCR4 knockdown. 

Cell Culture 
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The human ovarian cancer cells SKOV3 were purchased from the ATCC cell 

bank. The cells were cultured in McCoy's 5A medium supplemented with 10% FBS 

and 1% double antibiotics (100 U/mL penicillin, 100 g/L streptomycin), and 

incubated in 37 °C incubator with 5% CO2. Trypsin was used for digestion and 

passaging when the cell reached 80%-90% confluence. 

Cell Transfection  

Cells were digested by trypsin and prepared into cell suspension. After cell 

counting, cells were plated at a density of 4×10^4 per well in a 24-well plate and 

incubated overnight in a cell culture incubator. siRNA transfection was performed 

according to the protocol of Lipofectamine 3000 (thermofisher L3000015), using 15 

pmol siRNA and 1.5 μL Lipofectamine per well. After 48 hours incubation, cells were 

collected for qRT-PCR and Western blot. The sequences of siRNA for the knockdown 

and control groups are shown as following:   

si-CXCR4-1  

GGCAAUGGAUUGGUCAUCCUGGUCA 

UGACCAGGAUGACCAAUCCAUUGCC 

si-CXCR4-2 

UGGUUGGCCUUAUCCUGCCUGGUAU 

AUACCAGGCAGGAUAAGGCCAACCA;  

si-CXCR4-3  

UGUUUCCACUGAGUCUGAGUCUUCA 

UGAAGACUCAGACUCAGUGGAAACA;  

si-NC  

UUCUCCGAACGUGUCACGUTT  

ACGUGACACGUUCGGAGAATT 

qRT-PCR 

qRT-PCR was used to detect the transcriptional level of the CXCR4 gene and 

knockdown effect of different siRNA sequences. TransZol Up was added to the cell 

samples for lysis, and the samples were processed according to protocol for RNA 

extraction. After air-drying at room temperature, RNA pellets were dissolved in 20 μL 
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Rnase free H2O. Concentration and A260/280 of RNA samples were measured using a 

spectrophotometer. Reverse transcription was performed according to the First-Strand 

cDNA Synthesis SuperMix kit instructions, 1 μg total RNA was used as template. The 

reaction mixture was incubated at 50 °C for 5 minutes and 85 °C for 2 minutes. Then 

qPCR reaction system was prepared according to the PerfectStart® Green qPCR 

SuperMix instructions, and the real-time PCR program was set as following, holding 

stage step1 95.0 °C 30 sec; cycling stage : number of cycles 40, step1 95.0 °C 15 sec , 

step2 60.0 °C 30s; melt curve stage: 95.0 °C 15 sec, 60.0 °C 60 sec, 95.0 °C 15 sec. 

The primer sequences used were:  

CXCR4-h-F ACTACACCGAGGAAATGGGCT;  

CXCR4-h-R CCCACAATGCCAGTTAAGAAGA;  

GAPDH-h-F TGACAACTTTGGTATCGTGGAAGG;  

GAPDH-h-R AGGCAGGGATGATGTTCTGGAGAG. 

Western Blot 

Western blot was used to detect the protein level of CXCR4. Cell samples were 

treated with RIPA lysis buffer (Sigma-Aldrich) containing PMSF and protease 

inhibitors, sonicated on ice, centrifuged at 4 °C, 12000 g for 10 minutes, and the 

supernatant was taken for protein quantification using the BCA method. After mixing 

with loading buffer and denaturing at 100 °C for 5 minutes, proteins were separated 

using 10% SDS-phage gel and then transferred to PVDF membrane. After blocking 

with 5% skim milk for 1 hour at room temperature, the membrane was incubated with 

the primary antibody, followed by HRP-conjugated secondary antibody, and imaged 

using ECL chemiluminescence. 

CCK8 

The CCK8 assay was used to detect the effect of CXCL2/CXCR4 on cell viability. 

cells were trypsinized to prepare a cell suspension When reached 80%-90% 

confluence. After cell counting, cells were plated at a density of 3000 cells per well in 

96 well plate. After incubation in a 37 °C incubator for 24 hours, the medium was 

replaced with complete medium containing (0, 50, 100, 200, 300 ng/mL) CXCL12 

and cultured for 48 hours. 10 μL of CCK8 reagent was added per well, and the 
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absorbance at 450 nm was measured using a microplate reader after 1 hour incubation 

in 37 �. For further research, si CXCR4 and si NC transfections were performed at 24 

hours respectively after plating. 6 h later, CXCL12 was added to a final concentration 

of 200 ng/mL, and the CCK8 assay was conducted using the same method. 

Results 

Construction of a Multi-Omics Atlas of HGSOC including Chemotherapy 

Response Characteristics Using Single-Cell and Spatial Transcriptomics 

To enhance the understanding of the complex interplay between intratumoral and 

intertumoral heterogeneity in high-grade serous ovarian cancer (HGSOC), and to 

develop a comprehensive tumor evolutionary model that delineates the distinct tumor 

and microenvironmental profiles across diverse patient cohorts, we have meticulously 

assembled a robust dataset (Figure 1A). This dataset comprises four single-cell 

datasets and two spatial transcriptomics datasets, totaling 50 samples. Notably, 28 of 

these samples (57%) were obtained from patients prior to chemotherapy treatment and 

exhibited measurable responses to therapy (Figure 1B). Complementing this, we have 

also curated two bulk RNA sequencing datasets that include chemotherapy treatment 

responses, encompassing 24 samples (Table S1). Our analytical approach began with 

the application of advanced text mining and machine learning algorithms to three of 

the single-cell datasets. This enabled the construction of a sophisticated hierarchical 

evolutionary model specific to HGSOC. This model was then rigorously validated and 

further scrutinized for insights into the intricate relationships between intratumoral 

microenvironmental heterogeneity and intertumoral population heterogeneity using 

the remaining two datasets. This step was crucial for establishing the model's 

reliability and for uncovering potential links between cellular heterogeneity and 

therapeutic outcomes. Subsequently, we focused on the spatial transcriptomics 

datasets to dissect the spatial distribution characteristics of microenvironmental 

heterogeneity, providing a visual representation that enhances the interpretation of our 

findings. In the merged test dataset, which consisted of 14 samples, we processed and 

analyzed a total of 87,288 cells post-quality control (Figure 1C). These cells were 

classified into several key subtypes: B cells (5,700, 6.53%), CAF (cancer-associated 
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fibroblasts, 17,664, 20.24%), ENDs (Endothelial cells, 1,174, 1.35%), EPI cells 

(Epithelial, 20,273, 23.22%), Mono cells (Monocyte, 15,217, 17.43%), and T_NK 

cells (T and NK cells, 27,259, 31.23%). Furthermore, we employed the CNV method 

and calculated the epithelial cell score to specifically identify 18,273 tumor cells 

(Figure 1C). Through this integrated approach, we aim to not only elucidate the 

evolutionary dynamics of HGSOC but also to provide a foundation for the 

development of personalized therapeutic strategies that account for the unique 

heterogeneity observed in each patient's tumor. 

Study on Inter- and Intra-Tumoral Heterogeneity in High-Grade Serous Ovarian 

Cancer 

Inter- and intra-tumoral heterogeneity significantly impacts patient prognosis and 

treatment response. We employed text mining and consensus clustering to dissect the 

clonal evolution within individual patients, followed by hierarchical clustering and 

bootstrap analysis to establish inter-tumoral clonal evolutionary relationships. 

Through this approach, we identified three evolutionary branches, designated as BR1, 

BR2, and BR3, across 69 clusters in 14 samples from test dataset 1 (Figure 2A, 

including samples in GSE140819, GSE154600 and GSE184880). Notably, individual 

tumor samples tended to cluster under a specific evolutionary branch. To validate the 

robustness of our method, we replicated the analysis in a subset of the data, 

confirming consistent evolutionary relationships among cell populations in dataset 

GSE184880 (Figure S1). 

Having established the clonal evolutionary relationships across different samples, 

we identified key genes within these branches and conducted functional analyses 

(Table S2). Key genes of BR1 were enriched in pathways related to myeloid 

leukocyte migration (GO:0097529), neutrophil degranulation (GO:0043312), and 

digestion (GO:0007586). BR2 genes were predominantly associated with cellular 

response to chemokine (GO:1990869), T cell migration (GO:0072678), regulation of 

response to type II interferon (GO:0060330), and autophagy (GO:0006914). BR3 

genes were enriched in pathways such as the generation of amyloid fibrils 

(GO:1990000), cellular response to hypoxia (GO:0071456), positive regulation of 
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growth (GO:0045927), and collagen fibril organization (GO:0030199) (Figure 2B). 

These findings suggest that BR3 is characterized by highly fibrotic, immune 

desert-like tumors, BR2 by T cell-infiltrated hot tumors, and BR1 by predominantly 

tumor cell-dominated cold tumors [27]. 

Further analysis revealed significant heterogeneity in the distribution of different 

microenvironmental cells across the branches, with CAF cells notably enriched in the 

BR3 branch (Figure 2C). To delve deeper into intra-tumoral heterogeneity, we 

dissected the heterogeneity of epithelial, fibroblast, monocyte, and CD8 cells. We 

identified six epithelial cell subpopulations (E_HSPA1B, E_JUND, E_MALAT1, 

E_S100A4, E_SPP1, E_TOP2A), with E_SPP1 and E_TOP2A predominantly found 

in the BR3 branch (Figure 2D). SPP1 was shown to be highly expressed in multiple 

tumor types and interacts with fibroblasts or T cells via pathways such as SPP1-CD44, 

correlating with tumor malignancy. TOP2A, a cell cycle gene, indicates high 

proliferative states when overexpressed. Cell velocity and pseudo-time analysis 

revealed that epithelial cells evolve towards the BR3 subpopulation, with terminal 

pathways enriched in cell cycle, epithelial differentiation, and lipid metabolism 

(Figure 2D). 

We identified five fibroblast subpopulations (F_ACTA2, F_COL1A1, F_JUNB, 

F_LGALS3 and F_MMP11), most of which were concentrated in the BR3 branch 

(Figure 2D). Cell velocity analysis showed enrichment of cell adhesion-related 

pathways at the onset and metabolic, chemokine, and MAPK pathways at the end 

(Figure 2D). Eight macrophage subpopulations were identified (M_A2M, M_CCL3, 

M_CXCL10, M_HLA-DPB1, M_HMGB2, M_HSPA1B, M_MMP9, M_SPP1), with 

M_CCL3, M_CXCL10, M_HLA-DPB1, and M_SPP1 enriched in the BR3 branch 

(Figure 2D). Temporal analysis revealed enrichment of lipid metabolism, granulocyte 

differentiation, and JNK-related pathways at the terminal stage (Figure 2D). Four 

CD8 cell subpopulations were identified, with CD8_GZMA and CD8_TIGIT enriched 

in BR1 and BR2, and BR3 dominated by CD8_CXCR4. Cell velocity analysis 

showed enrichment of T cell activation, lymphocyte differentiation, and autophagy 

regulation pathways at the terminal stage of cell differentiation (Figure 2D). 
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These results underscore significant inter- and intra-tumoral cellular 

heterogeneity in HGSOC, with epithelial cells in BR3 samples exhibiting high 

proliferation rates and infiltration by diverse fibroblast subtypes. 

Tumor functional clonality is associated with patient prognosis and TME 

composition 

In our previous analysis, we divided all single-cell samples into three branches 

and identified significant heterogeneity between these branches, along with 150 

characteristic genes for each branch (Table S2). We further examined the prognostic 

clustering effect of these genes. Prognostic analysis across five datasets (TCGA, 

GSE14764, GSE26193 and GSE26712, Table S1) revealed a notably strong 

prognostic clustering effect in these datasets, with the poorest prognosis samples 

exhibiting high levels of fibroblast infiltration (Figure 3A, 3B, G1 in TCGA, G2 in 

GSE14764, GSE26193 and GSE26712). Correlation analysis also indicated a 

significant high correlation between fibroblast content and fibroblast-associated 

marker genes (COL3A1, COL1A2, COL1A1, FN1 and DCN, Figure S2). Subsequently, 

we used the inter-tumoral heterogeneity branch genes obtained as a reference gene set 

to perform a hypergeometric test in different bulk samples, calculating the distribution 

characteristics of samples in the single-cell BR branches. The results showed that bulk 

samples with the poorest prognosis and high fibroblast infiltration were significantly 

enriched in BR3 scores (Figure 3C), further validating the reliability of using 

single-cell samples for studying inter-tumoral heterogeneity in tumors. Differential 

gene analysis in bulk samples also revealed enrichment of numerous pathways related 

to epithelial cell migration, cell adhesion, and chemokines in samples with poor 

prognosis (Figure 3D). These findings suggest that the content of fibroblasts in 

high-grade ovarian cancer samples may be highly correlated with tumor malignancy.  

Identification of a subpopulation of CXCL12-positive fibroblasts associated with 

chemotherapy resistance and poor prognosis through intra- and intertumoral 

heterogeneity analysis of fibroblasts  

Previous research has demonstrated a strong correlation between heterogeneity of 

TME composition, especially the infiltration of fibroblast, and prognosis. Given that 
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chemotherapy is commonly employed in the early stages of ovarian cancer, we further 

explored the relationship between intra-tumor heterogeneity and chemotherapy 

resistance. To this end, we analyzed the differences in cellular composition of the 

tumor microenvironment in tumors with varying responses to chemotherapy. Utilizing 

the 150 characteristic genes obtained, we conducted a tumor evolution analysis on 

five samples within the single-cell dataset GSE154600, revealing that the 

chemotherapy-sensitive samples GSM4675276 and GSM4675276 belonged to the 

BR1 subgroup, while the chemotherapy-resistant samples GSM4675273 and 

GSM4675273 were classified under the BR3 subgroup (Figure 4A, Table S3). 

Combining these five samples, a total of 50,571 cells were obtained, including B cells, 

CAF, Mono, T cells, EPI_1 (Epithelial with high level of MMP7 and ELF3) and 

EPI_2 (Epithelial with high level of HES1) (Figure 4B, Figure S3). Among these, B 

cells were significantly enriched in samples derived from BR1 and BR2, while CAFs 

were significantly enriched in BR3 ones, indicating that the degree of fibroblast 

infiltration not only affects patient prognosis but also correlates with treatment 

response (Figure 4C). To elucidate the relationship between CAFs and ovarian cancer 

treatment response, we further sub-classified CAFs, identifying seven distinct 

subtypes (Figure 4D), with F_CCL21 and F_RAMP3 significantly enriched in BR1, 

F_PGF, F_IGFBP4, F_IGFBP7, and F_CXCL12 significantly enriched in BR3, 

particularly the F_CXCL12 subtype which was almost exclusively found in BR3 

(Figure 4E). We then employed gene co-expression analysis to identify key 

characteristic genes in different CAF subpopulations, resulting in four gene modules, 

with the blue module showing the highest correlation with the BR3-specific 

F_CXCL12 subgroup (R=0.88, P<0.001) and the yellow module highly correlated 

with the BR1-specific F_RAMP3 module (R=0.97, P<0.001) (Figure 4F). Analysis of 

the hub genes in the blue module revealed that these genes were primarily enriched in 

pathways related to extracellular matrix remodeling and tube morphogenesis (Figure 

4G, S5). Given the significant enrichment of CAFs in BR3, we further explored the 

cellular communication between these fibroblasts and tumor cells, finding 

high-intensity interactions between the fibroblast subpopulations F_CXCL12 and 
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F_IGFBP7 and tumor cells in EPI_1 (Figure 4H). Specifically, F_CXCL12 interacts 

with tumor epithelial cells via ligand-receptor pair CXCL12/CXCR4, and through the 

secretion of PGF (Figure 4I). These findings suggest that CXCL12-positive CAF cells 

may be associated with chemotherapy resistant. 

To validate the relationship between fibroblasts and chemotherapy, we further 

examined the relationship between fibroblasts and treatment response in the other 

dataset GSE165897 consist of chemotherapy response information (Table S4). 

Subsequently, using the previously identified 150 characteristic genes, we performed 

hierarchical evolutionary analysis between samples and conducted permutation test. 

We found that the platinum-free interval (PFI) values of EOC3, EOC349, EOC540, 

and EOC87 in the BR3 subgroup were significantly lower than those in the other two 

groups, indicating significant chemotherapy resistance, while the samples EOC136 

and EOC153 in BR1 showed chemotherapy sensitivity, again confirming the high 

correlation between inter-tumor heterogeneity and treatment response (Figure 5A, 

Table S4). From this dataset of nine samples, we obtained 17,898 cells, comprising 11 

subpopulations, including two fibroblast subpopulations, F_CXCL12 and F_COL1A1, 

with F_CXCL12 significantly infiltrating in BR3 and F_COL1A1 significantly 

enriched in BR1 (Figure 5B, 5C, S6). We then re-clustered the fibroblasts, identifying 

five fibroblast subpopulations, including the F_CXCL12 subgroup (Figure 5D, S6). 

Using gene co-expression analysis, we also obtained a gene module highly correlated 

with the F_CXCL12 subgroup (R=0.85, P<0.001, Figure 5E), with characteristic 

genes primarily enriched in TGF-beta, MAPK, and Cytokine interaction signaling 

pathways (Figure S7). 

In both datasets, we identified a fibroblast subgroup with high CXCL12 

expression, and similarity correlation analysis between subgroups confirmed the high 

similarity of CXCL12-high fibroblast subgroups in both datasets (Figure 5E).  

Identification of a gene set affecting prognosis and drug resistance in HGSOC 

through integrating the signature genes in CXCL12-positive fibroblasts 

After identifying a significant correlation between the highly invasive CXCL12+ 

CAF subpopulation and both treatment responses and prognoses in ovarian cancer. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


We further conducted a comparative analysis of the WGCNA hub genes results to 

consolidate the characteristic genes of the CXCL12+ CAF subpopulation, resulting in 

the identification of 24 shared genes (Table S5). Subsequent Cox regression analysis 

using the GSE26193 [28] dataset revealed that DCN, CXCL12, and TNFAIP6 were 

significantly positively associated with poor prognosis in ovarian cancer, with DCN 

specifically identified as a fibroblast characteristic gene (Figure 6A). Employing these 

significantly differential genes and Cox regression coefficients, we performed a risk 

analysis across four additional datasets. The findings indicated that the risk 

coefficients for the high gene expression groups were notably higher than those for 

the low expression groups, and both CXCL12 and DCN showed significant positive 

correlations with poor overall patient prognosis (Figure 6A, 6B). Through Friends 

analysis , we observed a high correlation of CXCL12 with other genes (Figure 6C). 

Additionally, using these 24 genes, we applied enrichment analysis in three treatment 

datasets (GSE33482, GSE114206 [29], and GSE189843 [15]) to further validate the 

association between CAFs and chemotherapy response (Figure 6D, Table S6). Based 

on gene expression data from these samples, we categorized them according to their 

enrichment levels in the 24 genes. The results demonstrated that these 24 genes could 

effectively stratify samples into high and low groups, with the high CAF 

subpopulation exhibiting strong drug resistance. Moreover, these 24 genes showed 

excellent predictive efficacy for drug resistance, with AUC values of 1, 0.89, and 0.83 

(Figure 6D). These findings underscore the critical role of fibroblasts in ovarian 

cancer treatment and prognosis, and through further feature extraction, we have 

identified a reduced set of genes that are indicative of treatment response. 

The spatial distribution characteristics of CXCL12-positive fibroblasts affect the 

clinical prognostic results of HGSOC 

Given the strong correlation between CXCL12-positive fibroblasts and the 

treatment outcomes and prognoses of high-grade serous ovarian cancer, as well as 

their interaction with tumor cells via CXCR4, we further elucidated the interaction 

mechanisms of CXCL12-positive fibroblasts in vitro and in spatial transcriptomic data. 

In our in vitro experiments, we silenced the CXCL12 receptor gene CXCR4 in the 
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ovarian cancer cell line SKOV3 (Figure 7A). As shown by qPCR, all three siRNA 

knockdown fragments significantly suppressed CXCR4 mRNA expression levels in 

SKOV3 cells (p < 0.05, Figure 7A). Subsequent addition of exogenous CXCL12 

protein to both the control group and the si-R2 group demonstrated that CXCR4 

knockdown significantly inhibited cell viability compared to the si-NC control group 

(p < 0.05, Figure 7B, 7C). Considering that fibroblasts and tumor cells interact 

through cellular communication, and the intensity of this communication is highly 

related to the spatial positioning of genes, we further analyzed the spatial distribution 

characteristics of fibroblasts and tumor cells within a treatment response-associated 

spatial transcriptomic dataset. Using the inferCNV method, we identified tumor 

regions and the surrounding cellular environments. Results from a 

chemotherapy-resistant sample (GSM6506110) showed high CXCR4 expression in 

the tumor region (neb_4), with a significant enrichment of fibroblasts in the 

surrounding area (cluster4) that highly expressed CXCL12 and DCN (Figure 7C, 

Figure S8). In contrast, in a chemotherapy-sensitive sample (Table S7, Figure S9), 

although fibroblasts were also enriched, they did not form a spatial neighborhood 

gene interaction pair of CXCL12-CXCR4 (Figure 7D). Finally, in our treatment 

response-associated clinical samples, we also validated the local spatial adjacency of 

CXCL12/DCN/KRT19 in chemotherapy-resistant samples (Figure 7E). 

Discussion 

Solid-organ malignancies exhibit heterogeneity that is evolutionarily favored to 

enhance tumor cell survival and drug resistance, likely via a set of molecular 

mechanisms [30]. Especially the intratumor heterogeneity evolves spatially and 

temporally in the tumor development and reprogrammed the features of TME in the 

progression [31]. Defining tumor clonality and its evolutionary path is essential to 

understand the mechanics of tumor cells' collective behavior and potential driving 

factors [32, 33]. Tumors harbor a multitude of genetic and epigenetic alterations, 

many of which do not directly correlate with observable phenotypic changes, 

complicating the interpretation of their functional impact on tumor evolution [34]. 

Single-cell and spatial transcriptomic offers a powerful tool to delineate the distinct 
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functional roles of various cell types within tumors, revealing their unique cellular 

states and phenotypic characteristics across different organs [35-37]. By focusing on 

the transcriptional programs of tumor subclones, researchers can better capture the 

functional diversity that arises from genetic heterogeneity, providing insights into how 

these subclones adapt and contribute to tumor functional heterogeneity. Tracing tumor 

subclones via their transcriptional programs, as a means to closely reflect their 

phenotypic characteristics, emerges as a vital strategy to understand the functional 

diversity stemming from genetic heterogeneity and environmental adaptation [38, 39]. 

In this study, we integrated single-cell, bulk and spatial transcriptomic data, and 

elucidated the intratumoral heterogeneity including tumor and TMEs cells of HGSC, 

explore their evolutionary patterns intra- and inter heterogeneity, and identify critical 

factors influencing tumor prognosis and therapeutic responses. 

Single-cell data processing faces challenges with large-scale datasets, 

necessitating efficient computational and statistical methods to handle data sparsity 

and ensure informative analysis [40]. Batch effects between datasets require robust 

correction techniques to guarantee accurate cross-dataset comparisons and 

integrations [40]. Determining the optimal number of clusters is essential for the 

analysis of intratumor heterogeneity, yet this process is complicated by the lack of 

clear standards [41]. In this study, we initially identified intratumor heterogeneity 

using the results from Seurat's initial clustering result combined with CNV data. We 

extracted tumor-associated feature genes and identified "representative cells" that 

highly reflect the characteristics of different tumor clones from subpopulations using 

the "TF-IDF" method of text mining. We then further analyzed the intratumoral 

heterogeneity of these cells. This approach ensures the extraction of the most accurate 

and essential tumor clone information while minimizing computational resource 

consumption. Additionally, it mitigates the impact of high sparsity in single-cell 

transcriptome data on data analysis. Furthermore, we utilized the previously identified 

"representative cells”, and determined the number automatically and therefor confirm 

the intratumor heterogeneity using SC3 consensus clustering and SVM methods. This 

strategy addresses the subjectivity associated with the manual definition of cluster 
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numbers. Finally, by obtaining precise intratumoral heterogeneity and related feature 

genes, we constructed a tumor evolution model based on their expression levels and 

analyzed the characteristics of intratumoral and intertumoral heterogeneity in HGSOC. 

Through the integrated analysis of intratumoral and intertumoral heterogeneity, we 

can more comprehensively elucidate the roles of tumor and microenvironmental cells 

in the prognosis prediction and chemoresistance of HGSOC. This provides a novel 

strategy for interpreting correlation between intra- and inter-tumor heterogeneity 

using expression data.  

Employing the aforementioned strategy, we analyzed and validated across 

multiple datasets that HGSOC patients can be classified into three evolutionary 

branches: BR1, BR2, and BR3. Notable heterogeneity was observed within each 

branch concerning the quantity and composition of tumor and microenvironment cells. 

The BR1 branch was predominated by tumor cells and resembled cold tumors, BR2 

was infiltrated with a higher number of B and T cells resembling hot tumors, and BR3 

was heavily infiltrated by fibroblasts, akin to immunologically excluded tumors [27]. 

By correlating tumor evolution with prognosis and resistance to therapy, we found 

that a high infiltration of fibroblasts was associated with a tumor cell subpopulation 

enriched in cell cycle pathways, low CD8 cell activity, increased cell proliferation, 

and malignant transformation in cell morphology, resulting in significantly worse 

prognosis and therapy resistance. Fibroblasts can be broadly classified into 

myofibroblasts, TGF-β-driven cancer-associated fibroblasts, inflammatory fibroblasts, 

and antigen-presenting fibroblasts, and are highly associated with poor prognosis in 

various cancers [20, 42, 43]. In HGSOC, fibroblasts can form a dense physical barrier 

around tumor cells, impede the infiltration of immune cells, and promote tumor cell 

proliferation through the secretion of cytokines [44, 45]. Combing with WGCNA, we 

further identified a clinical predictive model comprising 24 genes and discovered that 

fibroblasts with high CXCL12 expression are significantly related to poor tumor 

prognosis and chemotherapy resistance. The differences in the spatial distribution of 

cells, particularly the characteristics and functions of cells near the tumor boundary, 

play a crucial role in the development of tumor heterogeneity [25]. To this end, we 
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developed a bioinformatics analytical workflow for tumor boundary identification and 

found that this type of fibroblast significantly infiltrates the margins of 

chemotherapy-resistant tumors. Spatial interactions between cell clusters may have a 

more profound impact on chemo responsiveness than the composition of the clusters 

alone. In HGSOC, fibroblasts can interact with other cell types through various 

pathways, ultimately contributing to chemotherapy resistance [43]. CXCL12+ CAFs 

could promote cancer cell migration and invasion and upregulate PDL1 in bladder and 

pancreatic cancer [46, 47]. They can also attract monocytes through the 

CXCL12/CXCR4 pathway and induce their differentiation into M2 macrophages, 

which leads to enhanced tumor cell proliferation and reduced apoptosis in oral 

squamous cell carcinoma [48]. In this study, by analyzing the evolutionary pathways 

of tumor and microenvironment cells, we determined that CXCL12-expressing 

fibroblasts, through spatial proximity interactions with tumor cells, influence patient 

prognosis and therapeutic outcomes, offering a new perspective for the prevention and 

treatment of HGSOC. 

Acknowledgements 

The authors thank Dr. Mengyun Ke for the sample collection and storage. 

Funding 

This study was supported by the co-sponsored by the Henan Province and 

Ministry of Health of Medical Science and Technology Program (SBGJ202302028 for 

Tingjie Wang), This research was supported by the Dalian Science and Technology 

Innovation Fund (2022JJ12SN049 for Jun Yang), the Fundamental Research Funds 

for the Central Universities. 

Availability of data 

 The datasets analyzed in this study are available from the gene expression 

omnibus (GEO) repository under the accession numbers in supplementary tables. 

Author contributions 

The study design and supervision were conducted by Yongjun Guo, Jun Yang, Jun 

Li, and Tingjie Wang. Data analysis, in vitro experiments, and manuscript writing 

were performed by Tingjie Wang, Lingxi Tian, and Ruitao Long. Clinical data 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


collection, sorting, analysis, manuscript proofreading, and multicolor 

immunofluorescence staining analysis were carried out by Bing Wei, Cuiyun Zhang, 

Bo Wang, Yougai Zhang. Yougai Zhang and Xiaofei Zhu verified the patients’ clinical 

data and evaluated the therapeutic responses. The manuscript has been reviewed and 

approved by all authors. 

Competing interests 

The authors have declared that no competing interest exists. 

 

Reference 

1. Coburn SB, Bray F, Sherman ME, Trabert B. International patterns and trends in ovarian cancer 

 incidence, overall and by histologic subtype. Int J Cancer. 2017; 140: 2451-60. 

2. Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, et al. Proteogenomic 

 analysis of chemo-refractory high-grade serous ovarian cancer. Cell. 2023; 186: 3476-98 e35. 

3. Zheng X, Wang X, Cheng X, Liu Z, Yin Y, Li X, et al. Single-cell analyses implicate ascites in 

 remodeling the ecosystems of primary and metastatic tumors in ovarian cancer. Nat Cancer. 2023; 

 4: 1138-56. 

4. Matthews BG, Bowden NA, Wong-Brown MW. Epigenetic Mechanisms and Therapeutic Targets 

 in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel). 2021; 13. 

5. Silva R, Glennon K, Metoudi M, Moran B, Salta S, Slattery K, et al. Unveiling the epigenomic 

 mechanisms of acquired platinum-resistance in high-grade serous ovarian cancer. Int J Cancer. 

 2023; 153: 120-32. 

6. Liu J, Dang H, Wang XW. The significance of intertumor and intratumor heterogeneity in liver 

 cancer. Exp Mol Med. 2018; 50: e416. 

7. Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp T, et al. High-grade 

 serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes 

 influence survival and determine molecular subtype classification. Genome Med. 2021; 13: 111. 

8. Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in ovarian cancer. 

 Mol Cancer. 2022; 21: 114. 

9. Zellmer V R ZS. Evolving concepts of tumor heterogeneity. Cell & bioscience. 2014; 4: 1-8. 

10. Polyak K. Tumor heterogeneity confounds and illuminates: a case for Darwinian tumor evolution. 

 Nat Med. 2014; 20: 344-6. 

11. Cordani M, Dando I, Ambrosini G, Gonzalez-Menendez P. Signaling, cancer cell plasticity, and 

 intratumor heterogeneity. Cell Commun Signal. 2024; 22: 255. 

12. Ciriello G, Magnani L, Aitken SJ, Akkari L, Behjati S, Hanahan D, et al. Cancer Evolution: A 

 Multifaceted Affair. Cancer Discov. 2024; 14: 36-48. 

13. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to 

 metastatic outgrowth. Cancer Cell. 2023; 41: 374-403. 

14. Ferri-Borgogno S, Zhu Y, Sheng J, Burks JK, Gomez JA, Wong KK, et al. Spatial Transcriptomics 

 Depict Ligand-Receptor Cross-talk Heterogeneity at the Tumor-Stroma Interface in Long-Term 

 Ovarian Cancer Survivors. Cancer Res. 2023; 83: 1503-16. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


15. Stur E, Corvigno S, Xu M, Chen K, Tan Y, Lee S, et al. Spatially resolved transcriptomics of 

 high-grade serous ovarian carcinoma. iScience. 2022; 25: 103923. 

16. Khatib S, Pomyen Y, Dang H, Wang XW. Understanding the Cause and Consequence of Tumor 

 Heterogeneity. Trends Cancer. 2020; 6: 267-71. 

17. Iacobuzio-Donahue CA, Litchfield K, Swanton C. Intratumor heterogeneity reflects clinical 

 disease course. Nature Cancer. 2020; 1: 3-6. 

18. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al. Comprehensive 

 Integration of Single-Cell Data. Cell. 2019; 177: 1888-902 e21. 

19. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell 

 RNA-seq data with Bioconductor. F1000Res. 2016; 5: 2122. 

20. Wang T, Xu C, Zhang Z, Wu H, Li X, Zhang Y, et al. Cellular heterogeneity and transcriptomic 

 profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology. 2022; 76: 

 1302-17. 

21. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus 

 clustering of single-cell RNA-seq data. Nat Methods. 2017; 14: 483-6. 

22. Tosches M A YTM, Naumann R K. Evolution of pallium, hippocampus, and cortical cell types 

 revealed by single-cell transcriptomics in reptiles. Science. 2018; 360: 881-8. 

23. Zhang K, Erkan EP, Jamalzadeh S, Dai J, Andersson N, Kaipio K, et al. Longitudinal single-cell 

 RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer. Sci Adv. 

 2022; 8: eabm1831. 

24. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic 

 similarity among GO terms and gene products. Bioinformatics. 2010; 26: 976-8. 

25. Xun Z, Ding X, Zhang Y, Zhang B, Lai S, Zou D, et al. Reconstruction of the tumor spatial 

 microenvironment along the malignant-boundary-nonmalignant axis. Nat Commun. 2023; 14: 

 933. 

26. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. 

 Genome Biol. 2017; 18: 220. 

27. Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy. Immunity. 2020; 52: 17-35. 

28. Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, et al. PML-Regulated 

 Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell 

 Metabolism. 2019; 29: 156-73.e10. 

29. Veskimae K, Scaravilli M, Niininen W, Karvonen H, Jaatinen S, Nykter M, et al. Expression 

 Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals 

 New Candidates for Targeted Therapies. Transl Oncol. 2018; 11: 1160-70. 

30. Ramon YCS, Sese M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, et al. Clinical 

 implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl). 2020; 

 98: 161-77. 

31. Marusyk A, Janiszewska M, Polyak K. Intratumor Heterogeneity: The Rosetta Stone of Therapy 

 Resistance. Cancer Cell. 2020; 37: 471-84. 

32. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al. Toward 

 understanding and exploiting tumor heterogeneity. Nat Med. 2015; 21: 846-53. 

33. Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, et al. A human liver cell atlas 

 reveals heterogeneity and epithelial progenitors. Nature. 2019; 572: 199-204. 

34. Ma L, Wang L, Khatib SA, Chang CW, Heinrich S, Dominguez DA, et al. Single-cell atlas of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


 tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic 

 cholangiocarcinoma. J Hepatol. 2021; 75: 1397-408. 

35. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct 

 transcriptomic cell types across neocortical areas. Nature. 2018; 563: 72-8. 

36. Gonzalez-Silva L, Quevedo L, Varela I. Tumor Functional Heterogeneity Unraveled by 

 scRNA-seq Technologies. Trends Cancer. 2020; 6: 13-9. 

37. Ru B, Huang J, Zhang Y, Aldape K, Jiang P. Estimation of cell lineages in tumors from spatial 

 transcriptomics data. Nat Commun. 2023; 14: 568. 

38. Solary E, Laplane L. The role of host environment in cancer evolution. Evolutionary Applications. 

 2020; 13: 1756-70. 

39. S A, Chakraborty A, Patnaik S. Clonal evolution and expansion associated with therapy resistance 

 and relapse of colorectal cancer. Mutat Res Rev Mutat Res. 2022; 790: 108445. 

40. Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand 

 challenges in single-cell data science. Genome Biol. 2020; 21: 31. 

41. Yu L, Cao Y, Yang JYH, Yang P. Benchmarking clustering algorithms on estimating the number of 

 cell types from single-cell RNA-sequencing data. Genome Biol. 2022; 23: 49. 

42. Zhang L, Cascio S, Mellors JW, Buckanovich RJ, Osmanbeyoglu HU. Single-cell analysis reveals 

 the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian 

 cancer. Commun Biol. 2024; 7: 20. 

43. Hussain A, Voisin V, Poon S, Karamboulas C, Bui NHB, Meens J, et al. Distinct fibroblast 

 functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. J Exp 

 Med. 2020; 217. 

44. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated 

 fibroblasts and immune cells in the tumor microenvironment: new findings and future 

 perspectives. Mol Cancer. 2021; 20: 131. 

45. Cai J, Tang H, Xu L, Wang X, Yang C, Ruan S, et al. Fibroblasts in omentum activated by tumor 

 cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis. 2012; 33: 20-9. 

46. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from 

 FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in 

 pancreatic cancer. Proc Natl Acad Sci U S A. 2013; 110: 20212-7. 

47. Zhang Z, Yu Y, Zhang Z, Li D, Liang Z, Wang L, et al. Cancer-associated fibroblasts-derived 

 CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic 

 degradation of PDL1. J Exp Clin Cancer Res. 2023; 42: 316. 

48. Li X, Bu W, Meng L, Liu X, Wang S, Jiang L, et al. CXCL12/CXCR4 pathway orchestrates 

 CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res. 

 2019; 378: 131-8. 

  

 

 

Figures 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308797doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308797


 

Figure 1. HGSOC transcriptome atlas. (A) Schematic depicting the study design. 

(B) The number of samples in the tumor evolution analysis of HGSOC. Pie chart 

showing the proportion of clinical treatment in the tumor evolution analysis. The 

number of cells and spots scRNA-seq datasets. (C) The t-distributed stochastic 
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neighbor embedding (t-SNE) plots showing the major cell types in HGSOC. Clusters 

are distinguished by colors. (D) Heatmap showing cell type marker genes expression 

level in the first single cell dataset. (E) Expression profile of epithelial and tumor 

scores in the first single cell dataset, the color from gray to red represents the 

expression level from low to high. 
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Figure 2. Tumor branching evolution reveals intratumor heterogeneity in 

HGSOC. (A) Tumor phylogenetic tree constructed by hierarchical clustering of all 

the clusters from 14 tumors, in which BR1, BR2 and BR3 were defined according to 

the hierarchical relationship. (B) Bar plot showing enrichment analysis using the 

tumor branch evolution features via clusterProfiler. (C) Bar plot showing the sample 

origins of three subtypes of branching evolution. (D) Distribution characteristics of 

intratumor cell types obtained through tumor evolutionary analysis. Profile and 

Uniform Manifold Approximation and Projection (UMAP) plots showing the sub cell 

type in the epithelial, CAF, macrophage and CD8 cells (top). Velocity and single-cell 

trajectory result (row 2 and row 3), Differentially expressed genes (rows) along the 

pseudo-time (columns) were clustered hierarchically into five groups in the 

scRNAseq dataset. Pathway enrichment scores were calculated using clusterProfiler. 
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Figure 3. Tumor branching evolution reveals inter-tumor heterogeneity and 

proportion of fibroblasts promote the poor prognosis of HGSOC. (A) Overall 

survival curves showing the prognosis result of the three subtypes (G1, G2 and G3) 

obtained from NMF clustering using the 150 tumor evolution features in the TCGA 
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and GEO cohorts. (B) Boxplots showing the immune cell infiltrates ratio in the three 

distinct malignant subtypes in the significantly enriched patients via xcell (ns, no 

significance, *P < 0.05, **P < 0.01, ***P < 0.001). Pairwise comparison was 

conducted by Wilcoxon rank-sum test in the RNA cohort. For the boxplot, the 

centerline represents the median and box limits represent upper and lower quartiles. 

(C) Boxplot showing the GSVA enrichment scores in the poorest prognosis using the 

branch features of tumor evolution analysis in scRNA datasets. Boxplots showing the 

mean expression level of BR3 genes in the three subtypes of bulk RNA datasets, ns, 

no significance, *P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank-sum test. (D) 

GO enrichment analysis of upregulated genes of the poorest prognosis group (G1 in 

TCGA, G2 in the other cohorts).  
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Figure 4. Intra- and inter- heterogeneity of CAF. (A) Tumor phylogenetic tree 

constructed by hierarchical clustering using the 150 branch genes. (B) UMAP plot 

showing the major cell types in the dataset GSE154600. (C) Bar plot showing the 

origins of cell types in three subtypes of branching evolution. (D) UMAP plot 
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showing the subtypes of CAF. (E) Bar plot showing the origins of CAF in the three 

evolutionary subtypes. (F) WGCNA results showing the gene modules in distinct 

CAF subtypes. Columns represent cell types. The color from blue to red indicates a 

low to a high correlation between gene module and cell subtypes (Pearson correlation 

test). (G) GO enrichment analysis of hub genes of the BR3 enrichment subtype 

(F_CXCL12). (H) Number of significant ligand-receptor pairs between CAF and 

epithelial subtypes. The edge width is proportional to the indicated number of 

ligand-receptor pairs. EPI_1, epithelial subtype with high expression level of MMP7 

and ELF3, EPI_3, epithelial subtype with high expression level of HES1 and CD24. (I) 

Dot plot showing the L–R pairs between CAF and epithelial cells. Rows represent the 

L–R pairs, and columns represent cell subset–cell subset pairs. The color gradient 

from black/blue to red indicates mean values of the L–R pairs from low to high, and 

the circle size indicates the significance of the pairs. p values were calculated via a 

permutation test using CellChat.  
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Figure 5. Heterogeneity of CAF is associated with chemotherapy treatment 

outcomes. (A) Platinum-free interval values in the three tumor evolution branches in 

dataset GSE165897. (B) UMAP and bar plot showing the major cell types and their 

origin. (C) Volcano plot showing the differential genes for CAF subtype. Upregulated 

genes were indicated in red, while downregulated ones in blue. (D) UMAP and bar 

plot showing the subtype and origin of CAF. (E) WGCNA results showing the gene 

modules in distinct CAF subtypes in GSE165897. (E) Heatmap showing the CAF 

subtypes correlation between dataset GSE154600 and GSE165897. 
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Figure 6. 24-genes of CXCL12-positive fibroblasts were correlated with 

prognosis and drug resistance in HGSOC. (A). Forest plot showing the risk 

prognosis results from 24 shared CXCL12-positive fibroblasts obtained from two 

single-cell samples via COX regression. (B) Overall survival curves showing the 
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prognosis results with different level of CAF risk score in the four HGSOC cohorts 

using the 24 genes. Statistical significance was calculated using the log-rank test. (C) 

Overall survival curves showing the prognosis result of the high HR scores genes. (D) 

Box plot showing the friends analysis results. (E) AUC and Sankey diagram show the 

prediction of chemotherapy resistance using 24 CXCL12-CAF genes. 
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Figure 7. Function and spatial distribution characteristics of CXCL12-positive 

fibroblasts. (A) The bar chart shows the silencing effect of the CXCL12 receptor 

gene CXCR4(ns, no significance, *P < 0.05, **P < 0.01, ***P < 0.001, t test). (B) The 

WB results show the silencing effect of CXCR4, as well as the expression levels of 

CXCR4 protein in the control group and the CXCR4 silenced group after the addition 

of exogenous CXCL12 protein. (C) CCK-8 result showing that silencing CXCR4 
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significantly inhibits the viability of tumor cells (*, P < 0.05, t.test). Clustering and 

spatial distribution (i), cell type composition in each cluster (ii), and gene profile 

around the tumor boundary (iii) in chemotherapy-resistant samples (D) and 

chemotherapy-sensitive samples (E). (F) The multiplex immunofluorescence results 

show the spatial proximity relationship between fibroblasts and tumor cells in 

chemotherapy-sensitive and chemotherapy-resistant samples. The scale bars represent 

50 µm 
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