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Abstract

Virtual clinical trials (VCTs) are growing in popularity as a tool for quantita-
tively predicting heterogeneous treatment responses across a population. In the
context of a VCT, a plausible patient is an instance of a mathematical model
with parameter (or attribute) values chosen to reflect features of the disease and
response to treatment for that particular patient. A number of techniques have
been introduced to determine the set of model parametrizations to include in a
virtual patient cohort. These methodologies generally start with a prior distribu-
tion for each model parameter and utilize some criteria to determine whether a
parameter set sampled from the priors should be included or excluded from the
plausible population. No standard technique exists, however, for generating these
prior distributions and choosing the inclusion/exclusion criteria. In this work, we
rigorously quantify the impact that VCT design choices have on VCT predic-
tions. Rather than use real data and a complex mathematical model, a spatial
model of radiotherapy is used to generate simulated patient data and the math-
ematical model used to describe the patient data is a two-parameter ordinary
differential equations model. This controlled setup allows us to isolate the impact
of both the prior distribution and the inclusion/exclusion criteria on both the
heterogeneity of plausible populations and on predicted treatment response. We
find that the prior distribution, rather than the inclusion/exclusion criteria, has
a larger impact on the heterogeneity of the plausible population. Yet, the per-
cent of treatment responders in the plausible population was more sensitive to
the inclusion/exclusion criteria utilized. This foundational understanding of the
role of virtual clinical trial design should help inform the development of future
VCTs that use more complex models and real data.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1 Introduction

Clinical trials are research studies where novel medical interventions are tested on
people who volunteer to receive the treatment. These studies are the primary way
that researchers find out if a new treatment is safe and effective in humans. Clinical
trials for new drug therapies have four phases, with the number of needed participants
increasing for each phase. By phase four of a clinical trial, thousands of participants
who have the condition or disease that the novel therapeutic can possibly treat are
required for the study [1].

There has been an increased focus on ensuring that clinical trials include subjects
that are as diverse as those that are affected by the particular condition or disease.
The Food and Drug Administration has been working to create initiatives and policies
to increase diversity in clinical trials [2], including guidance for researchers on how
to create diversity plans to improve enrollment of participants from underrepresented
racial and ethnic populations [3].

But as they state, “Increasing representation is a multi-faceted challenge that
will require collaboration of our federal partners, industry, health care professionals,
patient advocacy groups and community-based organizations” [3]. There are barriers
to entry for participation that are specific to racial and ethnic groups that can make
achieving equitable representation difficult [3]. Achieving a proper gender balance has
also been a neglected feature of many clinical trials, although the situation appears
to be somewhat improving in this regard [4]. For some conditions women represent
upward of 60% of those afflicted but are still barely 40% of the subjects in clinical tri-
als [4]. The predictions made by clinical trials are thus limited by small sample sizes
and may be biased to certain demographic groups.

Virtual clinical trials (VCTs) are growing in popularity as a tool for predicting
and quantifying the uncertainty of the effects of therapy on disease progression [5, 6].
VCTs combine data-validated mathematical models with computational techniques to
enhance the efficiency, increase the success rates, and decrease the costs associated with
the drug development process [7]. In this manuscript we adopt the VCT terminology
used by Rieger and colleagues [8]. First, a plausible patient (PP) is a parametriza-
tion of the model that is deemed biologically feasible based on defined parameter and
model output constraints. In other words, a PP should be thought of as an instance of
a mathematical model with parameter (or attribute) values chosen to reflect a feature
of the disease for that particular patient. An ensemble of these biologically reasonable
plausible patients that could be included in a clinical trial is called a plausible pop-
ulation (PPop). If data is available to further determine how likely a PP is to be in
a clinical trial, that data is utilized to identify a subset of PPs called virtual patients
(VPs). This collection of VPs is called a virtual population (Vpop) [8]. VCTs have
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been utilized across a number of medical conditions, including cancer [9-13], infec-
tious diseases [14, 15], cardiovascular disease [16-18], rheumatoid arthritis [19], and
diabetes [17, 18, 20]. These studies and others demonstrate the value of VCTs for
rational protocol design that accounts for inter-patient heterogeneity.

A recent review paper [21] has introduced a step-by-step best practice guide for
conducting a model-based virtual clinical trial. The process that the authors’ outlined
can be cyclical, where knowledge gained at one step may necessitate returning to an
earlier step. Though, we will present the steps in linear order here. A VCT begins with
defining the question of interest for the study; the authors call this VCT Step 0 [21].
For instance, one may be interested in quantifying how the percent of responders
changes as a function of drug dose (see Figure 3 in Craig et al. [21]). Other potential
questions of interest include the impact of the number of doses, the spacing between
doses, combining therapies, etc. Given a question of interest, the next step of the VCT
process is to create a data-informed model that is complex enough to capture the
impacts of the drug, but not too complicated that parametrizing and interpreting the
model becomes intractable (Step 1). Best practices should be used to parameterize
the model (Step 2), for instance by fitting model parameters to a training dataset
and saving separate data for validation purposes [21]. As an example, in a preclinical
setting, the data for informing the model in Step 1 could come from murine tumor
growth experiments. Even under ideal experimental conditions, sample sizes for this
step are typically very small, with 10 mice or fewer per condition being common.

Following model parametrization, it is important to further understand the struc-
ture of parameter space (Step 3), which can be done using sensitivity and identifiability
analyses [21]. This step is especially important for identifying the specific parameters
(patient characteristics) that will be used to define a virtual patient. Selecting too few
parameters at this step (and thus fixing too many parameters) may result in a cohort
of virtual patients that is not sufficiently heterogeneous, whereas selecting too many
parameters to vary across virtual patients greatly increases the computational com-
plexity of conducting a virtual clinical trial. Further, there are often model parameters
that simply do not vary much from patient-to-patient, and there are often parameters
that the model is highly insensitive to. Fixing these parameters in the model, rather
than allowing them to vary across virtual patients, is thus a reasonable choice.

Once the parameter set that will vary across virtual patients is defined, plausible
patients can be created (Step 4). For instance, if the disease of interest were some type
of cancer, then a PP could be a differential equation with parameters that represent the
intrinsic growth rate of a patient’s tumor and their response to a specific therapeutic.
In theory, the parametrization of a plausible patient requires knowing the distribution
of the parameter in the population from preclinical or clinical data. Given the general
unavailability of this information, a number of techniques have been introduced to
generate PPs for a VCT. Since there is no standardized technique for creating a
plausible patient, this raises the following question: does the method used to create
the plausible patient population bias the results of the trial, as occurs in real-world
clinical trials?
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In this study, we investigate whether the method chosen to create a virtual patient
population impacts the variability in the PPops themselves (that is, in the parame-
ters “included” in the virtual clinical trial), and/or the predictions about treatment
response (that is, the answer to the question posed in the VCT). This work is sim-
ilar in spirit to [22] which sought to compare four different approaches to generate
VPops. The studies differ in several key ways, however. In Kolesova et al. [22], they
sought to create VPops of the same size as the experimental data, whereas we are
interested in using PPs to create larger samples to better understand the variability
found in the population. Further, the parameter inclusion methods in Kolesova et al.
were assessed in terms of their ability to generate VPs that are statistically similar to
the experimental data. As will be detailed in the Methods, for our analysis, similarity
to the experimental data is an inclusion criterion for VPs, not an assessment criteria.
Finally, while Kolesova et al. [22] applied several methods to a data-motivated quan-
titative systems pharmacology model of erythropoiesis in which a VP was defined by
39 model parameters, we intentionally use simulated data and a toy model to isolate
the impact of VCT design.

This paper is organized as follows. In Section 2 we describe two commonly-
used methods for generating plausible patient populations: the “accept-or-reject” and
the “accept-or-perturb” methods. To explore the properties of these methods in a
controlled setting, we generate synthetic data from a previously-developed cellular
automaton model of tumor growth and radiotherapy [23] and propose a simple ordi-
nary differential equation (ODE) model of the synthetic data. The model used to
generate the synthetic data, the ODE model, and the fits of the ODE model to the
synthetic data are also described in Section 2. In Section 3, we explore if, and how,
virtual clinical trial predictions using plausible populations depend on the method
used to generate the plausible patients. In particular, we explore if the choice of the
prior parameter distribution impacts the predicted posterior distribution in the PPop
within the framework of one method (that is, using either accept-or-reject or accept-
or-perturb). We also explore the impact that the method itself has on the posterior
distribution in the PPop, and we quantify how predictions made for virtual clini-
cal trials vary across methods. We conclude with a discussion of the implications for
incorporating virtual clinical trials into the workflow of drug development.

2 Methods

Assessing the role of virtual clinical trial design is complicated by the messiness of real
data and the complexity of real models. Herein, we intentionally simplify the patient
data and the model used to analyze the data so that we can focus on how various
aspects of virtual clinical trial design influence the pool of plausible patients and the
prediction of the virtual clinical trial.

For any VCT, the first step (Step 0 in [21]) is defining the question of interest. For
our virtual clinical trial, the question of interest will be to determine the efficacy of a
fixed dose and schedule of radiotherapy treatment on reducing tumor growth across a
heterogeneous patient population. In this Section, we first detail how we generated a
simulated patient dataset that forms the foundation of our VCT. Next, we present and
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parametrize a toy “data-informed model” of the simulated patient data (corresponding
to Steps 1 and 2 outlined above). The last subsection details two standard methods
for generating plausible patients.

2.1 Synthetic Patient Data

Any virtual clinical trial requires preclinical or clinical data that is used to inform
model development and parametrization. Rather than using data from a clinical trial
or an in vivo experiment, which is inherently noisy, we instead generated data from
an open source two-dimensional cellular automaton model of spatially-resolved tumor
growth treated with radiotherapy [23]. In this model, each automaton element is a
two-dimensional cross-section of a three-dimensional tumor spheroid that can either
be empty or in one of three cancerous states: proliferating (P), quiescent (Q), and
necrotic (N). The state of a cell is determined by the local oxygen concentration. In
response to treatment, each non-necrotic cancer cell can be killed by a radiotherapy
dose d with probability prap = 1 —e~ 489 where a and 3 represent radiosensitivity
parameters [23].

To generate simulated data for our study, all treatment-related parameters are
fixed as specified in [23]. We consider only one cell type, neutral cell-cell interactions,
low radiosensitivity (a/f =9, o = 0.14), and a low necrotic decay rate (pyr = 0.004).
Tumor growth is initiated by cells occupying 0.25% of the total volume of the available
space, and tumors grow for 15 days prior to the start of treatment. Treatment is
administered at each discrete time step, mimicking continuous therapy. To simulate
individualized treatment response, the dose d is treated as a uniform random variable
on the interval [0.01,0.1]. While an alternative way to generate individualized data
is to change the parameters associated with tumor growth or radiotherapy response,
simply varying the dose proved effective in generating a heterogeneous set of time
course data.

Using this approach, we generated 50 “patient” datasets, where the phrase
“patient” will refer to simulated patient data from this cellular automaton model
throughout this manuscript. The tumor volume predicted by the CA model is
scaled to the maximum allowable volume to generate the time course of the rel-
ative tumor volume for each simulated patient (Figure la). Only the data that
represents treatment response over a one month period of time, starting from the
dashed line at day 15, is used in our virtual clinical trial. The code used to gener-
ate these simulated patients represents a slight modification of the CA code found at
https://github.com/storeyk/LVcalibration. This modified code, which details all CA
parameter values, is available at https://github.com/jgevertz/VCT.

2.2 Toy Model and Fits to Synthetic Patient Data

Our virtual clinical trial next requires a fit-for-purpose and validated mathematical
model, as detailed in Steps 1 through 2 of Craig et al. [21]. As our goal in this study is
to quantify the impact that the methodology for generating plausible patients has on
VCT predictions, we deliberately choose a very simple ODE model of tumor growth
and treatment response:
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Fig. 1 (a) Relative volume of 50 simulated patient tumors generated from the CA model [23] with
the dose uniformly distributed on [0.01, 0.1]. The colorbar indicates the dose that was used to generate
each simulated dataset. Dashed line indicates onset of treatment. (b) Model best-fit (red) to the
average of the truncated tumor volume data (blue).

Cc% =raz(l —z)—dx, xz(0)=x, (1)
where 0 < z < 1 represents the relative tumor volume, r is the logistic growth rate, d
is the drug-induced kill term, and x¢ the initial relative tumor volume. As this model is
an autonomous, one-dimensional ordinary differential equation, its solutions must be
monotonic. Further, the model has two steady-states: * = 0 and =* = ’”;d, the latter
of which is only biologically relevant when r > d. Whether or not a solution decreases
to the zero or nonzero steady state, or increases to the nonzero steady state, is fully
determined by whether r < d and whether z( is above or below the stable steady-
state. Thus, the conclusion of our virtual clinical trial, which is exploring whether a
VP has a tumor that grows or shrinks, will be independent of the time horizon for
which we solve this differential equation.

To determine if this simplistic model is an adequate representation of the patient

data, we use the built-in MATLAB function fmincon to minimize the cost function:

N =~ 2
¢ = Z (yM(t;L(_t;)J(ti)) . 2)

i=1

In the cost function, yas(t;) represents the model-predicted volume at time ¢;, g(t;)
represents the average volume in the patient data at time t;, and o2(¢;) represents
the variance in the patient data at time ¢;. As shown in Figure 1b, this simple ODE
model is able to well describe the average of the patient data using parameter values
described in Table 1.

Given the excellent fit of the ODE model to the average of the patient data (Fig 1b),
this ODE model will be used as the underlying mathematical model to describe the
patients for our virtual clinical trial. We note that this model does not necessitate any
sensitivity or identifiability analysis (Step 3 in [21]), as we are intentionally considering


https://doi.org/10.1101/2024.06.11.24308775
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.06.11.24308775; this version posted July 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Table 1 Optimal parametrization of model (1) and how that parametrization was used to
determine the features of the normal and uniform prior distributions.

“ [ Normal Prior [ Uniform Prior
Parameter Best Fit Mean Std Min Max
r 0.3355 wr =0.3355 o = 0.75u, | max{0,pur —30r}  pr + 30r
d 0.3076 g =0.3076 o4 =0.75pg | max{0,puq — 304} pa+ 304
To 0.1775 Fixed at z¢g = 0.1775 Fixed at zg = 0.1775

an overly simplistic two-parameter model so that our emphasis can be on VCT design
rather than on features of the data or the model. In what follows, we will consider two
commonly used methods for generating plausible patient populations that we call the
“accept-or-reject” and the “accept-or-perturb” method.

2.3 Methods for Generating Virtual Patients

For Step 4 of a VCT [21], we test two inclusion/exclusion criteria that are commonly
used for creating plausible patients, each of which requires a prior distribution for
each model parameter. The parameters that vary across individuals in this VCT are
the intrinsic tumor growth rate r and the drug-induced death rate d.

In the first method, that we call the “accept-or-reject” method, a model
parametrization is determined by randomly sampling (a subset of) parameters from
a normal distribution, while rejecting any negative parameters [6, 7]. As the nor-
mal distribution is used in all implementations of this method that we are familiar
with [6, 7, 21], we will refer to this as the “standard prior” for the accept-or-
reject method. A parametrization is considered a plausible patient, and added to the
plausible population, if the model-predicted volume trajectory corresponding to the
parametrization falls within the defined feasible region F (see schematic in Figure 2),
where

F=g(t) £ ag(t) (3)
and o = 3 unless otherwise stated. In other words, we define the feasible region as
being within three standard deviations of the mean patient trajectory g(t) at each time
point t. If any portion of the tumor trajectory falls outside F, the parametrization
is rejected, as visualized in Figure 3a. The accept-or-reject method is an example of
Approximate Bayesian Computation [24, 25].

In our implementation of the accept-or-reject method, we chose to fix the initial
condition at the best-fit value to the average of the patient data (Table 1). The mean
of the normal distribution of each variable parameter (r and d) is set to the best-
fit value of the parameter when the model is fit to the average of the patient data
(Table 1), and the standard deviation is fixed to be three quarters of the parameter’s
mean (o, = Bu,, 04 = Bug with 8 = 0.75), though, we will also explore the impact
of changing the standard deviation later in this study. In our study, we also test a
non-standard prior for this method, a uniform prior (details described below in our
description of the accept-or-perturb method).

The “accept-or-perturb” method was created by Allen et al. [26] as an approach to
generate heterogeneous virtual patients while allowing for an exploration of paramet-
ric uncertainty. In this method, a model parametrization is determined by randomly
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Fig. 2 Schematic of the accept-or-reject (left) and the accept-or-perturb (right) method for the
generation of plausible populations.

sampling (a subset of the) model parameters from a uniform distribution with user-
specified lower and upper bounds. As with the accept-or-reject method, because this
method was designed using a uniform distribution [26], we call the uniform distri-
bution the “standard prior” for the accept-or-perturb method. Each parametrization
p = (r,d) is then optimized using simulated annealing (simannealbnd in MATLAB) to
ensure that the volume trajectory corresponding to the virtual patient parametriza-
tion falls within the feasible region F. The objective function to be minimized using
simulated annealing is [7, 26]:

g(p)-li_v;max[(w(ti;p)—”;“")z— (1;—12)20] )

Here, yas(t;;p) denotes the model output at time ¢; for parameter set p, and I; and
u; denote the i** plausible upper and lower bounds of the tumor volume data at time
t; . By definition, g(p) assigns a value of 0 (the minimum possible value) only when
each time point lies within the feasible region F. If a parametrization p happens to
correspond to g(p) = 0, then the parametrization is automatically a plausible patient.
When a parametrization p results in g(p) > 0, simulated annealing is used to perturb
p. If the optimization converges, the resulting perturbed parameter set then meets the
definition of a plausible patient (see schematic in Figure 3b).
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Fig. 3 Visualization of how virtual clinical trial methods handle ‘out of region’ parametrizations.
The black curve is the mean of the patient data, 7, and the feasible region F is shown in grey. (a)
Accept-or-Reject automatically rejects any such non-feasible parametrizations, whereas (b) accept-
or-perturb attempts to perturb the parametrization so that the trajectory falls within the feasible
region.

In Allen et al. [26], this collection of PPs composes a plausible population. From
this PPop, a virtual population is determined using an optimization procedure to
find the subset of the PPop that best-matches a set of observed population data
according to a measure of statistical similarity [8, 26]. In scenarios where no prior
knowledge is available for the final Vpop distribution one simply assumes that the
VPop is equivalent to the PPop [8]. Thus the terms plausible patient (PP) and virtual
patient (VP) will be treated as equivalent. Similarly, the terms plausible population
(PPop) and virtual population (VPop) will also be treated as equivalent. We do note
that an advantage of analyzing plausible populations rather than data population-
matched VPops is that the PPops do not inherit the demographic biases found in the
real-world patient populations [3].

As in our implementation of the “accept-or-reject” method, for the “accept-or-
perturb” method we fix the initial condition across virtual patients and allow (r,d)
to vary across individuals. We again fix the standard deviation of each prior to be
three quarters of the parameter’s mean. The uniform distribution is then defined such
that the minimum value is set to be a = 3 standard deviations below the mean (or
0 if this value is negative), and such that the maximum value is « = 3 standard
deviations above the mean (Table 1). In our study, we also test a non-standard prior
for this method, a normal prior (details described above in our description of the
accept-or-reject method).

In summary, we will be testing two parameter priors (uniform and normal, which
was also done in Kolesova et al. [22]) and two inclusion/exclusion criteria (accept-
or-reject and accept-or-perturb) for plausible patients. We will consider all possible
combinations of these choices, thus allowing us to home in on the impact that both
the prior and the inclusion/exclusion criteria have on the composition of the virtual
population and the predictions of the virtual clinical trial. We will also study how
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parameters associated with VCT design (spread of the prior as determined by 3, extent
of the feasible region F, and the number of virtual patients) impact VCT outcomes.

3 Results

Herein, we quantify how the design of a virtual clinical trial impacts the variability
in the VPop and the predictions about treatment response for our example trial.
Working with the proposed toy model in the context of synthetic data allows for a
more robust study of the impact of the parameter prior distributions, and the method
used to create the posterior distributions (which can be thought of as our statistical
description of the VPop).

3.1 Impact of VCT Prior Distribution

We first compare virtual clinical trial results when a single method (accept-or-reject
or accept-and-perturb) is implemented with different prior distributions: a uniform
distribution (u) or a normal distribution (n), whose parameters are both described
in Table 1 unless otherwise specified. Because of the shape of these distributions, the
normal prior is biased towards values closer to the mean. The uniform distribution, on
the other hand, allows for more parameter values farther from the mean (particularly,
values larger than the mean, given the truncation at zero) to be considered with equal
probability to those values closer to the mean. As a result, the normal distribution
is more likely to generate plausible model parameterizations. In particular, we find
that implementing the accept-or-reject method on model (1) resulted in 302 random
samples with non-negative parameters being rejected in order to generate 1000 virtual
patients. This equates to about 76.8% of random parameterizations being accepted.
However, when a uniform distribution was used, only approximately 69.8% of random
(non-negative) parameterizations were accepted. Similarly, with the accept-or-perturb
method, 75.2% of samples were accepted without perturbation when using a normal
distribution, as compared to 68.7% when using a uniform distribution.

The impact of using these priors to generate 1000 VPs, each defined as a pair of
r and d values, with the accept-or-reject method is visualized in the center row of
Figure 4. Consistent with the shape of the prior distributions, the normal prior creates
a VPop in which the posterior distribution is biased towards the best-fit value of each
parameter for the average patient. On the other hand, the uniform distribution results
in posterior distributions with larger spreads. This equates to more variability among
the patients in the VPop. Interestingly, for the death parameter d, accept-or-reject
with a uniform prior results in a posterior distribution skewed significantly further
right than the prior distribution. This demonstrates that the choice of prior has a
significant impact on the composition of the virtual patient population.

It is certainly possible that the bias that emerges based on the prior using accept-or-
reject will not emerge using accept-or-perturb. This is because the accept-or-perturb
method does not outright reject nonviable parametrizations; instead, it perturbs the
parametrization until the corresponding tumor volume trajectory falls within the fea-
sible region F. The impact of using a uniform and a normal prior distribution to
generate 1000 VPs with the accept-or-perturb method is visualized in the bottom row
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Fig. 4 Quantification of the impact of the prior distribution for the accept-or-reject (A-R) method
(center row) and accept-or-perturb (A-P) method (bottom row). Results related to uniform distri-
bution are shown in blue and those related to the normal distribution are shown in red. The overlap
between the two distributions appears in a deeper red/brown shade. The prior and posterior for the
tumor growth rate r are shown on the left, whereas the corresponding distributions for the death rate
d are shown on the right.

of Figure 4. Interestingly, the bias of the posterior distribution towards the shape of
the prior is evident even using this methodology. Particularly, the posterior of both r
and d are biased towards the mean of the normal distribution when a normal prior was
used, whereas the posteriors exhibit significantly more spread when a uniform prior
is utilized. This further demonstrates that the choice of prior has a significant impact
on the composition of the virtual patient population, even when the VCT method is
designed to perturb, rather than automatically reject, non-feasible parametrizations.

3.2 Impact of VCT Selection Method

Now we shift our focus from the impact of the prior distribution to the impact of
the method and criteria used to exclude a parametrization from the VPop. In the top
row of Figure 5, we consider the case of a uniform prior and compare the posterior
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distributions that result from using accept-or-reject or accept-or-perturb to create a
VPop consisting of 1000 VPs. The analysis is repeated for a normal prior in Figure 5
(middle row). Interestingly, in both cases, we find that the choice of accept-or-reject
versus accept-or-perturb has minimal impact on the heterogeneity of the VPop, as
visualized through the significant overlap in the posterior distributions in Figure 5
(left, top and middle). Though we do observe more parametrizations with large r
values in the posterior distribution for the accept-or-perturb method. This is especially
noticeable in the top right section of the scatter plot (Figure 5 middle right), which
uses a normal prior. This is attributable to the fact that the perturbation process
makes it easier to reach extremal areas of parameter space.

ETA-R(u)
CA-P(u)

0 0.5 1 1.5

EA-R(n)
CA-P(n)

EA-R(n)
CIA-P(u)

Fig. 5 Quantification of the impact of the inclusion/exclusion criteria using a uniform prior distri-
bution (top) or normal distribution (middle). Accept-or-reject (A-R) results are shown in blue and
accept-or-perturb (A-P) results are shown in red. The bottom row shows posterior distributions for
the standard pairing of accept-or-reject with a normal prior and accept-or-perturb with a uniform
prior. The solid black line, defined in eqn. (5), separates responders from non-responders in model (1).
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It is of note that the standard “pairing” of prior distribution and method/selection
criteria is to use a normal prior for accept-or-reject and a uniform prior for accept-or-
perturb. A comparison of the heterogeneity of the VPops generated via these standard
methods is shown in the bottom row of Figure 5. The parametrizations of the VPs
generated by accept-or-perturb are scattered over a larger region of the r—d plane than
those generated by accept-or-reject. Based on the above analyses, the fact that accept-
or-perturb creates a more heterogeneous virtual population is largely attributable to
the use of the uniform prior, and not the selection criteria.

3.3 Impact on VCT Prediction

Next we compare how the design choices impact the prediction made by the VCT. We
define the “outcome” of our virtual clinical trial as the percent of responders in the
VPop, where a responder is any VP for which the corresponding tumor (as determined
by model (1)) decreased in volume over the time course of the study. It is of note
that in the simulated patient data (Figure 3a), 74% of the patients are classified
as responders. As with all subsequent analyses, prior distributions are defined as in
Table 1, unless otherwise specified. 1000 virtual patients were generated per method,
using the feasible region F defined in eqn. (3) with o = 3 unless otherwise specified.

Despite the fact that the prior had the larger influence on the posterior distribu-
tion, we surprisingly observe that the selection method has a larger influence on the
outcome of the trial. As shown in Figure 6, accept-or-perturb predicts fewer responders
(69.7% for uniform prior and 67.6% for normal prior) in the trial than accept-or-reject
(78.1% for uniform prior and 74.0% for normal prior). As the actual response rate in
the patient population is 74%, this means that accept-or-reject is equaling or over-
estimating the true response rate, whereas accept-or-perturb is underestimating this
rate.

To understand why accept-or-reject consistently predicts a larger response rate
than accept-or-perturb, in the bottom right of Figure 5 we visualize the line in
parameter space that separates responders from non-responders in model (1) when
xg = 0.1775. This separating line was calculated using the fact that non-responders
in (1) must have a positive nonzero steady-state (z* = =% > 0, meaning r > d) and
start below this steady state, giving rise to the constraint that:

r—d
T < .

()

Comparing this boundary to the distribution of points in parameter space shows that
there are significantly more red squares (associated with accept-or-perturb) than blue
circles (associated with accept-or-reject) in the non-responder region of parameter
space. Thus the response rate is lower using accept-or-perturb. We speculate that this
occurs because accept-or-perturb can “reach” regions of parameter space that are not
likely to be reached by the accept-or-reject method (see Figure 4).

This trend proved to be quite robust across virtual clinical trial parameters. In
Figure 7a we explore the impact of changing the standard deviation on the prior distri-
butions. With the exception of using the smallest tested standard deviation of § = 0.25
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Fig. 6 Fraction of responders in a VPop generated using accept-or-reject (A-R) or accept-or-perturb
(A-P) using either a uniform (u) or a normal (n) prior distribution.

(meaning the standard deviation is a quarter of the mean of the parameter), accept-or-
perturb consistently predicts less treatment responders than accept-or-reject. The fact
that 8 = 0.25 is an outlier to the trend is not surprising, as using a standard deviation
that is too small greatly limits the range of allowable parameters which over constrains
the behavior of plausible patients. As stabilization of the plots in Figure 7a indicate,
it is desirable to be “greedy” on the prior. The methods are already designed to reject
or perturb nonviable parametrizations, and the only cost of a prior with a large stan-
dard deviation is a computational cost - it takes longer to build a virtual population
of a fixed sample size when more parameters are rejected or perturbed. However, this
extra computational cost results in more heterogeneous plausible patients.

In Figure 7b, we quantify the impact of the size of the feasible region (F = g(t) +
ag(t)) by allowing a to vary from 1 to 4. Besides the case of a = 1, we still observe
that accept-or-perturb predicts fewer responders than accept-or-reject. In the case of
a = 1, the acceptance region is so restrictive that a large fraction of actual patient
trajectories would be excluded from the virtual population. In fact, even the case
of = 2 restricts a number of actual patients from being included in the VPop
(Figure 7c). Figure 7b demonstrates that « = 3 is a “sweet spot” for the definition
of the feasible region: it is large enough to include all simulated patients, while also
leaving room for some outlier trajectories. It is not so large, however (as in the o = 4
case) that trajectories that differ significantly from what is observed in the patient
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Fig. 7 Impact of varying VCT parameters. (a) Predicted probability of treatment responders as a
function of the 3, the standard deviation multiplier of the prior distribution. N is fixed at 100 and
the experiment is repeated 10 times. Standard deviation multiplier of feasible region F is fixed at
default value of @ = 3. (b) Predicted probability of treatment responders as a function of a. N is
fixed at 100, B is fixed at its default value of 0.75, and the experiment is repeated 10 times. (c)
Visualization of patient data, and acceptance region for the various values of « studied in (b). (d)
Predicted probability of treatment responders as a function of the number of virtual patients included
in the VPop with all other parameters set at default value (a = 3, 8 = 0.75).

population would be included in the VPop. Increasing the size of the acceptance region
generally results in a decrease in the predicted fraction of responders, though the
impact (and the deviation from the 74% response rate found in the patient data) is
more substantial when using accept-or-perturb.

Finally, in Figure 7d we explore the impact of the size of the VPop on treatment
response. We find that predictions for the fraction of responders for all four prior/in-
clusion criteria combinations begin to stabilize at a sample of N = 1000. Below this
value, we find that the fraction of responders increases as a function of population size
for VCTs using a uniform prior, but decreases as a function of sample size for VCTs
using a normal prior. That said, we do not hypothesize that there is anything bio-
logically significant about these particular trends. Instead, this is likely an artifact of
not having a sufficiently large sample size. The general trend that accept-or-perturb
predicts fewer responders than accept-or-reject holds for sample sizes of N = 500
and larger. Though, we do note that the predictions stabilize quicker for VCTs that
used the uniform prior. This is likely because the normal prior is less likely to sample
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extreme parameter values, and thus requires significantly more samplings to include
outlier VPs that the uniform prior could more readily sample.

4 Conclusion

Various methods for creating plausible populations for virtual clinical trials have been
proposed in the literature. In this work, we assess how the design choices for creat-
ing plausible patients impacts the heterogeneity of the plausible population and the
predictions of the VCT. To isolate the impact of VCT design choices, we work with
simulated patient data and a simple, toy model of tumor growth in response to the
treatment. In this controlled setting, we study the impact of the following VCT design
choices: the prior parameter distribution (either uniform or normal of various standard
deviations) and the method for selecting parametrizations for a plausible population
(either accept-or-reject or accept-or-perturb, with various definitions of the feasible
tumor trajectory).

Conducting a trial using each of the inclusion/exclusion methods with the two prior
distributions revealed that the prior distribution has the most significant impact on
the heterogeneity of patients in the plausible population. In particular, a uniform prior
resulted in posterior distributions with greater spread than is achieved using a normal
prior. When a normal prior is used, accept-or-perturb does result in a posterior with
greater spread than accept-or-reject does. We next used the resulting posterior distri-
bution as the plausible population for our VCT. Surprisingly, the inclusion/exclusion
criteria had a larger impact on trial outcomes (defined as percent of responders) than
the choice of prior distribution. We particularly found that the PPops created using
the accept-or-reject method had a higher percentage of responders than those cre-
ated with the accept-or-perturb method. In each case, using a uniform distribution
also resulted in a higher percentage of responders. We found that, except in extreme
cases, the response probability was robust to the following VCT design choices: prior
standard deviation, extent of feasible region for tumor trajectories, and number of
plausible patients in the PPop. This is in contrast to the sensitivity observed to the
choice of inclusion method (and less so, the prior).

The power of virtual clinical trials lies in their ability to quantify the impact of
heterogeneity on treatment response. However, independent of the methodology used
to generate plausible patients, there are a number of shortcomings to be aware of.
The results of a VCT are only as good as the model itself [6]. Hence, the process
of model validation is an essential step [21, 27] before conducting a VCT. Another
consideration is that there is no rigorous way to define the feasible region for a virtual
patient trajectory. This has the potential to introduce bias into the VCT based on
which parametrizations get included in the VP cohort [6].

Yet another complication is that while a PPop can help explore the broad range
of responses the model can produce, the outcome may not necessarily reflect the dis-
tribution of population-level data; that is, the probability of observing each outcome
[8]. In this work, and in other scenarios where such population-level data is not avail-
able, one can follow the lead of Surendran et al. [7] and treat the plausible population
as the virtual population. Even when population-level data is available, a downside
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of “matching” the VPop to population-data is that the VPop will then recreate the
biases inherent in that dataset [3].

In the case where such data is available and expected to be an unbiased rep-
resentation of the patient population, a number of approaches have been proposed
to identify a virtual population from a plausible population. Klinke proposed a
method for weighting each plausible patient to ensure that the descriptive statis-
tics of the VPop are optimally matched to the population-level statistics [18]. The
computationally-intensive nature of this approach has resulted in others innovating
on this idea. In the Mechanistic Axes Population Ensemble Linkage (MAPEL) algo-
rithm, weights are assigned to “mechanistic axes” rather than to individual plausible
patients [19]. The defining of the mechanistic axes, which can be thought of as group-
ings of parameters/features, complicates the use of this method, however. In Allen
et al. [26], a methodology is introduced for identifying a VPop from a PPop that
calculates a probability of inclusion for each plausible patient and uses those proba-
bilities to select a subset of the PPop that best matches the descriptive statistics of
the population-level data. Other methods for generating virtual populations have also
been proposed [9, 22, 28].

We intentionally conducted this analysis in a controlled setting using simulated
patient data and a two-parameter toy model to isolate features of VCT design that
influence trial outcomes. However, it is important to note that both accept-or-reject
and accept-or-perturb can be inefficient on more complex mathematical models both
because these are more time-intensive to solve than simpler models, and because the
majority of parametric samplings will not result in an (initially) plausible patient [29].
These more complex models could be mechanistic-based ODEs like seen in quantitative
systems pharmacology [6], but also partial differential equations [30] and even agent-
based models [31].

For these more complex models, the methods used herein necessitate either gen-
erating and testing many more parametrizations than desired in the VPop (if using
accept-or-reject) or many executions of simulated annealing (if using accept-or-
perturb). To generate VPops for these higher dimensional models, alternative methods
have been proposed to speed up the process of generating a plausible patient. For
instance, Meyers et al. show how a surrogate machine learning model can be trained on
the full mathematical model and used to rapidly pre-screen for parametrizations that
result in plausible patients [29]. Though, this and other surrogate modeling approaches
still must contend with the computational time to develop the surrogate model, not
to mention possible inaccuracies in the surrogate model’s representation of the true
model [32]. In Derippe et al. [32], an approach is developed to improve the compu-
tational efficiency of VP development (particularly the acceptance/rejectance step)
under the assumption of monotonicity of a subset of model parameters with respect
to the model output. Beyond the computation costs of working with more complex
models, they also generate large amounts of data that can be quite challenging to rigor-
ously analyze. Machine learning approaches have been proposed to efficiently analyze
Vpop behavior [33].

Just as the complexity of the model poses challenges for the development of Vpops,
so does the complexity of the experimental data. In these larger, more complicated
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models, it is typically necessary to run more simulations to appropriately calibrate
plausible patients to all available pharmacodynamic biomarkers and endpoints [6].
Further, in the case of multi-modal data, challenges arise in how to define the inclu-
sion criteria for a plausible patient [6]. Another complication that arises in the use
of multi-modal data for complex models is that the assumption of parameter inde-
pendence is less likely to be valid. Methods have been developed that move beyond
the assumption of a univariate distribution for each personalized model parameter.
For instance, Parikh and colleagues have introduced a generative adversarial network
architecture to infer joint densities of model parameters [34].

Despite these challenges, we sought to conduct a controlled study to gain insight
into how different VCT design choices impact the heterogeneity of plausible popula-
tions and the outcomes of the VCT. While we do not believe this work can suggest a
single “best” approach for all VCTs, just as argued in [8], it does yield some observa-
tions which can guide design choices for future VCTs, particularly in the absence of a
large and unbiased population-level dataset to constrain plausible populations. If the
goal is to obtain the largest coverage possible of plausible parameter space, we recom-
mend the use of a uniform prior distribution rather than a normal prior (Figure 6).
However, the use of a uniform prior does result in a scenario where parameter val-
ues far from the mean get represented with a significant probability in the plausible
population. If we want to be able to reach these outlier parameter values, but create
plausible populations where the parameters are more biased towards the mean, the
accept-or-perturb method with a normal prior accomplishes this goal. It is our hope
that this foundational understanding of the role of virtual clinical trial design will
inform the development of future VCT's that use more complex models and real data.
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