1 Health impacts of takeaway management zones around schools in six different local 2 authorities across England: a public health modelling study using PRIMEtime 3 Nina Trivedy Rogers¹, Ben Amies-Cull², Jean Adams¹, Michael Chang³, Steven Cummins⁴, 4 Daniel Derbyshire⁵, Suzan Hassan⁴, Matthew Keeble¹, Bochu Liu^{6,7}, Antonieta Medina-Lara⁵ 5 Bea Savory⁴, John Rahilly⁸, Richard Smith⁵, Clare Thompson⁹, Martin White¹, Oliver 6 Mytton⁸, Thomas Burgoine¹ 7 8 9 ¹MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 10 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK. 11 ²Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK 12 ³Office for Health Improvement and Disparities, Department of Health and Social Care, UK ⁴Population Health Innovation Lab, Department of Public Health, Environments & Society, 13 14 London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 15 9SH 16 ⁵Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, 17 University of Exeter, UK 18 ⁶Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Ministry of 19 Education of China), Tongji University, Shanghai, China. 20 ⁷Department of Urban Planning, College of Architecture and Urban Planning, Tongji 21 University, Shanghai, China 22 ⁸UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 23 1EH, UK 24 ⁹School of Health and Social Work, University of Hertfordshire, UK 25 26 *Corresponding author: Nina T Rogers 27 28 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 29 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK. 30 31 32

33 Abstract

34 Background: In England, the number of takeaway food outlets ('takeaways') has been 35 increasing for over two decades. Takeaway management zones around schools are an 36 effective way to restrict the growth of new takeaways but their impacts on population health 37 have not been estimated. 38 39 **Methods:** To model the impact of takeaway management zones on health, we used estimates 40 of change in and exposure to takeaway outlets (across home, work, and commuting buffers) 41 based on a previous evaluation suggesting that 50% of new outlets were prevented from 42 opening because of management zones. Based on previous cross-sectional findings, we used 43 changes in takeaway exposure to estimate changes in BMI, from 2018 to 2040. Finally, we 44 used PRIMEtime, a proportional multistate lifetable model, and BMI change to estimate the 45 impact of the intervention, in a closed-cohort of adults (25-64 years), in terms of incidence of 46 12 non-communicable diseases, obesity prevalence, quality-adjusted life years (QALYs) and 47 healthcare costs saved by 2040 in six selected local authorities across the rural-urban 48 spectrum in England (Wandsworth, Manchester, Blackburn with Darwen, Sheffield, North 49 Somerset, and Fenland). 50

51 Results: By 2031, compared to no intervention, reductions in outlet exposure ranged from 3 52 outlets/person in Fenland to 28 outlets/person in Manchester. This corresponded to per person 53 reductions in BMI of 0.68 and 0.08 kg/m², respectively. Relative to no intervention, obesity 54 prevalence was estimated to be reduced in both sexes in all LAs, including by 2.3 percentage 55 points (PP) (95% uncertainty interval:2.9PP, 1.7PP) to 1.5PP (95% UI:1.9PP, 1.1PP) in males 56 living in Manchester and Wandsworth by 2040, respectively. Model estimates showed 57 reductions in incidence of disease, including type II diabetes (eg: 964 (95% UI: 1565, 870) 58 fewer cases /100,000 population for males in Manchester)), cardiovascular diseases, asthma,

59	certain cancers :	and low back	pain. Savings	in healthcare cos	ts (millions(£))) ranged from
• •	•••••••••••••••••••••••••••••••••••••••	and to a caten	pann our ingo			,

- 60 £0.90 (95%UI: £1,23, £0.54) in Fenland to £5.44 (95%UI:£3.87, £7.45) in Manchester. Gains
- 61 in QALYs/100,000 person were broadly similar across local authorities.

62

- 63 Conclusions: Takeaway management zones in England have the potential to meaningfully
- 64 contribute towards reducing obesity prevalence and associated healthcare burden in the adult
- 65 population, both at the local level and across the rural-urban spectrum.
- 66 Key words: Takeaway("fast-")food outlets; Management zones around schools; Health
- 67 impact modelling; Body Mass Index; Obesity; Non-communicable diseases; Quality-
- 68 Adjusted Life Years, Healthcare cost savings, PRIMEtime

70 Introduction

71	Meals purchased out-of-home, including foods from takeaway food outlets ("takeaways"),
72	are typically energy dense and high in sugar and salt, but low in micronutrients, and tend to
73	be served in large portions ^{1–3} . Consumption of takeaway food is associated with lower diet
74	quality, higher energy intake and body mass index (BMI), weight gain and greater risk of
75	obesity ^{4,5} . This may be a result of passive over-consumption of takeaway foods, which
76	bypass regular human satiety mechanisms ⁶ . In turn, poor diet and excess weight are risk
77	factors for diseases including type II diabetes and cardiovascular disease ^{7–9} .
78	
79	Neighbourhood food environments have become a focus for public health action as they may
80	encourage unhealthy dietary behaviours ¹⁰ . Local residential exposure to takeaways has been
81	associated with higher levels of takeaway food consumption, BMI and risk of obesity in
82	adults ^{11–14} and children ¹⁵ although this relationship has not been observed in all studies ¹⁶ .
83	Differences between takeaway exposure and change in BMI have been hypothesised to differ
84	between neighbourhoods in urban and rural areas due to differences in the structure of the
85	built environment, and in the dietary patterns and levels of overweight of residents ^{17,18} .
86	However, one study in the Netherlands found that takeaway exposure within 1km of the
87	home was associated with higher BMI in both rural and urban populations ¹⁹ .
88	
89	In the UK, takeaways continue to increase in number, with 47,961 registered in 2023,
90	equating to a 2.8% increase per year from 2018 onwards ²⁰ . In one study in Norfolk, England,
91	longer term data suggests that the density of takeaways increased by approximately 44% over
92	an 18 year period from 1990 to 2008, with higher densities and stronger growth in more
93	deprived areas ²¹ . A 34% increase in expenditure on takeaway food from £7.9 billion in 2009
94	to £9.9 billion in 2016 has previously been reported by the takeaway food industry ²² .

95

96	Takeaways have been shown to cluster within walking distance of schools in England and
97	other countries ^{23,24} . In England, and often with the stated intention of improving health, urban
98	planners can use existing powers to prevent new takeaways opening, thereby limiting growth
99	in people's future exposure to takeaways. These "takeaway management zones" are
100	commonly centred on schools, for example where no new takeaways are permitted within
101	400m radius of a school site. These are also sometimes referred to by local authorities (LAs)
102	as takeaway "exclusion zones". It has previously been estimated that management zones in
103	England covered an average of 17% of land area in the LAs in which they have been adopted;
104	a significant spatial footprint with capacity therefore to affect whole populations, in addition
105	to children ²⁵ . A recent study showed that implementation of management zones was
106	associated with a 54% reduction in the number of new takeaways at up to six years post-
107	intervention ²⁶ . This is likely due to a combination of a decrease in the number of planning
108	applications submitted for new takeaways, and an increase in the percentage of these
109	applications being rejected, which was also observed in these areas ²⁵ . However, the extent to
110	which takeaway management zones around schools may benefit population health due to this
111	retail change has not been explored.
112	

113 Evaluating the future health impacts of takeaway management zones around schools is 114 important to inform uptake and implementation. A lack of evidence in this regard has been cited as a barrier to adoption ^{27,28}. Such evidence is also important in the defence of takeaway 115 116 management zones against legal challenges as the proportionality principle requires potential harms to private interests be offset by the likelihood of benefits to the public²⁹. However, as 117 118 the future is uncertain this is inherently difficult. The potential positive health impacts of 119 takeaway management zones may also accrue over a long time-period, making it challenging 120 and untimely to observe the effects of policy adoption. However, mathematical modelling can be used to predict future impacts and help inform decision making³⁰. The PRIMEtime model 121

122 is a multistate lifetable that has been used to estimate the health impacts of other

123 interventions such as the UK soft drink industry levy and restrictions of television advertising

124 unhealthy foods to children³¹. In this study, we aimed to estimate the future health impacts, to

125 2040, of the adoption of takeaway management zones around schools in six different LAs

126 across England.

127

128 Methods

129 Scenarios of restricted future takeaway growth

130 We used data from a previously published forecast model to the year 2031 of mean changes in

131 population exposure to takeaways in absence of the intervention i.e. under business-as-usual

132 conditions. Briefly, the model used historical observed rates of growth in takeaways in

133 non-adopter LAs that were similar in terms of urban-rural class to six purposively selected LAs:

134 Wandsworth, Manchester, Sheffield, Blackburn with Darwen, North Somerset and Fenland (Table

 $135 1)^{32}$. These LAs were selected to represent classes across the rural-urban spectrum and to ensure

136 geographical breadth across England. The selection also represented LAs that were either adopters

137 of management zones around a similar year (Wandsworth, Manchester and Blackburn with

138 Darwen) or hypothetical adopters (Sheffield, North Somerset and Fenland). Consequently, we also

139 focus on these six LAs in our analysis. Population exposure to takeaways within LAs was

140 measured across home, work and commuting domains, using census travel to work data³².

141 Exposure to takeaways has previously been measured across these same three domains^{33.} Full

142 details of this forecast and population exposure model have been published elsewhere 31 .

143

144 In this study, relative to business-as-usual growth, we modelled impacts of policy adoption under

145 a realistic scenario where there was a 50% reduction in new takeaways, informed by previous

146 research²⁶. While takeaway management zones were adopted between 2015 and 2017, we aligned

147 implementation dates to 2018 to allow for comparison between LAs. We also carried out

148 sensitivity analysis under perfect implementation scenarios, whereby there was a100% reduction 149 in new takeaways following the intervention. We assumed the policy was in place between 2018 150 and 2031 but given that forecasting in the longer term may lead to less precise estimates we 151 assumed that any differences between business as usual and the intervention remained constant 152 thereafter to 2040. Estimation of lower and upper confidence intervals for the three interventions 153 were performed in R version 4.1.0. 154 155 Relationship between change in takeaway exposure and BMI 156 In a previous study of UK adults aged 29-62 years, those most exposed (quartile 4) to takeaways across home, work and commuting domains had on average 1.21 kg/m² (95% CI 157 158 0.68, 1.74) greater BMI than those least exposed (quartile 1)³³. This is equivalent to an 159 increase in BMI of 0.0241 kg/m² for each additional takeaway a person is exposed to on a 160 regular basis (unpublished results). Similar results from other analyses of these same data, but 161 accounting only for home and work takeaway exposure, have also been reported¹¹. This 162 magnitude of association was similar to findings from a separate study using data from the Fenland Study, which showed 0.14 kg/m² higher BMI per five additional takeaways exposed 163 164 to³⁴. We used this figure to estimate mean change in BMI attributable to change in per person 165 exposure to takeaways within each LA for adults aged 25-64 years. In supplementary analysis 166 we estimated mean population BMI change across quintiles of deprivation within LAs (see 167 Table S3) using estimates of takeaway exposure change and the same value for the 168 relationship between takeaway exposure change and BMI. 169 170 Health impact modelling using PRIMEtime 171 We used PRIMEtime, a proportional multistate lifetable model, to simulate the impact of

172 observed changes in BMI on a range of diet-related chronic diseases and other health

173 outcomes. The PRIMEtime model works by simulating a change in obesity prevalence

attributable to the intervention. It then estimates changes in incidence of specified BMI-

174

175	related diseases and in disease-specific death rates while keeping deaths unrelated to obesity
176	stable. In our main analysis we estimated the health impacts for a closed cohort of adults aged
177	25-64 years across 22 years (2018-2040) for each of the six LAs, assuming realistic
178	implementation. We used Microsoft Excel to conduct 1000 runs of a Monte Carlo analysis in
179	PRIMEtime, to estimate lower and upper uncertainty intervals (UI) of cases for 12 BMI-
180	related non-communicable diseases and their associated quality adjusted life years (QALYs)
181	benefits and healthcare cost saving outcomes.
182	
183	Diseases related to BMI that were modelled in PRIMEtime were type II diabetes, ischaemic
184	heart disease (IHD), atrial fibrillation/flutter, stroke, hypertensive heart disease, asthma,
185	colon and rectum cancer, oesophageal cancer, breast cancer (females only), osteoarthritis (hip
186	and knee) and low back pain. For estimating healthcare costs in PRIMEtime, disease-specific
187	costs for each modelled disease are based on a range of routine national datasets including
188	hospital episodes statistics admissions data, furthermore a detailed description of the model,
189	including how healthcare costs are attributed to disease burden has been published
190	previously ³⁵ . QALYs were also estimated using utility weights and discounted using
191	published National Institute for Health and Care Excellence (NICE) rates at a flat 3.5% for all
192	health and costs ³⁶ . In our results section we show total healthcare cost savings and QALYs
193	gained in specific LAs and we also adjust the values by dividing them by the number of
194	adults aged 25-64 living in a specific LA in 2018 and then multiplying by 100,000 to show
195	values per 100,000 population. To ensure relevance of our estimates (i.e. because the
196	associations between takeaway exposure and BMI has not been estimated for multiple age
197	groups and it may differ between younger and older adults), we restricted our study to adults
198	in their early to mid-life (25-64 years) at baseline in line with the original study that estimated
199	effect of takeaway exposure on BMI? ³³ .

200

201	Our modelling assumed that during the course of the study, the BMI of adults aged 65 plus
202	were no longer influenced by a change in exposure to takeaways, with any differences in
203	BMI between business-as-usual and the intervention scenario remaining constant in this
204	cohort after this point. This decision was informed by recent literature on dietary intake that
205	showed how in the UK, younger adults (aged 19-29 years) were five times as likely to eat
206	takeaway meals at home relative to adults aged 70 years+ ³⁷ . Thus, we took a cautious
207	approach to ensure we did not overestimate any potential impact of reduction in exposure to
208	takeaway outlets on BMI. Disease incidence estimates were based on time lags from the
209	effect of BMI changes from takeaway exclusion zones. A time lag of five years was assigned
210	for diabetes and cardiovascular diseases based on WHO estimates of reversal of stroke and
211	heart disease ³⁸ , 10 years for cancer based on cohort study findings examining intentional
212	weight loss and breast cancer risk ³⁹ , and one year for all other diseases. A schematic diagram
213	of our analytical strategy is shown in figure 1.
214	
215	In sensitivity analyses, relative to business-as-usual growth, we modelled impacts of policy
216	adoption under a "perfect implementation" scenario where there was a total (100%) reduction
217	in new takeaway growth in the takeaway management zones.
218	
219	Results
220	Demographic characteristics of the six LAs are described in table 1. Wandsworth, a major urban LA
221	in London, has a population density approximately 50 times higher than Fenland, an LA that is

222 mainly rural. Urban LAs had populations with a higher proportion of younger adults (aged 25-44

223 years). For example, 69% of the population of Wandsworth is within this age group, whereas it

constitutes only 46% of Fenland's population.

226 **Takeaway exposure following adoption of management zones**

227	Mean exposure to takeaways at baseline varied between the six LAs, with populations of
228	rural LAs (North Somerset and Fenland) exposed on average to approximately two-thirds
229	fewer takeaways than in other more urban LAs (Table 2). Adoption of takeaway management
230	zones, assuming realistic implementation, led to exposure to fewer takeaways on average, per
231	person, across all LAs relative to business as usual, with the highest absolute reductions in
232	more urban areas. For example, in Manchester, realistic implementation was estimated to
233	reduce average exposure to 28.4 (95% CI 25.8, 31.0) fewer new takeaways per person by
234	2031, relative to business as usual. Reductions in takeaway exposure were lower in other
235	LAs, with exposure to 3.2 (95% CI 1.98, 4.43) fewer new takeaways in Fenland, relative to
236	business as usual. Reductions were stronger under an optimistic implementation scenario, and
237	strongest under perfect implementation, where we estimated in Manchester that takeaway
238	management zones with those stringencies would lead to exposure to 42.6 (95% CI 38.7,
239	46.5) and 56.8 (95% CI 51.6, 61.9) fewer takeaways per person, relative to business as usual
240	(Table S1).
241	

242 Changes in mean BMI after takeaway management zone implementation

243 Realistic implementation was associated with an estimated per person reduction in BMI that

was greatest in Manchester (0.68kg/m²; 95% CI 0.62, 0.75) and lowest in Fenland

 $(0.08 \text{ kg/m}^2; 95\% \text{ CI } 0.05, 0.11)$ in 2031 compared to business-as-usual, and that was overall

246 greater in more urban LAs (Table 3). These patterns were consistent, but effects were

- 247 stronger under an optimistic implementation scenario, and stronger still under perfect
- implementation, where in Manchester the intervention would result in BMI of 1.03 kg/m^2
- 249 (95%CI 0.93, 1.25) and 1.37 kg/m² (95%CI 1.24, 1.49) lower respectively, relative to
- business as usual (Table S2). Across the spectrum of deprivation within each LA, mean

- 251 population BMI change appeared stable, but with some indication that in rural areas, greater
- reductions in BMI may occur in the least deprived areas (Table S3).
- 253

254 Change in prevalence of obesity, QALYs and healthcare cost savings to 2040

- 255 We estimated reductions in obesity prevalence for all LAs, compared to business as usual. In
- 256 males, percentage point (PP) reductions in obesity prevalence ranged from 2.3PP (95% UI
- 257 2.9, 1.7) in Manchester to 1.5PP (95% UI 1.9, 1.1) in Wandsworth (Table 4). In females these
- reductions ranged from 1.9PP (95% UI 2.4, 1.4) in Manchester and Sheffield to 1.5PP (95%
- UI 10.9, 1.2) in Wandsworth. Our models also estimated gains in total QALYs for all LAs,
- which ranged from a gain of 249 QALYs per 100,000 population for adults living in
- 261 Manchester, to a gain of 194 QALYS per 100,00 adults living in North Somerset. In terms of
- healthcare cost savings, these ranged from £2.02 million saved per 100,000 adults in
- 263 Manchester to £1.65 million saved per 100,000 adults living in Fenland over the 22 year
- 264 period. In sensitivity analysis, healthcare cost savings, QALYs and change in prevalence of
- 265 obesity were all approximately twice that observed under a realistic implementation scenario
- in the main analysis (Table S4).
- 267

268 Change in incident cases of disease to 2040

- 269 The largest estimated reductions in cases of disease were for type II diabetes, with an
- estimated reduction of 1013 (95% UI 1285, 735) male and 837 (95% UI 1048, 634) female
- cases per 100,000 population, by 2040, in Blackburn with Darwen (Table 5). Reductions in
- all forms of cardiovascular disease were also observed, with reductions in IHD (e.g.
- 273 Blackburn with Darwen, males: 153 cases/100,000 population, 95% UI 117, 192) and atrial
- fibrillation (e.g. Blackburn with Darwen, males: 73 cases/100,000 population, 95% UI 48,
- 275 102) strongest in all LAs, and consistently more pronounced in males. Improvements for
- 276 respiratory health, with marked reductions in asthma, particularly for females (e.g. Blackburn

277	with Darwen: 402 cases/100,000 population, 95% UI 220, 603), were also observed. Smaller
278	reductions were estimated for oesophageal, breast, and colon and rectum cancers across all
279	LAs. Of all cancers, case reductions were greatest for breast cancer. In terms of impacts on
280	musculoskeletal disease, reductions were estimated for low back pain and more so for
281	females than males (e.g. Blackburn with Darwen: 326 cases/100,000 population, 95% UI 17,
282	644). Small increases in incidence rates for hip and knee osteoarthritis were consistently
283	estimated for both sexes in all LAs. In sensitivity analysis, perfect implementation (i.e. no
284	new takeaways being allowed to open after policy adoption) resulted in an almost doubling of
285	reductions, in disease incidence across all LAs, relative to realistic implementation (Table
286	S5).
287	
288	Discussion
289	Summary of findings
290	Our findings suggest that takeaway management zones around schools could make a
291	substantive contribution to improving adult health and associated healthcare costs. We
292	estimated that this intervention would reduce prevalence of obesity by 1.5 to 2.3 percentage
293	points by 2031, leading to improvements in BMI-related health outcomes to 2040. These
294	estimates were forecast to result in reductions in incidence of a range of diseases by 2040,
295	including type II diabetes, cardiovascular diseases, and asthma. Estimated healthcare cost
296	
207	savings and gains in QALYs were similar in magnitude across LAs, with healthcare savings
297	savings and gains in QALYs were similar in magnitude across LAs, with healthcare savings ranging between $\pm 1.65 - 2.02$ million per 100,000 population and gains in QALYs ranging
297 298	savings and gains in QALYs were similar in magnitude across LAs, with healthcare savings ranging between $\pounds 1.65 - 2.02$ million per 100,000 population and gains in QALYs ranging from between 194 to 241 QALYs gained/ 100,000 population in North Somerset and
297 298 299	savings and gains in QALYs were similar in magnitude across LAs, with healthcare savings ranging between £1.65 – 2.02 million per 100,000 population and gains in QALYs ranging from between 194 to 241 QALYs gained/ 100,000 population in North Somerset and Wandsworth, respectively. We also found that more stringent implementation of the policy,
297 298 299 300	savings and gains in QALYs were similar in magnitude across LAs, with healthcare savings ranging between £1.65 – 2.02 million per 100,000 population and gains in QALYs ranging from between 194 to 241 QALYs gained/ 100,000 population in North Somerset and Wandsworth, respectively. We also found that more stringent implementation of the policy, in alternate optimised or perfect scenarios, would result in even greater population health

303 Comparison with other studies

304	This is the first study attempting to estimate health impacts of takeaway exclusion zones,
305	making it challenging to make direct comparisons with other studies. However, reductions in
306	obesity prevalence in relation to takeaway management zones were consistent across LAs and
307	in line with a number of other studies that have found a relationship between higher exposure
308	to takeaways and increased BMI or risk of obesity in adults ^{11–13} . Meaningful reductions were
309	estimated for future incidence of 12 obesity-related diseases to 2040 across all LAs
310	irrespective of rural-urban classification. The most pronounced reductions, in all LAs, were
311	in incidence of type II diabetes, which in males ranged from reductions of 803 cases/100,000
312	population in largely rural North Somerset to 1206 cases/ 100,000 population in urban
313	Wandsworth. Consistent with this finding, previous studies have shown a positive association
314	between residential takeaway exposure and prevalence of type II diabetes ^{7,9} . This is an
315	important finding because aside from older age, type II diabetes incurs the biggest financial
316	cost of any single disease to NHS healthcare, accounting for 8% of secondary care costs and
317	occupying 17% of hospital day-beds ⁴⁰ . Our estimates also showed substantial reductions in
318	incidence of cardiovascular diseases in response to adoption of management zones. The
319	largest reductions in incident cases were seen in ischaemic heart disease (IHD), with smaller
320	reductions in stroke and hypertensive heart disease. Consistent with this finding, a recent
321	systematic review highlighted evidence of a relationship between takeaway exposure and
322	cardiovascular disease risk ⁴¹ . Furthermore, another study found that incidence of CVD and to
323	a lesser extent stroke, was also higher in adults exposed to more takeaways, which mirrors
324	our observations ⁸ . Our model also estimated meaningful reductions in the incidence of some
325	cancers, asthma, and low back pain. While research on the link between takeaway exposure
326	and these conditions is lacking, each has been found to be associated with living with
327	obesity ⁴²⁻⁴⁴ . We found no significant differences between adoption of the intervention and

BMI change by level of deprivation within LAs. This is similar to a previous study that found
 no differential impact of takeaway exposure across levels of household income¹³.

330

331 Interpretation of findings

332 Recent data from the Health Survey for England suggested that approximately 26% of adults are obese, with the highest prevalence in age-groups 45-74 years.⁴⁵ This suggests that adults 333 334 in this age group may be an important group to target, especially given the relationship 335 between obesity and disability and chronic disease in older adults⁴⁶. However, while the 336 significant reductions in obesity prevalence estimated by our models are encouraging (e.g. 337 1.9 PP in females in Sheffield), they also illustrate the need for a broader set of diet-related 338 interventions to further reduce prevalence of obesity. Many public health interventions are 339 cost saving ⁴⁷ and while the financial costs of the implementation of takeaway management 340 zones were not included in our study and should be integrated into future analyses, healthcare 341 savings were estimated to range from $\pounds 1.65$ million per 100,000 population in North 342 Somerset to £2.02 million per 100,000 population in Wandsworth by 2040. If sustained over 343 a period of 22 years, our modelling also showed that takeaway management zones could add 344 between 101 (Blackburn) and 425 (Manchester) QALYs for males alone, suggesting that the 345 intervention has the potential to make meaningful improvements to the quality of life of 346 whole populations. Our models also estimated slight increases in incidence of knee and hip osteoarthritis. While BMI is associated with osteoarthritis⁴⁸, this finding can be explained by 347 348 the higher proportion of older adults surviving in the population because of the intervention⁴⁹. 349 While our findings estimate larger BMI reductions in more urban LAs, our modelling of 350 health impacts does not mirror this difference between urban and rural areas with incidence 351 of non-communicable diseases and change in obesity prevalence, healthcare savings and 352 QALYs per person. This finding may reflect differences in the demographics of selected LAs 353 including baseline obesity levels, deprivation and age which are risk factors for poor health.

354

355 Study limitations

- 356 *Limitations: Forecasting model of takeaway growth*
- 357 Our study makes use of unique forecasts of long-term population exposure to takeaways in
- 358 the absence of intervention, in six different types of LAs, based on continuation of pre-
- 359 existing trends in takeaway growth. As the intervention can only stop future growth, the
- 360 benefits of the intervention are contingent on continued growth (in the absence of
- intervention), and this is inherently uncertain. For example, to what extent will growth in
- 362 numbers of physical premises continue (and to be important) if online takeaway delivery use
- 363 continues to rise. Further detail on limitations of this method have been published
- 364 previously³². There is also uncertainty around the effectiveness of the implementation. To
- address this, in addition to a core scenario based on recent estimates of real-world impact 50 ,

366 we also provided estimates based on alternative scenarios.

367

368 Limitations: generalisability

369 Our findings are not readily generalisable to children. In this study we focussed on the adult 370 population, in part because previously published associations between takeaway exposure and BMI were based on similar working-age UK adults¹¹. Also because takeaway 371 372 management zones affect a wide geographical area, it is reasonable to assume they will also 373 impact the adult population. Moreover, the geographic and social determinants of takeaway 374 consumption in children may be different and this should be the subject of future research. 375 While observational studies in children show an association between takeaway consumption 376 and energy intake, no corresponding association between takeaway consumption and body 377 weight has been observed, perhaps because energy demands tend to be higher for growth and development^{51.5253}Evidence on the relationship between exposure to takeaways and body 378 379 weight in older populations is also currently lacking, thus our models did not include adults

380	who were aged 65 years and over at study baseline. However, a study using data from the UK
381	National Diet and Nutrition Survey found that adults aged 70 years and over were one fifth as
382	likely to eat takeaway meals at home compared to young adults aged 19-29 years. This
383	supports the idea that dietary behaviours are subject to change over the lifecourse ³⁷ ,
384	necessitating further modelling of intervention impacts in this older age group.
385	
386	Limitations: PRIMEtime modelling
387	The PRIMEtime model excludes some important diseases associated with BMI, including
388	depression and dementia, potentially leading to our results being an underestimation of effect
389	sizes for savings in healthcare costs and QALYs ^{52,53} . In choosing to model a closed cohort we
390	will have potentially further underestimated the health and heathcare cost savings. BMI is
391	also positively linked to need for social care provision ⁵⁴ however we have not modelled
392	social care costs. In the UK, social care costs (in contrast to healthcare costs) are borne by the
393	local authority, and so the returns to the body that bears the risks and costs of the intervention
394	are not quantified here.
395	
396	Limitations: Online food delivery
397	We were unable to account for the impact of online food delivery services (e.g. Just Eat,
398	Deliveroo), which may attenuate the relationship between takeaway management zones and
399	health. These fast-growing services are likely to increase the availability of takeaway food,
400	which the intervention was designed to reduce, thereby reducing its impact. In one UK study,
401	online food delivery services were used at least once per week by approximately 15% of

- 402 adults in 2018^{55} and there is evidence that access is unequal between urban and rural
- 403 areas⁵⁶From 2020 to 2022, access to online delivery takeaways was found to have increased
- 404 by 10% for those living in the most deprived areas of England^{57.} Adults living in the UK who
- 405 have access to the greatest number of takeaways online were also found to have the greatest

- 406 odds of using online food delivery services 58 55 . Future research should consider the
- 407 possibility that place-based interventions such as management zones may to some extent be
- 408 undermined by new modes of takeaway food purchasing.
- 409

410 **Policy implications and future directions**

- 411 A lack of evidence of health benefits associated with the adoption of takeaway management
- 412 zones around schools has been cited as a barrier to policy adoption and effective
- 413 implementation^{27,28}. Building on recent studies that have observed the retail impacts of policy
- 414 adoption^{26,59}, our modelling work now provides evidence on the population health impacts
- that could be achieved through the adoption and (even imperfect) implementation of

416 takeaway management zones around schools. We also showed how stricter, perfect or even

- 417 optimised implementation (preventing takeaway growth by 100% and 75%, respectively)
- 418 would result in even greater benefits to 2040. Local decision makers should therefore remain
- 419 diligent in the strict implementation of takeaway management zones if optimum population
- 420 health is to be achieved.

421 In addition to a range of health benefits we also modelled economic benefits associated with

422 the adoption of takeaway management zones around schools, which were achieved through a

- 423 reduction in healthcare costs. Although these economic benefits may not accrue locally, these
- 424 cost savings are important evidence for those working in LAs who seek to understand the
- 425 wider health benefits of management $zones^{60}$. It is still possible however, as argued by
- 426 inspectors from the national planning inspectorate, that management zones could be
- 427 detrimental to the economy, through denying business growth and curtailing employment
- 428 opportunities⁶¹. As public health interventions are liable to legal challenge under the principle
- 429 of proportionality, future work should include a full economic analysis, considering both
- 430 health and social care costs and benefits, alongside these other economic considerations.

431	Future studies should also account for the continued emergence and growth of online food	
432	delivery platforms, which could diminish the health impacts of this intervention.	
433		

434 Conclusions

- 435 The is the first study to model the health impacts of the adoption and implementation of
- 436 takeaway management zones (sometimes referred to by LAs as "exclusion zones") around
- 437 schools in . In response to a realistic intervention scenario and across a range of different
- 438 types of LAs, we found meaningful reductions in population-level BMI and obesity
- 439 prevalence, and in a variety of associated non-communicable diseases including incidence of
- 440 type II diabetes, cardiovascular diseases, cancers, asthma and low back pain, to the year
- 441 2040. We also found associated health-related benefits including gains in QALYs and
- 442 savings in healthcare costs. Takeaway management zones around schools may be an effective
- 443 population-level intervention to improve diet-related health in adults in the UK ⁶²
- 444

445 Funding and acknowledgements

- 446 This study is funded by the National Institute for Health Research (NIHR) Public Health
- 447 Research Programme (Project number: NIHR130597). The views expressed are those of the
- 448 author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.
- 449 JR, MK, BL, AS, SJS, MW, NR, JA and TB were supported by the Medical Research
- 450 Council (grant number MC_UU_00006/7). OM is supported by a UKRI Future Leaders
- 451 Fellowship (MR/T041226/1)). For the purpose of open access, the author has applied a
- 452 Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version

453 arising.

455

456 **References**

457	1	Bowman SA, Vinyard BT. Fast Food Consumption of U.S. Adults: Impact on Energy
458		and Nutrient Intakes and Overweight Status. J Am Coll Nutr 2004; 23: 163-8.
459	2	Lachat C, Nago E, Verstraeten R, Roberfroid D, Van Camp J, Kolsteren P. Eating out
460		of home and its association with dietary intake: a systematic review of the evidence.
461		<i>Obes Rev</i> 2012; 13 : 329–46.
462	3	Goffe L, Rushton S, White M, Adamson A, Adams J. Relationship between mean
463		daily energy intake and frequency of consumption of out-of-home meals in the UK
464		National Diet and Nutrition Survey. International Journal of Behavioral Nutrition and
465		<i>Physical Activity</i> 2017; 14 : 1–11.
466	4	Schröder H, Fito M, Covas MI. Association of fast food consumption with energy
467		intake, diet quality, body mass index and the risk of obesity in a representative
468		Mediterranean population. British Journal of Nutrition 2007; 98: 1274-80.
469	5	Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR, Popkin BM. Regular
470		consumption from fast food establishments relative to other restaurants is differentially
471		associated with metabolic outcomes in young adults. Journal of Nutrition 2009; 139:
472		2113–8.
473	6	Prentice AM, Jebb SA. Fast foods, energy density and obesity: a possible mechanistic
474		link. Obesity Reviews 2003; 4: 187–94.
475	7	Ntarladima AM, Karssenberg D, Poelman M, et al. Associations between the fast-food
476		environment and diabetes prevalence in the Netherlands: a cross-sectional study.
477		Lancet Planet Health 2022; 6: e29–39.
478	8	Poelman M, Strak M, Schmitz O, et al. Relations between the residential fast-food
479		environment and the individual risk of cardiovascular diseases in The Netherlands: A
480		nationwide follow-up study. Eur J Prev Cardiol 2018; 25: 1397–405.

- 481 9 Sarkar C, Webster C, Gallacher J. Are exposures to ready-to-eat food environments
- 482 associated with type 2 diabetes? A cross-sectional study of 347 \Box 551 UK Biobank
- 483 adult participants. *Lancet Planet Health* 2018; **2**: e438–50.
- Glanz K, Sallis JF, Saelens BE, Frank LD. Healthy nutrition environments: Concepts
 and measures. *American Journal of Health Promotion* 2005; 19: 330–3.
- 486 11 Burgoine T, Forouhi NG, Griffin SJ, Wareham NJ, Monsivais P. Associations between
- 487 exposure to takeaway food outlets, takeaway food consumption, and body weight in
- 488 Cambridgeshire, UK: Population based, cross sectional study. *BMJ* (*Online*) 2014;
- **348**: 1–10.
- 490 12 van Erpecum CPL, van Zon SKR, Bültmann U, Smidt N. The association between the
- 491 presence of fast-food outlets and BMI: the role of neighbourhood socio-economic
- 492 status, healthy food outlets, and dietary factors. *BMC Public Health* 2022; 22.
- 493 DOI:10.1186/S12889-022-13826-1.
- 494 13 Burgoine T, Sarkar C, Webster CJ, Monsivais P. Examining the interaction of fast-
- food outlet exposure and income on diet and obesity: Evidence from 51,361 UK
- 496 Biobank participants. International Journal of Behavioral Nutrition and Physical
- 497 *Activity* 2018; **15**: 1–12.
- 498 14 Athens JK, Duncan D, Elbel B. Proximity to Fast Food Outlets and Supermarkets as
 499 Predictors of Fast Food Dining Frequency. *J Acad Nutr Diet* 2017; **116**.
- Fraser L, Edwards K. The association between the geography of fast food outlets and
 childhood obesity rates in Leeds, UK. *Health Place* 2010; 16: 1124–8.
- 502 16 Mackenbach JD, Charreire H, Glonti K, *et al.* Exploring the Relation of Spatial Access
 503 to Fast Food Outlets With Body Weight: A Mediation Analysis. *Environ Behav* 2019;
- **504 51**: 401–30.

505	17	Dekker LH, Rijnks RH, Strijker D, Navis GJ. A spatial analysis of dietary patterns in a
506		large representative population in the north of The Netherlands - the Lifelines cohort
507		study. Int J Behav Nutr Phys Act 2017; 14: 166.
508	18	Zijlema WL, Klijs B, Stolk RP, Rosmalen JGM. (Un)healthy in the city: Respiratory,
509		cardiometabolic and mental health associated with urbanity. PLoS One 2015; 10.
510		DOI:10.1371/journal.pone.0143910.
511	19	van Erpecum CPL, van Zon SKR, Bültmann U, Smidt N. The association between
512		fast-food outlet proximity and density and Body Mass Index: Findings from 147,027
513		Lifelines Cohort Study participants. Prev Med (Baltim) 2022; 155: 106915.
514	20	Takeaway & Fast-Food Restaurants in the UK - Number of Businesses. IBISWorld
515		2023.
516	21	Maguire ER, Burgoine T, Monsivais P. Area deprivation and the food environment
517		over time: A repeated cross-sectional study on takeaway outlet density and
518		supermarket presence in Norfolk, UK, 1990-2008. Health Place 2015; 33: 142-7.
519	22	The Takeaway Economy Report. Centre for Economics and Business Research. 2017.
520	23	Day P, Pearce J. Obesity-Promoting Food Environments and the Spatial Clustering of
521		Food Outlets Around Schools. Am J Prev Med 2011; 40: 113–21.
522	24	Blow J, Gregg R, Davies IG, Patel S. Type and density of independent takeaway
523		outlets: A geographical mapping study in a low socioeconomic ward, Manchester.
524		<i>BMJ Open</i> 2019; 9 : 1–7.
525	25	Rahilly J, Williams A, Chang M, et al. Changes in the number and outcome of
526		takeaway food outlet planning applications in response to adoption of exclusion zones
527		around schools in England: a time series analysis. Health Place 2023.
528	26	Rahilly J, Amies-cull B, Chang M, et al. Changes in the number of new takeaway food
529		outlets associated with adoption of management zones around schools: A natural
530		experimental evaluation in England. SSM Popul Health 2024; : 101646.

531	27	Keeble M. Burgoine '	Γ. White M.	Summerbell C.	Cummins S.	. Adams J.	Planning and
			-,			,	

- 532 Public Health professionals' experiences of using the planning system to regulate hot
- 533 food takeaway outlets in England: A qualitative study. *Health Place* 2021; 67: 102305.
- 534 28 O'Malley CL, Lake AA, Townshend TG, Moore HJ. Exploring the fast food and
- 535 planning appeals system in England and Wales: decisions made by the Planning
- 536 Inspectorate (PINS). Perspect Public Health 2021; 141: 269–78.
- 537 29 Garde A. Law, Healthy Diets and Obesity Prevention. 2015.
- 538 30 Metcalf CJE, Edmunds WJ, Lessler J. Six challenges in modelling for public health
- 539 policy. *Epidemics* 2015; **10**: 93–6.
- 540 31 Cobiac L, Law C, Scarborough P. PRIMEtime: an epidemiological model for 541
- informing diet and obesity policy. medRxiv 2024.
- 542 32 Liu B, Mytton O, Rahilly J, et al. Development of an approach to forecast future 543 takeaway outlet growth around schools and population exposure in England. 2024.
- 544 33 Burgoine T, Forouhi NG, Griffin SJ, Wareham NJ, Monsivais P. Associations between
- 545 exposure to takeaway food outlets, takeaway food consumption, and body weight in
- 546 Cambridgeshire, UK: Population based, cross sectional study. BMJ (Online) 2014;
- 547 **348**: 1–10.
- 548 34 Burgoine T, Monsivais P, Sharp SJ, Forouhi NG, Wareham NJ. Independent and
- 549 combined associations between fast-food outlet exposure and genetic risk for obesity:
- 550 a population-based, cross-sectional study in the UK. BMC Med 2021; 19: 1–9.
- 551 35 Briggs ADM, Scarborough P, Wolstenholme J. Estimating comparable English
- 552 healthcare costs for multiple diseases and unrelated future costs for use in health and
- 553 public health economic modelling. 2018. DOI:10.1371/journal.pone.0197257.
- 554 NICE. Guide to the Methods of Technology Appraisal. London: National Institute for 36
- 555 Health andnCare Excellence. 2013.

556	37	Adams J, Goffe L, Brown T, et al. Frequency and socio-demographic correlates of

- 557 eating meals out and take-away meals at home: Cross-sectional analysis of the UK
- national diet and nutrition survey, waves 1-4 (2008-12). *International Journal of*
- 559 *Behavioral Nutrition and Physical Activity* 2015; **12**: 1–9.
- 56038Lawes C, Vander Hoorn S, Law M, Elliott P. Comparative Quantification of Health
- 561 Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk
- 562 Factors. 2004.
- 563 39 Eliassen AH, Colditz GA, Rosner B, Willett WC, Hankinson SE. Adult Weight
- 564 Change and Risk of Postmenopausal Breast Cancer. *JAMA* 2006; **296**: 193.
- 565 40 Stedman M, Lunt M, Davies M, et al. Cost of hospital treatment of type 1 diabetes
- (T1DM) and type 2 diabetes (T2DM) compared to the non-diabetes population: a
 detailed economic evaluation. *BMJ Open* 2020; **10**: e033231.
- 568 41 Meijer P, Numans H, Lakerveld J. Associations between the neighbourhood food
- 569 environment and cardiovascular disease: a systematic review. *Eur J Prev Cardiol*570 2023; **30**: 1840–50.
- 571 42 Pati S, Irfan W, Jameel A, Ahmed S, Shahid RK. Obesity and Cancer: A Current
- 572 Overview of Epidemiology, Pathogenesis, Outcomes, and Management. *Cancers*573 (*Basel*) 2023; 15: 1–21.
- 574 43 Peters U, Dixon AE, Forno E. Obesity and asthma. *Journal of Allergy and Clinical*575 *Immunology* 2018; **141**: 1169–79.
- 576 44 Su CA, Kusin DJ, Li SQ, Ahn UM, Ahn NU. The Association between Body Mass
 577 Index and the Prevalence, Severity, and Frequency of Low Back Pain. *Spine (Phila Pa*)
- 5781976) 2018; 43: 848–52.
- 579 45 House of Commons library. Obesity statistics. 2023.
- 580 46 Samper-Ternent R, Al Snih S. Obesity in older adults: Epidemiology and implications
 581 for disability and disease. *Rev Clin Gerontol* 2012; 22: 10–34.

582	47	Masters R, Anwar E, Collins B, Cookson R, Capewell S. Return on investment of
583		public health interventions: A systematic review. J Epidemiol Community Health
584		(1978). 2017; 71 : 827–34.
585	48	Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee
586		osteoarthritis: A systematic review and meta-analysis. Joint Bone Spine 2012; 79: 291-
587		7.
588	49	Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality
589		among 1.46 million white adults. N Engl J Med 2010; 363: 2211–9.
590	50	Rahilly J, Amies-cull B, Chang M, et al. Changes in the number of new takeaway food
591		outlets associated with adoption of management zones around schools: A natural
592		experimental evaluation in England. SSM Popul Health 2024; : 101646.
593	51	Dolton PJ, Tafesse W. Childhood obesity, is fast food exposure a factor? Econ Hum
594		<i>Biol</i> 2022; 46 : 101153.
595	52	De Wit LM, Van Straten A, Van Herten M, Penninx BW, Cuijpers P. Depression and
596		body mass index, a u-shaped association. BMC Public Health 2009; 9: 1-6.
597	53	Kivimäki M, Luukkonen R, Batty GD, et al. Body mass index and risk of dementia:
598		Analysis of individual-level data from 1.3 million individuals. Alzheimer's and
599		Dementia 2018; 14 : 601–9.
600	54	Copley VR, Cavill N, Wolstenholme J, Fordham R, Rutter H. Estimating the variation
601		in need for community-based social care by body mass index in England and
602		associated cost: Population-based cross-sectional study. BMC Public Health 2017; 17:
603		1–11.
604	55	Keeble M, Adams J, Sacks G, et al. Use of online food delivery services to order food
605		prepared away-from-home and associated sociodemographic characteristics: A cross-
606		sectional, multi-country analysis. Int J Environ Res Public Health 2020; 17: 1–17.

607	56	Kalbus A, Ballatore A, Cornelsen L, Greener R, Cummins S. Associations between
608		area deprivation and changes in the digital food environment during the COVID-19
609		pandemic: Longitudinal analysis of three online food delivery platforms. Health Place
610		2023; 80 : 102976.
611	57	Keeble M, Adams J, Burgoine T. Changes in Online Food Access during the COVID-
612		19 Pandemic and Associations with Deprivation: Longitudinal Analysis. JMIR Public
613		Health Surveill 2023; 9. DOI:10.2196/41822.
614	58	Keeble M, Adams J, Vanderlee L, Hammond D, Burgoine T. Associations between
615		online food outlet access and online food delivery service use amongst adults in the
616		UK: a cross-sectional analysis of linked data. BMC Public Health 2021; 21: 1–12.
617	59	Brown H, Xiang H, Albani V, et al. No new fast-food outlets allowed! Evaluating the
618		effect of planning policy on the local food environment in the North East of England.
619		<i>Soc Sci Med</i> 2022; 306 : 115126.
620	60	Local Government Association. Money Well Spent, Assessing the Cost Effectiveness
621		and Return on Investment of Public Health Interventions. 2013.
622	61	O'Malley CL, Lake AA, Townshend TG, Moore HJ. Exploring the fast food and
623		planning appeals system in England and Wales: decisions made by the Planning
624		Inspectorate (PINS). Perspect Public Health 2021; 141: 269–78.
625	62	Adams J, Mytton O, White M, Monsivais P. Why Are Some Population Interventions
626		for Diet and Obesity More Equitable and Effective Than Others? The Role of
627		Individual Agency. PLoS Med 2016; 13: 1–7.
628		

<u>Main Tables</u>

Table 1: Demographic and urban-rural characteristics of six specified local authorities

Local Authority	Rural Urban Classification	Income Population Deprivation density ² Quintile ¹		Gender of adult population aged 25-64 years (N) ³			Age group, N (%)	
				Males	Female	All	25-44 years	45-64 years
Wandsworth	London urban with major conurbation	3	9560	99,161	106,709	205,870	142 <i>,</i> 344 (69.1)	63,526 (30.9)
Manchester	Urban with major conurbation (non-London)	1	4773	149,682	139,056	288,738	187 <i>,</i> 934 (65.1)	100,804 (34.9)
Sheffield	Urban with minor conurbation	2	1513	145,487	145,249	290,736	157 <i>,</i> 524 (54.2)	133,212 (45.8)
Blackburn with Darwen	Urban with city and town	1	1129	38,110	37,792	75 <i>,</i> 902	38,110 (50.2)	37,792 (49.8)
North Somerset	Urban with significant rura	3	580	133,990	140,745	274,735	117,521 (42.8)	157,214 (57.2)
Fenland	Largely or mainly rural	2	188	25,282	25,583	50,865	23 <i>,</i> 405 (46.0)	27,460 (54.0)

 1 Income Deprivation quintile is for the whole population Most deprived quintile = 1

(see:https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/datasets/mappingincomedeprivationatalocalauthoritylevel)

² Population/square km (in relation to the whole population) https://www.ons.gov.uk/datasets/TS006/editions/2021/versions/4?f=get-data

³ Numbers are based on PRIMEtime data in 2015

Table 2: Estimated difference¹ in mean number of takeaways an adult is exposed to in 2040² due to the intervention³ compared to business-as-usual.

Local authority	Baseline exposure in 2018 ⁴	Mean difference in outlet exposure per person compared to business-as-usual scenario
Wandsworth	73.5	-12.6(-9.51, -15.6)
Manchester	91.4	-28.4(-25.8, -31.0)
Sheffield	74.9	-21.4(-17.3, -25.5)
Blackburn with Darwen	66.6	-15.7(-9.43, -22.0)
North Somerset	18.6	-4.09(-3.50, -4.69)
Fenland	17.7	-3.20(-1.98, -4.43)

¹Upper and Lower confidence intervals are indicated in brackets.

² Trajectories of takeaway growth were assumed to increase until 2031 and then stabilise between 2031-2040

³The intervention was based on a realistic scenario where new takeaway growth reduces by 50% each year following the intervention.

⁴ Estimated Outlet exposure (from home, work and commuting) in 2018

Table 3: Change in mean BMI in the adult population (2018 to 2040)¹ in six specified local authorities, following implementation of takeaway management $zones^2$ in 2018.

Local authority	Baseline Obesity level (%) ³	Estimated change in BMI (kg/m ²)
Wandsworth	14.4	-0.30 (-0.23, -0.38)
Manchester	25.4	-0.68 (-0.62, -0.75)
Sheffield	25.3	-0.52(-0.42, -0.61)
Blackburn with Darwen	23.0	-0.38(-0.23, -0.53)
North Somerset	23.0	-0.10(-0.08, -0.11)
Fenland	40.1	-0.08(-0.05, -0.11)

¹Trajectories of BMI were assumed to change until 2031 and then stabilise between 2031-2040 ²The intervention was based on a realistic scenario where new takeaway growth reduces by 50% each year following the intervention.

³ Percentage of adults aged 18 + who are living with obesity

Table 4: Impact of the intervention on quality adjusted life years (QALYs), healthcare cost savings and obesity prevalence in the adult population (2018 to 2040) in six specified local authorities.

	Total QALYs gained ¹			Healthcare cost saving ^{1, 2} (£ in millions)			Percentage point reduction in obesity prevalence	
	Males	Females	QALYs gained/	Males	Females	Savings per	Males	Females
Nandsworth	282 (204, 367)	231 (169, 300)	249.19	1.81(1.26, 2.47)	2.36 (1.61, 3.35)	2.02 (1.39, 2.83)	-1.5 (-1.9, -1.1)	-1.5 (-1.9, -1.2)
Vanchester	425 (317, 546)	270 (202, 343)	240.70	2.62 (1.88, 3.53)	2.82 (1.99, 3.92)	1.88 (1.34, 2.58)	-2.3 (-2.9, -1.7)	-1.9 (-2.4, -1.4)
Sheffield	344 (257, 437)	252(189, 321)	205.00	2.22(1.61, 2.97)	2.73(1.93,3.75)	1.70 (1.22, 2.31)	-2.2 (-2.8, -1.6)	-1.9 (-2.4, -1.4) 👸
3lackburn with Darwen	101 (76, 128)	75 (56, 95)	231.88	0.64 (0.45, 0.86)	0.80 (0.56, 1.12)	1.90 (1.33, 2.61)	-1.9 (-2.4, -1.5)	-1.8 (-2.2, -1.3) _2
North Somerset	284 (213, 363)	248 (185, 315)	193.64	1.93 (1.39 <i>,</i> 2.59)	2.59 (1.82 <i>,</i> 3.59)	1.65 (1.17, 2.25)	-1.6 (-2.0, -1.2)	-1.7 (-2.0, -1.2)
⁻ enland	61.2 (45.7, 78.4)	51.5 (38.6, 65.5)	221.57	0.40 (0.29, 0.54)	0.50 (0.35, 0.69)	1.77 (1.26, 2.42)	-1.9 (-2.4, -1.4)	-1.7 (-2.1, -1.3) 🛛 👸 👼

¹ Based on the following conditions: type II diabetes, ischemic heart disease, hypertensive heart disease, stroke, atrial fibrillation and flutter, colon and rectal cancer, esosophageal cancer, breast cancer (females only), asthma, low back pain, hip and knee arthritis.

² Healthcare costs and population health are discounted as per NICE recommendations for public health interventions.

Table 5: Change in incident cases of disease /100,000 adult population (2018 to 2040), in six specified local authorities.

	Blackburn with Darwen	Fenland	Manchester	Sheffield	North Somerset	Wandsworth
Males						
/letabolic						
ype diabetes	-1013 (-1285, -753)	-995 (-1262, -740)	-964 (-1565, -870)	-803(-1023, -594)	-804 (-1018, -600)	-1206 (-1565, -87
Cardiovascular disease						
schaemic heart disease	-153 (-192, -117)	-105(-131, -80.6)	-124 (-157, -94.1)	-118 (-149, -90.0)	-91.1 (-114, -70.3)	-99.2 (-125, -75.3
lypertensive heart disease	-8.16 (-13.5, -3.22)	-8.32 (-13.6, -3.45)	-6.89 (-11.9, -2.13)	-7.91 (-13.1, -3.09)	-8.42 (-13.7, -3.59)	-6.73 (-11.9, -2.0
Stroke	-9.32 (-12.5, -6.41)	-15.9 (-21.1, -11.0)	-21.1 (-28.3, -14.5)	-17.3 (-23.3, -11.9)	-15.2 (-20.1, -10.5)	-18.9 (-25.3, -12.
Atrial fibrillation & flutter	-72.5 (-102, -47.8)	-61.7 (-86.6, -40.7)	-60.6 (-85.5, -39.8)	-59.7 (-83.8, -39.4)	-57.3 (-80.3, -4.17)	62.0 (-87.7 -40.6
Cancer						
olon & rectum Cancer	-1.05 (-1.57, -0.52)	-1.58 (-2.77, -0.79)	-1.59 (-2.41, -0.83)	-1.76 (-2.64, -0.93)	-1.22 (-1.79, -0.69)	-0.91. (-1.31, -0.5
Desophageal	-0.03 (-0.05, -0.03)	-3.16 (-4.35, -1.98)	-3.28 (-4.54, -2.24)	-2.94 (-4.04, -2.02)	-3.58 (-5.00, -2.44)	< 0.01 (0.01, 0.03
Respiratory						
Asthma	-196 (-293, -107)	-187 (-283, -101)	-192 (-288, -105)	-169 (-252, -93.4)	-182 (-278, -97.2)	-238 (-366, -125)
Ausculo-skeletal						
ow back pain	-272 (-532, -21.0)	-278 (-556, -5.03)	-332 (-650, -29.0)	-277 (-534, -31.6)	-332 (-676, 1.58)	-249 (-534, 22.2)
lip osteoarthritis	0.52 (0.52 <i>,</i> 0.79)	0.40 (0.40, -0.40)	0.6 (0.47, 0.73)	0.55 (0.41, 0.62)	0.15 (0.15, 0.22)	0.30 (0.20, -0.81
ínee osteoarthritis	2.62 (2.10, 2.62)	1.98 (1.58, 2.37)	2.74 (2.20, 3.34)	2.41 (1.92 <i>,</i> 2.96)	0.97 (0.75 <i>,</i> 1.19)	1.21 (0.91, 1.51)
emales						
vletabolic						
ype diabetes	-837 (-1048, -634)	-987 (-1228, -754)	-725(-911, -546)	-677(-847, -513)	-801 (-997, -612)	-879(-1116, -648
Cardiovascular disease						
schaemic heart disease	-49.8(-62.3, -38.3)	-39.2 (-48.9, -30.2)	-41.8 (-52.7, -31.8)	-41.1 (-51.7, -31.4)	-34.4 (-42.8, -26.6)	-31.4 (-39.7, -23.
Hypertensive heart disease	-5.47 (-8.72, -2.38)	-5.92 (-9.18, -2.77)	-4.68 (-7.52, -1.86)	-5.37 (-8.40, -2.34)	-6.18 (-9.73, -2.91)	-4.40 (-7.40, -1.5
Stroke	-19.0 (-25.6, -13.5)	-15.2 (-20.4, -10.8)	-20.1 (-27.2, -13.9)	-16.7 (-22.5, -11.6)	-15.3 (-20.4, -10.9)	-15.2 (-20.7, -10.
Atrial fibrillation & flutter	-32.7 (-45.9, -21.6)	-30.9 (-43.3, -20.5)	-30.9 (-43.3, -20.5)	-27.2 (-38.1, -18.0)	-31.8 (-44.6, -21.1)	-24.1 (-34.1, -15.
Cancer					. , ,	. ,
Colon & rectum Cancer	-1.02(-1.50, -0.57)	-0.78 (-1.56, -0.39)	-0.95 (-1.40, -0.53)	-0.96 (-1.45, -0.55)	-1.14(-1.71, -0.64)	-0.67(-1.03, -0.3
Desophageal	<0.01 (0.01, 0.01)	-0.78 (-0.78, -0.39)	<0.01 (0.01, 0.01)	-0.48 (-0.69, -0.34)	<0.01 (0.01, 0.01)	<0.01 (0.01, 0.01
Breast Cancer	-6.43 (-8.63, -4.49)	-6.65 (-8.99, -4.69)	-6.56 (-8.82, -4.58)	-6.61 (-8.88, -4.61)	-6.68 (-8.95, -4.69)	-6.28 (-8.43, -4.4
Respiratory						
Asthma	-402 (-603, -220)	-327 (-490, -179)	-361 (-542, -199)	-325 (-485, -180)	-318 (-483, -171)	-444 (-681, -235)
Musculo-skeletal						
Low back pain	-326 (-644, 16.5)	-312 (-613, 16.7)	-325 (-638, -23.8)	-319 (-618, 31.2)	-316 (-613 <i>,</i> 1.51)	-318 (-666, 11.3)
Hip osteoarthritis	0.26 (0.26, 0.26)	004 (0.03, 0.05)	0.22 (0.14, 0.22)	0.14 (0.14, 0.21)	0.14 (0.14, 0.21)	0.09 (0.09, 0.09)
Knee osteoarthritis	1.06 (0.79, 1.32)	0.78 (0.78, 1.17)	1.08 (0.86, 1.37)	0.96 (0.76, 1.17)	0.78 (0.78, 1.17)	0.47 (0.37, 0.66)

Adoptic	n of intervention	Analysis of outlet exp	oosure and Health impac
	2018	2031	2040
3.PRIMEtime modelling	Modelled health impacts of adopti	on of takeaway management zones around schools in closed	cohort of adults (25-64 years) ³
2. Body Mass Index	Change in mean body mass index	due to change in exposure to takeaway outlets ² Diff	erence in BMI held constant
Ļ			
1.Takeaway exposure	Change in mean exposure to takea	way outlet after implementation ¹ Diffe	erence in takeaway outlets held constant

¹Change in mean exposure to takeaways (by 2031) is calculated by comparing the difference in outlet exposure from a business-as-usual model (see Liu et al, 2024) to an intervention that reduces outlet growth between by 50%.

² For each additional takeaway an individual is exposed to, mean BMI increases by 0.0241 kg/m². See Burgoine et al, 2014

³ For PRIMEtime modelling, the oldest age of a cohort member would be aged 64 years old at baseline (2018) and who would be 86 years old by 2040. Some adults will be lost to follow-up, for example due to premature mortality.