
Integrating Genetic and Transcriptomic Data to Identify Genes Underlying Obesity Risk 

Loci 

 

AUTHORS: 

Hanfei Xu, PhD1,*, Shreyash Gupta, MS2, Ian Dinsmore, MS3, Abbey Kollu4, Anne Marie Cawley, 

MS5, Mohammad Y. Anwar, PhD6, Hung-Hsin Chen, PhD7,8, Lauren E. Petty, PhD8, Sudha 

Seshadri, PhD1,9,10, Misa Graff, PhD6, Piper Below, PhD8, Jennifer A. Brody, BA11, Geetha 

Chittoor, PhD2, Susan P. Fisher-Hoch, PhD12, Nancy L. Heard-Costa, PhD13,14, Daniel Levy, 

PhD15, Honghuang Lin, PhD16, Ruth JF. Loos, PhD17,18, Joseph B. Mccormick, PhD12, Jerome I. 

Rotter, PhD19, Tooraj Mirshahi, PhD3, Christopher D. Still, DO20, Anita Destefano, PhD1,9, L. 

Adrienne Cupples, PhD1, ¥, Karen L Mohlke, PhD21, Kari E. North, PhD6,†, Anne E. Justice, PhD2,†, 

Ching-Ti Liu, PhD1,†,* 

 

* Corresponding authors 

† Equally supervised this work 

¥ Published posthumously  

Correspondence: all correspondence should be addressed to ctliu@bu.edu (CTL) and Hanfei Xu 

(hfxu@bu.edu)  

AFFILIATIONS 

1Department of Biostatistics, School of Public Health, Boston University, 801 Massachusettes Ave, 

Boston, MA, 02118, USA, 2Department of Population Health Sciences, Geisinger, 100 N. 

Academy Ave., Danville, PA, 17822, USA, 3Department of Genomic Health, Geisinger, 100 N. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:ctliu@bu.edu
mailto:hfxu@bu.edu
https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


Academy Ave., Danville, PA, 17822, USA, 4Department of Psychology and Neuroscience, 

University of North Carolina, 235 E. Cameron Avenue, Chapel Hill, NC, 27599, USA, 5Marsico 

Lung Institute, University of North Carolina, 125 Mason Farm Rd, Chapel Hill, NC, 27599, USA, 

6Department of Epidemiology, Gillings School of Global Public Health, University of North 

Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599, USA, 7Institute of Biomedical Sciences, 

Academia Sinica, No. 128, Section 2, Academia Rd., Taipei, Nangang District, 115201, Taiwan, 

8Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical 

Center, 1161 21st Ave S, Nashville, TN, 37232, USA, 9Department of Neurology, School of 

Medicine, Boston University, 85 East Concord Street, Boston, MA, 02118, USA, 10Glenn Biggs 

Institute for Alzheimer’s & Neurodegenerative Diseases, UT Health San Antonio, 8300 Floyd Curl 

Drive, San Antonio, TX, 78229, USA, 11Department of Medicine, Cardiovascular Health Research 

Unit, University of Washington, 1730 Minor Ave, Seattle, WA, 98101, USA, 12Department of 

Epidemiology, School of Public Health, UT Health Houston, Regional Academic Health Center, 

One West University Blvd, Brownsville, TX, 78520, USA, 13Framingham Heart Study, 73 Mt 

Wayte Ave, Framingham, MA, 01702, USA, 14Department of Neurology, Chobanian & Avedisian 

School of Medicine, Boston University, 72 E Concord St, Boston, MA, 02118, USA, 15Population 

Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, 

6701 Rockledge Drive, Bethesda, MD, 20892, USA, 16Department of Medicine, University of 

Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA, 01655, USA, 17Charles 

Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount 

Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA, 18Novo Nordisk Foundation Center for 

Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 

Blegdamsvej 3A, 2200, Copenhagen, Denmark, 19Department of Pediatrics, The Institute for 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical 

Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, 

USA, 20Center for Obesity and Metabolic Health, Geisinger, 100 N. Academy Ave., Danville, PA, 

17822, USA, 21Department of Genetics, School of Medicine, University of North Carolina, Chapel 

Hill, NC, 27599, USA 

 

AUTHOR CONTRIBUTIONS 

Participate in Project Concept and Design: LAC, KEN, AEJ, CTL. Participate in Parent Study Concept and 

Design: JBM, JIR, LAC, KEN. Participate in Phenotype Data Acquisition and/or QC:  HX, ID, SPFH, 

RJFL, NHC, JBM, TM, CDS, LAC, AD, KEN, AEJ, CTL. Participate in Genotype or gene expression Data 

Acquisition and/or QC: HX, ID, MYA, HHC, LEP, MG, GC, HL, NHC, SPFH, AD, RJFL, JBM, TM, CDS, 

LAC, KEN, AEJ, CTL. Participate in Data Analysis and Interpretation: HX, SG, ID, MYA, RJFL, KLM, 

KEN, AEJ, CTL. Drafted the manuscript and revised according to co-author suggestions: HX, SG, SPFH, 

KEN, AEJ, CTL.  All authors critically reviewed the manuscript, suggested revisions as needed, and 

approved the final version. 

 

ACKNOWLEDGEMENTS 

Individual Acknowledgements:  

SG, ID, GC, CTL, KEN, AEJ, CDS, TM, KLM were funded in part by NIH R01 DK122503. MYA was 

funded by NIH NIDDK 3R01DK122503 – 02W1. MG was funded in part by NIH R01HL163262. JIR was 

funded in part by National Center for Minority Health Disparity (NCMHD), MD000170P20, McCormick. 

KEN was also funded in part by NIH R01HL142302, R01HL151152, R01 R01HD057194, R01HG010297, 

and R01HL143885. 

Study Acknowledgements: 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


The Framingham Heart Study (FHS): The FHS is funded by National Institutes of Health contract N01-

HC-25195. The laboratory work for this investigation was funded by the Division of Intramural Research, 

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. The analytical 

component of this project was funded by the Division of Intramural Research, National Heart, Lung, and 

Blood Institute, and the Center for Information Technology, National Institutes of Health, Bethesda, MD. 

The visualization tools and data resources for this project were funded by the National Center for 

Biotechnology Information, National Institutes of Health, Bethesda, MD. 

The FHS acknowledges the support of contracts NO1-HC-25195, HHSN268201500001I and 

75N92019D00031 from the National Heart, Lung and Blood Institute and grant supplement R01 

HL092577-06S1 for this research. We also acknowledge the dedication of the FHS study participants 

without whom this research would not be possible. This manuscript does not necessarily reflect the opinions 

or views of the NHLBI, NIH or DHHS. 

Cameron County Hispanic Community (CCHC) Cohort: We thank our cohort team including the CRU, 

data and lab staff  of the CCHC  team. We thank Valley Baptist Medical Center, Brownsville, for providing 

the space for our Clinical Research Unit. CCHC study and team members were funded by: National 

Institutes of Health, National Center for Minority Health Disparity, MD000170P20,  UL1 TR000371, 

National Heart, Lung, and Blood Institute, 1R01HL142302, 2R01HL142302, National Center for 

Advancing Translational Sciences, (NCATS), Clinical and Translational Science Awards (CTSA),UL1 

9/30/06-6/30/11, UL1TR0003716/27/12-/31/17, UL1TR0031677/1/19-6/30/2 

MyCode Bariatric Surgery Cohort: We thank all the participants of the MyCode Community Health 

Initiative Study (MyCode) and the MyCode Research Team. We thank the members of the Geisinger-

Regeneron DiscovEHR Collaboration who have been critical in the generation of the genetic and 

transcriptomic data used in this study. This study was funded in part by NIH HL142302, NIH 

2R01HL142302, National Center for Advancing Translational Sciences, UL1 9/30/06-6/30/11, 

UL1TR0003716/27/12-/31/17, UL1TR0031677/1/19-(NCATS), Clinical and Translational Science 

Awards (CTSA). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


CONFLICTS OF INTEREST 

None to report. 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT  

Genome-wide association studies (GWAS) have identified numerous body mass index 

(BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. 

Leveraging omics data through integrative analyses could provide more comprehensive views of 

biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 

samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms 

(SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association 

analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a 

correlated meta-analysis between the full summary data sets (PMETA).  We identified transcripts 

that met Bonferroni-corrected significance for each omic, were more significant in the correlated 

meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. 

Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, 

GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an 

independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. 

We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver 

and observed significant (PMETA<0.05 & PMETA<PSNP & PMETA<PBMI) results for YPEL3 in nucleus 

accumbens and NT5C2, SNAPC3, TMEM245, YPEL3, and ZNF646 in liver. The identified genes 

help link the genetic variation at obesity risk loci to biological mechanisms and health outcomes, 

thus translating GWAS findings to function. 

 

INTRODUCTION  

Obesity is an enormous global public health burden.1 Since obesity is a major risk factor 

for numerous health outcomes, including cardiometabolic diseases2, the rapid increase in the 
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global obesity burden requires immediate public health action and a better understanding of obesity 

pathogenicity to prevent it. Decades of research, including genome-wide association studies 

(GWAS), have demonstrated the fundamental role of genetic susceptibility in obesity risk.3-13 Each 

GWAS-identified locus potentially provides novel biologic insight; yet identifying the functional 

variants, genes, and underlying pathways at these loci has limited translation for precision 

medicine.   

A major barrier to precision medicine for obesity has been the identification of functional 

genes underlying GWAS findings. Of the thousands of genomic regions associated with obesity-

related traits by GWAS, over 90% are in non-coding, potentially regulatory regions of the 

genome.14 Previous work mapping body mass index (BMI)-related genes implicates the 

involvement of synaptic function and glutamate receptor signaling, which impinge on key 

hypothalamic circuits that respond to changes in feeding and fasting and are regulated by key 

obesity-related molecules such as BDNF and MC4R15-18. These pathways overlap with a proposed 

mechanism of action of topiramate, a component of one new FDA-approved weight-loss drug19,20. 

However, our understanding of the fundamental mechanisms underlying genetic risk for obesity 

is limited and controversial even for FTO, with the most prominent effects on BMI.21  

Transcriptomics lie along pathways linking genetic susceptibility to obesity and is 

emerging as powerful disease biomarkers22-25 that may provide targetable “mechanistic bridges” 

linking GWAS findings with obesity risk. Large-scale characterization and integration of OMICs 

have been challenging because the comprehensive collection of molecular data has, until very 

recently, either been unavailable or cost-prohibitive in the context of a single study. However, 

OMICs scans in the same individuals in which obesity-associated loci discoveries were made are 

now available24,26-30, thereby facilitating comprehensive and efficient integration with genetic data 
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to illuminate the underlying genes and mechanistic pathways of obesity-associated loci. Thus, 

studies that integrate GWAS with transcriptomics may lead to breakthroughs that reveal the genes 

contributing to obesity,31-33 identify individuals or groups that could benefit from aggressive 

prevention or treatment, or the repurposing of therapeutics.34,35  

In this study, we analyzed GWAS data and transcriptomic data generated in whole blood 

in 5,619 participants from the Framingham Heart Study (FHS) to identify potential causal genes 

through which known loci operate on obesity phenotypes (BMI). We used a correlated meta-

analysis procedure to efficiently screen loci for potential candidate genes that are jointly associated 

with BMI and SNPs in linkage disequilibrium (LD) with established BMI-associated GWAS SNPs.  

 

METHODS  

Study sample 

We included participants from both the Offspring cohort and the third generation (Gen3) 

cohort of the FHS. The Offspring cohort of FHS began in 1971 and consisted of children of the 

Original cohort and spouses of these children.36,37 Gen3 cohort comprised children from the 

offspring families enrolled in 2002.38 The time intervals between clinical examinations for 

Offspring and Gen3 cohorts were approximately 4-6 years.  

Since the timing of the blood sample taken for RNA collection was close to the eighth 

clinical examination (Exam 8) for the Offspring cohort and the second clinical examination (Exam 

2) for the Gen3 cohort, our study was restricted to subjects with available blood sample, genotype 

data, and BMI information in either Exam 8 of the Offspring study or Exam 2 of the Gen3 study.  

All participants provided written informed consent. The Institutional Review Board of the Boston 

University Medical Campus approved the study (N=5,169).  
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All participants provided written informed consent. The Institutional Review Board of the 

Boston University Medical Campus approved the study.  

 

 

Data description 

FHS participants were genotyped using the Affymetrix GeneChip Human Mapping 500K 

Array Set and another Affymetrix 50K gene-centric array. The genotype imputation was 

performed using the Michigan Imputation Server with HRC reference panel release 1.1 April 2016 

(HRC r1.1).  

Fasting peripheral whole blood samples (2.5 ml) were collected from FHS participants at 

the eighth clinical examination (Exam 8) of the Offspring cohort and the second clinical 

examination (Exam 2) of the Gen3 cohort. The details of RNA collection and expression data 

cleaning have been previously described.39 In our study, we used the expression data that have 

been adjusted using technical covariates and blood count40,41. 

Height and weight were measured at Exam 8 of the Offspring cohort and Exam 2 of the 

Gen3 cohort. BMI was then calculated by weight (kg)/height(m)2. 

 

SNP-transcript association and transcript-BMI association 

We analyzed 3,992 SNPs that are in LD (r2 >0.8) with 97 previously reported BMI variants 

from GIANT BMI GWAS paper (Locke et al. 2015) and the 1,408 transcripts with a start position 

within 1 Mb of these variants.  

We performed two kinds of association modeling. The first was a SNP-transcript 

association model, with the transcript as the outcome, and the SNP genotype as the predictor, 

adjusting for covariates including age at expression data collection, sex, and cohort identifier. We 
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performed this first model for every SNP-transcript pair, using a linear mixed effects model to 

account for relatedness. The second model assessed the association between transcript and BMI, 

with expression of the transcript as the outcome, and BMI as the predictor, adjusting for age at 

expression data collection, sex, cohort identifier, and familial relatedness. We performed the 

second model for each transcript separately. In this manuscript, we will denote the p-value of the 

SNP from the first model as PSNP and the p-value of BMI from the second model as PBMI. 

 

Correlated meta-analysis 

We used the correlated meta-analysis model of Province and Borecki42 to account for the 

potential dependence between the SNP-transcript and transcript-BMI associations. This correlated 

meta-analysis model estimated the degree of correlation between SNP-transcript and transcript-

BMI associations, and corrected for the inflation of type-I error that would be observed in a 

traditional meta-analysis (that assumes the two associations are statistically independent). Our 

model used a tetrachoric correlation, which was less sensitive to contamination from the alternative 

hypothesis than the Pearson correlation, thus preventing over-correction of the correlation. 

In our analysis, for every SNP, we estimated the covariance matrix Σ  between two 

association results (𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆 = Φ−1(𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆) and 𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵 = Φ−1(𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵)) using tetrachoric correlation, and 

then we calculated 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵) ~ 𝑁𝑁(0, 𝑠𝑠𝑠𝑠𝑠𝑠(Σ))  and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 −Φ(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  for 

each SNP-transcript pair.  

After performing the correlated meta-analysis, we further screened the results to identify 

transcripts that met Bonferroni-corrected significance for each omic and were more significant in 

the correlated meta-analysis than in each omic. Thus, we included five criteria: Pmeta<PSNP, 

Pmeta<PBMI, PSNP< (0.05/1,408) =3.6×10-5, PBMI<3.6×10-5, and at least nominal association (P<.05) 

between BMI and SNP in FHS. The first two criteria ensured that both the SNP-transcript and 
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transcript-BMI associations contributed to the meta-analysis. The third and fourth criteria 

guaranteed the Bonferroni-corrected significance of each association. The last criterion restricted 

the SNPs to those at least nominally associated with BMI in FHS data. 

 

Functional interrogation/regulatory annotation 

Regulatory variants are more likely to drive correlated signals of gene expression and SNP 

association than coding variants. To characterize candidate regulatory variants, we used chromatin 

marks and other epigenomic data that define regulatory elements or link regulatory elements to 

gene transcription start sites. We focused on data sets for liver, and component cell types, 

especially preadipocytes, adipocytes, and hepatocytes. We compared them to other tissues because 

tissue-restricted regulatory elements may be more likely to be relevant and functional. The 

resources we considered include accessible chromatin based on the assay for transposase-

accessible chromatin (ATAC-seq) or DNase hypersensitivity from brain, blood, and liver; histone 

mark and transcription factor ChIP-seq and chromatin states from ENCODE43 used for visual 

inspection and to assess variant overlap with potential candidate cis regulatory elements (cCREs). 

Additional resources used for variant annotation as described in Box 1 include GeneCards44, 

OMIM45, and GTEx46.  

 

Validation: Cameron County Hispanic Cohort (CCHC) 

The CCHC was established on the Texas-Mexico border in 2004.47 This randomly 

ascertained community cohort currently comprises over 5000 people and is approximately 60% 

female. The mean age of the CCHC participants was 45.2 years and 61% were > age 40. All CCHC 

individuals were genotyped using the Illumina MEGAEX array.48 All genotype data was quality 
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controlled (QC’ed) following standard protocols (i.e. exclude individuals and variants with high 

levels of missingness, extreme heterozygosity, sex mismatch,  variants with low minor allele 

frequency (MAF <0.01), or those that deviate from Hardy-Weinberg equilibrium (p <10-6), then 

imputed to TOPMed R2 panel.49 The study was approved by the Committee for the Protection of 

Human Subjects (CPHS) at the University of Texas Health Sciences Center at Houston. All 

participants provided informed consent to be included in CCHC genomic studies. 

RNA sequencing of 1,800 CCHC participants was conducted using stored whole blood 

with sufficient quantity and quality. Sample collection and transcriptome profiling were described 

in detail previously.50 Briefly, pooled libraries were subjected to 150 bp paired-end sequencing 

according to the protocol (Illumina NovaSeq) at VANTAGE. Six blood cell types were predicted 

and scaled using the R package DeconCell, a method that quantifies cell types using expression of 

marker genes.51 We performed fastp for quality control following standard protocols,52  and the 

QC-passed reads were aligned to human genome reference (hg38) with STAR.53,54 Samples with 

aligned reads <15M, alignment rate <40%, or assigned reads <15M were excluded.55 DESeq2 was 

performed for library size normalization and gene-specific dispersion estimation.56 PEER factor 

analysis was used to capture the unobserved confounders of transcriptome profiles.57 We then 

implemented a negative binomial model in DESeq2 to identify BMI genes with covariate 

adjustment for sex, age, 10 PEER factors56, and filtered results using default thresholds.  

We performed eQTL mapping using the GTEx v8 pipeline.46 In brief, we selected 645 

unrelated CCHC individuals with both genotyping and RNA-seq data available.58 We aligned the 

RNA-seq reads to the human genome reference using STAR, and then quantified each gene using 

RNA-SeQC.53,59  Read counts were normalized by trimmed mean of M values (TMM), and inverse 

variance normalization was performed.60 We identified eQTLs in cis (within 1 Mb) for each gene 
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using FastQTL with adjustment for sex, RNA-seq batch, 5 genetic principal components (PCs), 

and 10 PEER factors.  

 

Generalization on liver tissue: MyCode Bariatric Surgery Cohort 

The MyCode™Community Health Initiative (MyCode) study is a healthcare-based 

population study in central and northeastern Pennsylvania with ~2 million patients 61,62. All 

participants provided informed consent for the MyCode Study. This study was approved by the 

Geisinger Institutional Review Board. We leveraged existing transcriptomic profiling in the 

Geisinger Health System’s (GHS) Bariatric Surgery Program (BSP) study to generalize observed 

joint associations from whole blood in FHS to liver tissue. All BSP participant data are linked to 

clinical and demographic data through Mycode’s electronic health records. While the BSP study 

participants are all obese, there is significant variation across the study participants 

(Supplementary Table 1, N=2,224). Liver wedge biopsies were obtained intraoperatively during 

Roux-en-Y gastric bypass (RYGB) surgery63, as described previously64,65. Total RNA was isolated 

from the excised liver tissue using the RNeasy total RNA isolation kit (Qiagen, Valencia, CA). 

Standard library prep procedures were followed by sequencing to obtain raw reads for each sample. 

The sequencing reads were aligned to Ensembl Release 104 reference genotypes and duplicate 

reads were marked using STAR v2.7.0,53 and then quality-controlled and gene expression 

quantified using and converted to transcripts per million (TPM) using RNASeQC v2.4.2 59. TPM 

≥ 0.1 in at least 20% of samples and ≥6 reads in at least 20% of samples. Raw TPM values were 

inverse normal transformed60. PEER factor analysis was used to capture the unobserved 

confounders of transcriptome profiles.57 Association analyses were performed using FastQTL 66, 
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adjusting for sex, age, self-identified race/ethnicity, the first three genomic PCs to control for 

ancestry, and 60 PEER factors.56  

 

Generalization on brain tissue 

Analyses of hypothalamus (N=131) and nucleus accumbens (N=198) were conducted on 

samples from three cohorts: the Framingham Heart Study (FHS), the Religious Orders Study 

(ROS), and the Rush Memory and Aging Project (MAP). We restricted our analysis to samples 

with RIN>3 and BRAAK score <= 4. Details of RNA sequencing of hypothalamus and nucleus 

accumbens and the transcript-BMI association analysis were described previously67. For the eQTL 

analysis, we used FastQTL and adjusted for covariates: 5 first genetic PCs, PEER factors according 

to the GTEx recommendations (15 PEER factors for hypothalamus and 30 PEER factors for 

nucleus accumbens), sex, age at death, cohort, and sequencing batch. We further performed meta-

analysis using p-values of SNP-transcript and transcript-BMI associations via Fisher’s method68, 

producing a meta-analyzed p-value.  

 

RESULTS 

Sample characteristics 

The characteristics of samples included in the discovery correlated meta-analysis, 

validation analysis, and generalization analyses are shown in Supplementary Table 1. The age 

distribution was similar for FHS whole blood, CCHC whole blood, and GHS liver analyses, with 

a mean ranging from 47 to 58, and the brain analyses had relatively older subjects with a mean age 

of 88. All study samples had a larger proportion of females compared to males. The GHS sample 
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had a relatively higher BMI compared to other study samples. FHS and GHS are dominantly 

European ancestry, while CCHC was 100% Hispanic/Latino. 

 

Correlated Meta-analysis 

Figure 1 shows the general workflow of our entire study. The models and filtering criteria of each 

step have been included in the methods section. In the FHS analysis, we found 308 SNP-transcript-

BMI associations corresponding to seven unique genes (NT5C2, YPEL3, ZNF646, SPNS1, GSTM3, 

SNAPC3, and TMEM245) potentially involved in transcriptional pathways from SNP to BMI 

(Table 1). 115 variants were involved in the SNP-transcript-BMI associations for NT5C2, 

including the reported BMI variant rs1119156069,70. YPEL3, ZNF646 and SPNS1 were in the same 

region (16p11.2), and we observed 10, 46 and 91 SNP-transcript-BMI associations for YPEL3, 

ZNF646 and SPNS1 respectively, including three reported BMI variants rs4787491 28, 

rs992596469-71 and rs388819028,69,71-74. At the TMEM245 locus, we pinpointed the SNP-transcript-

BMI association to the reported BMI variant rs647769469-71,73-75. GSTM3 was located at 1p13.3, 

with 4 SNP-transcript-BMI associations detected, including previously reported BMI signal 

rs1702439328,69,70,76,77. SNAPC3, located at 9p22.3, had 41 SNP-transcript-BMI associations 

identified. Separate results for suggestive (PSNP< (0.05/1,408) =3.6×10-5, PBMI<3.6×10-5) SNP-

transcript and transcript-BMI signals are provided in Supplementary Table 2 and 

Supplementary Table 3. 

 

Validation and Generalization to Other Tissues 

We tested for validation of the above seven genes using CCHC blood gene expression data. 

Among the identified 308 SNP-transcript-BMI associations, 37 SNP-transcript-BMI associations 
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corresponding to SNAPC3 and 10 SNP-transcript-BMI associations corresponding to YPEL3 

remained significant (Pmeta<0.05 & Pmeta<PSNP& Pmeta<PBMI) (Supplementary Table 4). Regional 

association plots for each gene show annotation information (Figure 2 and Supplementary 

Figures 1-5). Of note, the top PMETA SNP for SNAPC3 and YPEL3 are within or proximal to 

putative candidate cis-Regulatory Elements (cCREs) based on ENCODE43 regulatory data on 

blood, brain, and liver tissues (Figure 2).  

We also tested for generalization using gene expression in brain tissues. Hypothalamus 

tissue showed no significant SNP-transcript-BMI association. In contrast, the 10 SNP-transcript-

BMI associations corresponding to YPEL3 were significant in the generalization analysis on 

nucleus accumbens. Additionally, we were able to generalize signals in liver tissue for NT5C2, 

SNAPC3, TMEM245, YPEL3, and ZNF646, including 103, 40, 1, 10, and 15 SNP-transcript-BMI 

associations, respectively (Supplementary Table 4). While the direction of effect was consistent 

for both brain tissues, even for non-significant associations (Table 2, Figure 3, and 

Supplementary Table 4). The direction of effect was not always consistent across tissue types; 

however, consistency of direction of effect across various tissues may not be expected. Further 

work may be needed to clarify expectations of directional consistency across tissues with respect 

to BMI ~ Gene and SNP ~ associations. 

 

Biological interrogation  

Previous studies of gene function and bioinformatics characteristics (see Methods) of the 

significant genes highlight nearby signatures of gene regulation (Box 1, Figure 2 and 

Supplementary Figures 1-5). Additionally, our literature search provides further details on 

potential roles for identified genes for obesity (Box 1). For example, NT5C2 deletion was found 
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to be protective in mice fed a high fat diet (HFD) 78. Other model organism studies have shown 

alterations in YPEL3 results in altered obesity phenotypes. For example, YPEL3 knockdown in 

Drosophila melanogaster resulted in significant changes in body fat percentage79. Additionally, previous 

studies integrating GWAS and eQTL data have shown YPEL3 and NT5C2 were both have 

pleiotropic effects leading to schizophrenia and cardiometabolic disease, schizophrenia and BMI 

for YPEL3, and schizophrenia, BMI, and coronary artery disease for NT5C280.  Box 1 shows strong 

support for YPEL3 and NT5C2 as likely candidate genes underlying the association with BMI in 

these two regions. However, existing knowledge that may offer a role for the other genes in the 

pathway to BMI is sparse.   

 

DISCUSSION 

This study incorporated a correlated meta-analysis method to perform integrative analysis 

using genotype, gene expression, and phenotype (BMI) data. From the discovery analysis using 

the FHS whole blood data, we identified seven genes (NT5C2, YPEL3, ZNF646, SPNS1, GSTM3, 

SNAPC3, and TMEM245) that potentially lie along the pathway linking genetic variation to 

elevated BMI. Among those seven genes, YPEL3 and SNAPC3 associations were validated in 

whole blood in the CCHC study. In the analyses of tissues other than blood, NT5C2, SNAPC3, 

TMEM245, YPEL3, and ZNF646 associations generalized in the liver tissue, and YPEL3 in the 

nucleus accumbens. 

YPEL3 is located at 16p11.2, a gene dense region well-known for a microdeletion 

associated with neurocognitive developmental delay and predisposition to obesity81-83. Literature 

has reported that this region’s deletion event is related to a highly-penetrant form of obesity84,85, 

and is age- and gender-dependent86,87. Within this region, SH2B1 has received much attention as 
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the likely causal gene underlying the mosaic effects of the 16p11.2 deletion and is thought to 

regulate body weight and glucose metabolism88,89; and as a result, YPEL3 has rarely been 

considered in previous studies. One of the previous studies that considered YPEL380 identified it 

as a pleiotropic gene jointly influencing BMI and risk of schizophrenia. In contrast, another study90 

asserted that the association between YPEL3 and schizophrenia is due to its correlation with 

expression of INO80E, another possible candidate gene for BMI and risk of schizophrenia in the 

16p11.2 region. Despite the controversial findings of YPEL3 in the literature, several pieces of 

evidence support a role of YPEL3 in BMI.  First, the gene is highly expressed in whole blood and 

brain, similar to well-known BMI-related genes (Box 1). Also, YPEL3 was the sole candidate gene 

in this region identified by the current analysis. Further, the blood expression results were validated 

in an independent study of Hispanic participants, and the results generalized to both brain and liver 

tissues. Combined, this evidence suggests that more attention is warranted on this gene in the future.  

NT5C2 is located at 10q24.32, which has been reported as a highlight locus of autism 

spectrum disorder, brain arterial diameters, and schizophrenia91-93. A previous study in zebrafish 

found NT5C2 as a potential causal gene in this region for blood pressure94. Notably, variation in 

this gene is also associated with lower visceral and subcutaneous fat95, obesity, and the 

concurrence of obesity and depression96 (Box 1). Further, animal studies of NT5C2 knock-outs 

show changes in body weight gain, insulin resistance on high-fat diet, and white adipose tissue 

mass78,97. Kumar et al. found that rs11191548 decreased miRNA binding efficiency, which may 

explain the functional role of NT5C2 influencing BMI98. Yet, our significant findings linking SNP 

variation to NT5C2 gene expression with BMI in liver tissue is novel and a role for this gene in 

other tissues warrants further exploration.   
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While support for other genes identified herein is limited in the literature, SNAPC3, which 

validated in CCHC, and TMEM245, which generalized to liver tissue, have connections to obesity-

related traits. For example, similar to both genes mentioned above, SNAPC3 variants have also 

been associated with schizophrenia99. Also, DNA methylation in SNAPC3 has been reported to 

mediate the association between breastfeeding and early-life growth trajectories100. The expression 

level of TMEM245 has been associated with atrial fibrillation101, and schizophrenia-associated 

variants have been reported within this gene102.  

In recent years, there has been growing interest in developing integrative approaches that 

utilize various OMICs data to uncover underlying biological mechanisms103-106. When individual-

level data is available, combining multiple OMICs datasets to perform further analysis is 

preferred107,108. Yet, few integrative studies using summary-level data exist80,109, limiting cross 

study analyses. Thus, among all the integrative OMICs analyses, the correlation between OMICs 

is often ignored109,110. In our study, we leveraged the correlated meta-analysis framework 

proposed42, which is a robust approach to integrate “suspected” correlated SNP-transcript 

association and transcript-BMI association. This approach is useful for performing statistical 

integration and has been incorporated into many colocalization and polygenic pleiotropy detection 

methods111,112. By performing correlated meta-analysis using summary level data, we ensured the 

correlation between summary statistics of OMICs scans were considered. 

There are some previous integrative studies on obesity-related phenotypes. Smemo et al21. 

found that obesity-associated variants within FTO were functionally connected with IRX3 and 

IRX5 expression. Voisin et al.113 and Tang et al.114 evaluated the association and the interaction 

between obesity-associated SNPs and DNA methylation changes. Kogelman et al.107 detected co-

expression patterns among eQTLs, integrated with protein data, and detected several obesity 
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candidate genes, such as ENPP1, CTSL, and ABHD12B. More recently, integrative analyses on 

multiple obesity and neuro-related phenotypes provided further gene lists that potentially affected 

relevant phenotypes jointly80,90. Also, a recent study colocalized splice junction quantitative trait 

loci (sQTLs) measured in subcutaneous adipose tissue with 24 BMI GWAS loci, including with 

YPEL3115, and another study has reported 162 BMI signals with a colocalized adipose eQTL.116 

Compared to other integrative studies, our study has several strengths. To our knowledge, 

our study is the first one that takes the correlation between OMICs scans into the integrative 

analysis of BMI. We not only have a discovery study using whole blood samples from European 

ancestry, but validate these joint associations in an independent study of Hispanic participants, and 

generalize our findings to other tissues, including liver nucleus accumbens. Yet, our study has 

some limitations. First, the traditional meta-analysis instead of the correlated meta-analysis was 

used in the validation and generalization analyses due to data sparsity. Also, we only included two 

types of OMICs data in our analyses, genetics and gene expression data. However, these analyses 

gave us a comprehensive view of how our findings can be interpreted across ancestry and tissue 

type. And, our work offers a framework for future investigations incorporating additional of 

OMICs data, such as DNA methylation or protein data, as well as additional tissues, that can also 

be adopted for other traits of interest. 

  

CONCLUSION 

Our study aimed to narrow in on causal genes that underly known obesity susceptibility loci. 

Specifically, we were interested in genetic variation that may be operating on variation in BMI 

through alterations in gene expression. Our integrative, multi-omics approach identified seven 

candidate genes within five genomic regions for BMI. Among these seven, we find the strongest 
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support for YPEL3, NT5C2, and SNAPC3, through validation across ancestries, generalization 

across BMI-relevant tissues, and/or existing literature with a connection to BMI-related traits or 

gene functions. This deep dive into the etiology of obesity risk loci gets us one step forward to 

connecting genetic variation to biological mechanisms and health outcomes, and thus translating 

GWAS findings to function so that obesity precision treatment and prevention can begin. 
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FIGURES 

Figure 1. General workflow of the study design. A) Step 1 included single omics associations 

for SNP to gene expression (PSNP) and gene expression to BMI (PBMI). B) Step 2 included the 

correlated meta-analysis to account for the interdependence between PSNP and PBMI. C) Identifying 

all SNP – Gene – BMI combinations that met our filtering criteria, which included correlated meta-

analysis results that are more significant than individual omics associations. D) All significant SNP 

– Gene – BMI combinations were followed by validation in blood, liver, and brain tissues. 
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Figure 2. Regional association plot including association results for the discovery sample 
(Framingham Heart Study) for SNP with gene expression (blue), gene expression with BMI 
(green), and the correlated meta-analysis for SNP ~ gene expression ~ BMI (red). Annotation for 
potential candidate cis-regulatory elements from ENCODE are included for each reported SNP 
in the region. A. SNAPC3, B. YPEL3. 
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Figure 3.  Summary of validation and generalization for most significant SNP in discovery 
corelated meta-analysis. Results are provided for discovery sample (FHS, blue), validation in 
blood (CCHC, red), and generalization to hypothalamus (Hypo, green), nucleus accumbens 
(Accum, purple), and liver (yellow) tissues. We provide individual effect estimates and P-values 
for each ‘omic and meta-analysis. Filled diamonds indicate significant associations in the meta-
analysis (Note: FHS is noted as NULL, as all are significant). 
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BOX 

 

Box 1. Seven genes identified as significant in the discovery analysis  

NT5C2. 5'-nucleotidase, cytosolic II is a protein-coding gene that may maintain internal composition of 
nucleotides. It hydrolyzes IMP (inosine monophosphate) and other purines (Genecards). Chr10:104,845,940-
104,953,056 (GRCh37/hg19 by Ensembl117). No known monogenic conditions reported in OMIM (OMIM). NT5C2 
is ubiquitously expressed (GTEx) with the highest expression observed in the thyroid and esophagus. Mouse 
knockout models demonstrate reduced body weight gain, insulin resistance on high-fat diet, and white adipose tissue 
mass 78,97. In-vitro studies in human skeletal muscle tissue show a suppression of 5’-Nucleotidase enzymes that 
promote AMP-activated protein kinase (AMPK) phosphorylation and metabolism118, which may suggest metabolic 
flexibility in an obese state. Genetic variations in NT5C2 have been associated with lower visceral and subcutaneous 
fat95, obesity, and the concurrence of obesity and depression96. Two GWAS in East Asian populations identified 
NT5C2, rs113278154, as “associated with metabolically unhealthy phenotypes among normal weight 
individuals”119,120. Rs11191548 of NT5C2, which is in complete LD (All pop: R^2=.9815) with the GWAS index 
SNP in the region, rs11191560, was studied to determine if miRNAs in the region disrupted binding to their target 
gene in an allele specific manner98. The study found that rs11191548 altered luciferase activity and decreased 
miRNA binding efficiency, and thus could explain how NT5C2 may be one of the functional genes influencing BMI.  
 
YPEL3. Yippee-Like 3 is a protein-coding gene that is involved in the proliferation and apoptosis in myeloid 
precursor cells (Genecards). It is required for central and peripheral glial cell development, and mutation of YPEL3 
causes neuropathy121. chr16:30,103,635-30,108,236 (GRCh37/hg19 by Ensembl117). No known monogenic 
conditions reported in OMIM (OMIM). YPEL3 is ubiquitously expressed (GTEx), with the highest expression 
observed in the whole blood and brain. Mouse knockout has a small body size and has neuronal irregularities, 
according to the International Mouse Phenotyping Consortium (IMPC). Liu and colleagues in 2020 identified 
YPEL3 as a pleiotropic gene jointly influencing BMI and risk of schizophrenia, further supporting a neuronal 
correlation of this gene for obesity80. YPEL3 knockdown in Drosophila melanogaster resulted in significant changes 
in body fat percentage79. 
 
ZNF646. Zinc Finger Protein 646 is a protein-coding gene predicted to enable DNA-binding transcription factor 
activity, RNA polymerase II-specific, and RNA polymerase II cis-regulatory region sequence-specific DNA binding 
activity. chr16:31,085,743-31,095,517 (GRCh37/hg19 by Ensembl). ZNF646 is ubiquitously expressed (GTEx) 
with the highest expression observed in the testis. No known monogenic conditions reported in OMIM (OMIM). 
Expression of ZNF646 has been associated with Parkinson’s disease in two different studies122,123.  
 
TMEM245.  Transmembrane protein 245 is a protein-coding gene with no known function.  
chr9:111,777,432-111,882,225 (GRCh37/hg19 by Ensembl117). TMEM245 is ubiquitously expressed (GTEx) with 
the highest expression in the thyroid, ovaries, and adrenal glands. Zhang and colleagues reported an association 
between TMEM245 gene expression levels and atrial fibrillation101. Variants in this gene have been associated with 
schizophrenia102, age of menarche124, body height77, and cognitive abilities125.  
 
SPNS1. Lysosomal H(+)-carbohydrate transporter is a protein-coding gene that functions in lysosomal recycling at 
a late stage of autophagy (Genecards). SPNS1 also functions as a sphingolipid transporter and may be involved in 
necrotic or autophagic cell death (Genecards). Chr16:28,985,542-28,995,869 (GRCh37/hg19 by Ensembl117). No 
known monogenic conditions reported in OMIM (OMIM). SPNS1 is ubiquitously expressed, with the strongest gene 
expression in arteries and the uterus. Differential expression of this gene has been associated with BMI126  . This 
region has multiple coordinately regulated genes based on eQTL. In a recent in-silico study, SPNS1 was 
differentially expressed in persons with T2D and obesity127. Polymorphisms in SPNS1 have been associated with 
BMI128, asthma128, allergic disease129, and ADHD130 in GWAS. 
 
GSTM3. Glutathione S-Transferase Mu 3 is a protein coding gene, an enzyme that belongs to the mu class and 
functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental 
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toxins, and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of 
enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. GSTM3 
may be involved in the uptake and detoxification of harmful compounds in the body at the testis and blood-brain 
barrier (Genecards). chr1:110,276,554-110,284,384 (GRCh37/hg19 by Ensembl117). No known monogenic 
conditions reported in OMIM (OMIM). GSTM3 is ubiquitously expressed with the strongest expression in the testis 
and ovaries. GSTM3 has been associated with hyperinsulinemia, T2D131, and hypertension132. Recent studies have 
reported an increase of GSTM3 in the omental fat of polycystic ovary syndrome (PCOS)133. 
 
SNAPC3. Small nuclear RNA activating complex polypeptide 3 is part of the SNAPc complex required for the 
transcription of both RNA polymerase II and III small-nuclear RNA genes (Genecards). SNAPC3 binds to the 
proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes 
(GeneCard). Chr9:15,422,702-15,465,951 (GRCh37/hg19 by Ensembl117). SNAPC3 is ubiquitously expressed with 
the strongest expression in the testis and the cerebellum. Variants in this gene have been associated with 
schizophrenia99. DNA methylation in SNAPC3 mediates the association between breastfeeding and early-life growth 
trajectories100.  

 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308730doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308730
http://creativecommons.org/licenses/by-nc/4.0/


TABLES 

Table 1. Summary table of significant genes and associations identified in discovery analysis and corresponding validation and generalization 

results. *Filtering criteria for all validation and generalization analyses: PMETA<0.05 & PMETA<PSNP & PMETA<PBMI. 

Gene 
Symbol 

GWAS 
SNP of 
locus 

Number of 
SNPs 

interrogated 
in FHS 

Number of significant SNP-transcript-BMI associations* 

Discovery on 
FHS 

Validation on 
CCHC 

Generalization 
on liver 

Generalization 
on brain – 

Hypothalamus 

Generalization 
on brain – 
Nucleus 

Accumbens 

NT5C2 rs11191560 115 115  103   

GSTM3 rs17024393 13 4     

SNAPC3 rs4740619 225 41 37 40   

SPNS1 rs3888190 91 91     

TMEM245 rs6477694 1 1  1   

YPEL3 rs4787491 10 10 10 10  10 
ZNF646 rs9925964 46 46  15   
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Table 2. Summary results for most significant SNP - expression - BMI combination identified in Discovery (FHS) sample. EA – effect allele, 

OA – other allele. 

 

Gene   CHR POS (b38) dbSNP ID EA OA GWAS 
tag SNP 

GWAS tag 
dbSNP ID Study PBMI NBMI BETABMI PSNP NSNP BETASNP PMETA 

GSTM3 chr1 109612066 rs17024393 C T Yes rs17024393 

FHS - Blood 2.67E-05 5,619 0.003 9.30E-13 5,257 0.123 3.89E-15 
CCHC - Blood 4.37E-01 934 -0.366 5.56E-03 769 0.757 1.70E-02 
Hypothalamus 9.48E-01 131 -7.858 - - - - 

Nucleus Accumbens 1.61E-01 198 -7.033 - - - - 
Liver 7.06E-01 2,225 0.007 6.56E-30   0.914 3.17E-28 

NT5C2 chr10 103154183 rs74233809 C T No rs11191560 

FHS - Blood 3.48E-16 5,619 -0.004 5.82E-23 5,257 0.072 1.16E-37 
CCHC - Blood 1.07E-01 934 -0.803 7.98E-49 769 0.363 9.76E-48 
Hypothalamus 2.02E-01 131 -7.037 4.30E-01 108 0.128 2.99E-01 

Nucleus Accumbens 3.66E-01 198 -7.612 7.69E-04 170 0.276 2.59E-03 
Liver 6.40E-06 2,225 -0.044 4.87E-02 2,225 0.035 4.98E-06 

SNAPC3 chr9 15786904 rs10962158 A T No rs4740619 

FHS - Blood 4.71E-10 5,619 0.002 2.97E-06 5,257 0.015 3.66E-14 
CCHC - Blood 1.63E-02 934 -0.559 2.96E-03 769 0.091 5.28E-04 
Hypothalamus 6.41E-01 131 -7.751 2.88E-01 108 0.083 4.97E-01 

Nucleus Accumbens 7.70E-01 198 -7.979 8.19E-01 170 0.011 9.21E-01 
Liver 4.03E-06 2,225 -0.033 3.79E-02 2,225 0.025 2.55E-06 

SPNS1 chr16 28814099 rs11860513 T C No rs3888190 

FHS - Blood 1.33E-05 5,619 -0.001 1.03E-15 5,257 0.019 4.59E-18 
CCHC - Blood 4.12E-02 934 -1.266 4.98E-38 769 0.293 1.85E-37 
Hypothalamus 6.62E-01 131 -7.764 2.38E-01 108 0.119 4.49E-01 

Nucleus Accumbens 6.24E-01 198 -7.902 6.37E-01 170 -0.038 7.64E-01 
Liver 6.17E-01 2,225 0.006 - - - - 

TMEM245 chr9 109170062 rs6477694 T C Yes rs6477694 
FHS - Blood 2.39E-23 5,619 0.005 2.95E-36 5,257 0.055 1.09E-57 

CCHC - Blood 3.91E-02 934 0.396 2.17E-20 769 0.337 4.20E-20 
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Hypothalamus 7.22E-01 131 -7.796 5.13E-01 108 0.059 7.38E-01 
Nucleus Accumbens 2.88E-01 198 -7.455 1.89E-01 170 0.062 2.13E-01 

Liver 1.72E-07 2,225 -0.341 3.78E-34 2,225 0.113 6.08E-39 

YPEL3 chr16 29986879 rs4077410 G A No rs4787491 

FHS - Blood 3.19E-25 5,619 0.007 1.68E-21 5,257 0.057 5.98E-46 
CCHC - Blood 1.07E-01 934 -0.803 3.21E-02 769 0.037 2.30E-02 
Hypothalamus 3.22E-01 131 -7.365 1.07E-01 108 0.144 1.50E-01 

Nucleus Accumbens 1.04E-01 198 -6.692 1.23E-02 170 0.156 9.79E-03 
Liver 1.09E-08 2,225 -0.127 1.39E-52 2,225 0.163 2.10E-58 

ZNF646 chr16 31077026 rs749671 A G No rs9925964 

FHS - Blood 9.68E-20 5,619 -0.003 1.89E-09 5,257 0.017 7.33E-26 
CCHC - Blood 3.91E-02 934 0.396 6.16E-01 769 -0.010 1.14E-01 
Hypothalamus 5.83E-01 131 -7.708 4.44E-01 108 -0.042 6.09E-01 

Nucleus Accumbens 2.72E-01 198 -7.414 7.26E-02 170 -0.067 9.71E-02 
Liver 9.25E-03 2,225 -0.020 7.32E-50 2,225 -0.195 8.05E-50 
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