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Abstract10

Genome-wide association studies (GWAS) traditionally analyze single traits, e.g., disease11

diagnoses or biomarkers. Nowadays, large-scale cohorts such as the UK Biobank (UKB)12

collect imaging data with sample sizes large enough to perform genetic association testing.13

Typical approaches to GWAS on high-dimensional modalities extract predefined features14

from the data, e.g., volumes of regions of interest. This limits the scope of such studies to15

predefined traits and can ignore novel patterns present in the data. TransferGWAS employs16

deep neural networks (DNNs) to extract low-dimensional representations of imaging data for17

GWAS, eliminating the need for predefined biomarkers. Here, we apply transferGWAS on18

brain MRI data from the UKB. We encoded 36, 311 T1-weighted brain magnetic resonance19

imaging (MRI) scans using DNN models trained on MRI scans from the Alzheimer’s Disease20

Neuroimaging Initiative, and on natural images from the ImageNet dataset, and performed a21

multivariate GWAS on the resulting features. Furthermore, we fitted polygenic scores (PGS)22

of the deep features and computed genetic correlations between them and a range of selected23

phenotypes. We identified 289 independent loci, associated mostly with bone density, brain,24

or cardiovascular traits, and 14 regions having no previously reported associations. We25

evaluated the PGS in a multi-PGS setting, improving predictions of several traits. By26

examining clusters of genetic correlations, we found novel links between diffusion MRI traits27

and type 2 diabetes.28

1 Author Summary29

Genome-wide association studies are a popular framework for identifying regions in the genome30

influencing a trait of interest. At the same time, the growing sample sizes of medical imaging31

datasets allow for their incorporation into such studies. However, due to high dimensionalities of32

imaging modalities, association testing cannot be performed directly on the raw data. Instead,33

one would extract a set of measurements from the images, typically using predefined algorithms,34

which has several drawbacks - it requires specialized software, which might not be available35

for new or less popular modalities, and can ignore features in the data, if they have not yet36

been defined. An alternative approach is to extract the features using pretrained deep neural37

network models, which are well suited for complex high-dimensional data and have the potential38
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to uncover patterns not easily discoverable by manual human analysis. Here, we extracted deep39

feature representations of brain MRI scans from the UK Biobank, and performed a genome-40

wide association study on them. Besides identifying genetic regions with previously reported41

associations with brain phenotypes, we found novel regions, as well as ones related to several42

other traits such as bone mineral density or cardiovascular traits.43

2 Introduction44

The growing size of medical imaging datasets within biobanks is increasing the power of genome-45

wide association studies (GWAS) performed on such modalities. For example, the number of46

associated loci found in a GWAS of phenotypes derived from brain magnetic resonance imaging47

(MRI) data in the UK Biobank (UKB) increased over 4-fold between the initial study of Elliott48

et al. [14] and the consecutive study of Smith et al. [49]. The initial approaches to imaging GWAS49

were based on the extraction of predefined image-derived phenotypes (IDPs) [14, 49, 43]. While50

being interpretable, such analyses require the availability of automated tools for IDP extraction51

for the modality of interest and are limited to traits defined a priori, potentially preventing novel52

genetically-driven phenotypes from being discovered.53

Instead of using manually defined traits, a recent line of work employed deep learning (DL) to54

derive imaging features using pretrained deep neural network (DNN) models to perform GWAS55

on. This approach has been demonstrated to be successful in a range of imaging modalities,56

including retinal fundus images [24, 53], cardiovascular magnetic resonance (CMR) images [3, 4],57

or brain MRI scans [39]. In this work, we perform an imaging GWAS on N = 36, 311 T1-weighted58

brain MRI scans from the UKB dataset. As opposed to the ENDO approach of Patel et al.59

[39], who pretrained a DNN on data from the same dataset where the GWAS was performed, we60

employed the transferGWAS pipeline of Kirchler et al. [24] and used two DNN models pretrained61

on other datasets, following a transfer learning methodology. We encoded the brain scans using62

models pretrained on the ImageNet [48] and Alzheimer’s Disease Neuroimaging Initiative (ADNI)63

datasets [35], with the former extracting “general” image features and the latter focusing on brain64

MRI and dementia-specific ones. Our GWAS performed on these features identified a number65

of loci not detected in the IDP or ENDO brain MRI studies, several of which were not reported66

in any previous GWA studies. We further conducted downstream analyses using the discovered67

genetic variants, demonstrating their utility in creating more predictive polygenic score (PGS),68

and pointing to novel genetic correlations between type 2 diabetes (T2D) and diffusion magnetic69

resonance imaging (dMRI) traits (see Fig 1 for an overview of our workflow).70

3 Results71

3.1 Interpretation of the DNN Features72

In order to interpret the signal carried by the DNN features, we extracted the first 10 princi-73

pal components (PCs) of both DNN models, and performed a phenome-wide association study74

(PheWAS) against each PC and 7, 744 UKB phenotypes (supplementary Table S2). We found75

2, 408 and 2, 622 significantly associated phenotypes for the ImageNet and ADNI PCs respec-76

tively, having P-values below the Bonferroni-corrected threshold of ≈ 6.5 · 10−7. Fig 2 shows77

the percentage of significantly associated traits per category. The top 35 categories with the78

highest ratio of significant hits contained 17 brain-related categories, with the other ones being79

bone density, body composition, or blood-related categories. In almost all cases the ADNI PCs80

were associated with a higher number of phenotypes than the ImageNet PCs.81
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(a)

(b)

Figure 1: Overview of our study and workflow. (a) A general overview of the study: (1) -
we pretrained 2 DNN models on external datasets of natural images, and of brain MRI scans (2)
- encoded brain MRI data from the target datasets and performed GWAS on the DNN-derived
phenotypes (3) performed a series of downstream analyses using the learned DNN features and
discovered genetic variants. (b) Description of each step involved in the complete workflow of
our study.
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Figure 2: Results of the PheWAS performed on the principal components (PCs) of the ImageNet
(blue) and ADNI (yellow) pretrained models. For each phenotype category from the UK Biobank
(UKB) we plot the number of significant associations per model divided by the total number
of traits in that category. Shown are the top 35 phenotype categories with the highest ratio of
significant associations.

3.2 GWAS Results82

At the Bonferroni-corrected significance threshold of 2.5 ·10−9, we found 4, 665 peak associations83

for the ImageNet and 5, 291 for the ADNI pretrained models, resulting in 4, 382 and 4, 36084

distinct variants for ImageNet and ADNI. The clumping procedure then identified 194 and 16585

independent regions for the ImageNet and the ADNI models respectively. This amounted to86

7, 458 distinct variants and 289 distinct regions across all 20 features of both DNN models. Fig 387

shows the Manhattan plots for both models, aggregated over each of the 10 PCs per model.88

We estimated the heritability of each PC using linkage disequilibrium score regression (LDSC)89

(Section 5.5) and found the ADNI-pretrained PCs to be more heritable, with a mean h2 = 0.19,90

and the ImageNet PCs having a mean h2 = 0.13 (Fig 4). The summary statistics for all PCs are91

made publicly available as a figshare resource under https://doi.org/10.6084/m9.figshare.92

25933717.v1.93

3.2.1 GWAS Catalog Associations94

For each independent locus, we queried associations reported in previous GWA studies from the95

NHGRI-EBI GWAS Catalog [7] (Fig 5). The dominating phenotype categories included bone96

mineral density (BMD)-related traits and a range of brain traits, such as cortical thickness,97

diffusion, or volumes of brain regions of interest (ROIs). We note that the ADNI-pretrained98

features tagged more regions corresponding to brain-related traits, whereas the ImageNet model99

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308721doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308721
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) ImageNet pretraining. (b) ADNI pretraining.

Figure 3: Manhattan plots for the GWAS (n = 36, 311 individuals, 16, 472, 121 SNPs) performed
on features of the ImageNet (plot a)) and the ADNI (plot b)) pretrained models. The horizontal
lines mark the initial significance threshold of 5 · 10−8 (dashed line) and Bonferroni-corrected
threshold of 2.5 · 10−9 (solid line). For visualization purposes we truncate P-values below 10−40

and plot only the minimal P-values across each of the 10 features per model.

tagged more regions related to “general” body structure, such as BMD, height, or body mass100

index (BMI). Overall, out of the 289 independent loci, 72 did not have brain-related associations101

reported in the catalog.102

Among neuropsychiatric disorders with the highest number of distinct regions, 47 were asso-103

ciated with schizophrenia, 37 with neuroticism, 36 with attention deficit hyperactivity disorder,104

35 with bipolar disorder, 33 with depression, 32 with Alzheimer’s disease, 30 with autism, 22105

with anorexia nervosa and 21 with anxiety.106

3 out of the 10 first traits were not directly brain-related: heel bone mineral density (HBMD)107

(144 regions), total BMD (125 regions), and height (113 regions). The associations between BMD108

and the brain have been investigated in the context of neurological disorders [29, 30, 54], as well109

as in samples of healthy subjects [2]. Loskutova et al. [29, 30] reported a correlation between110

BMD and an early onset of Alzheimer’s disease (AD), as well as with several brain volumes.111

HBMD is postulated to be a causal factor for multiple sclerosis (MS) through an increased risk112

of fractures [54]. Bae et al. [2] showed that osteoporosis increases the pace of parenchymal113

atrophy and ventricular enlargement during aging of healthy individuals.114

Another prevalent category were blood-related traits, such as cell counts: white (67), red115

(32), monocyte (45), neutrophil (41), eosinophil (40), lymphocyte, (25) reticulocyte (23), blood116

pressure (95) or hypertension (45), or hemoglobin (68). Blood pressure and hypertension are117

known factors influencing brain morphology, as well as cognitive performance or dementia [50,118

13, 15, 45], while aenemia is a causal factor for cognitive decline and AD [40, 52].119

3.2.2 Novel Loci120

In total, we found existing associations for 275 regions in studies conducted on the British121

population, and 278 regions among all populations. Out of the remaining 11 loci, one was located122

within an RNA gene, and 10 within 7 distinct protein-coding genes. Among the associated123

phenotypes, 6 genes were associated with mental or neurodevelopmental disorders such as AD,124

schizophrenia, or attention-deficit/hyperactivity disorder (ADHD), and 4 genes were associated125

with T2D.126

As a further means of interpreting the novel regions, we computed statistical parametric127

mappings (SPMs) for each leading single-nucleotide polymorphism (SNP) (Fig 6) and computed128

the fractions of volume of each brain region correlated with each lead variant (Fig 7). All SNPs129
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Figure 4: h2 heritability estimates of principal components (PCs) of the ImageNet (blue) and
ADNI (yellow) pretrained models, obtained using linkage disequilibrium score regression (LDSC).
Black lines indicate the standard error of the estimates.

were correlated with the left cerebral cortex and cerebrospinal fluid. Most notable was the variant130

rs111469125 (16:87268090) located inside the C16orf95 gene, being correlated with 19 out of 22131

brain regions, in particular with several ventricle structures: the 3rd and 4th ventricles (3% of132

total voxels), and the left and right lateral ventricles (1% and 1.5% of total voxels). It was also133

correlated with 3% of the voxels of cerebrospinal fluid, and was the only new variant correlated134

with the left cerebellum white matter, the left thalamus, and the right caudate.135

3.2.3 Comparison with Previous Studies136

We performed another GWAS using discovery and replication cohorts (23,604 and 12,709 sam-137

ples), replicating 1,631 hits over 1,510 unique variants, which amounted to 70 replicated loci. We138

compared our results with two GWA studies on UKB brain MRI data - the first one using 3,144139

brain imaging-derived phenotypes [49] and the second study using 256 DL-based features [39],140

which yielded 692 and 43 replicated loci respectively. Out of our 70 replicated loci, 9 were not141

present in the 692 of Smith et al. [49], and 28 were not present in the 43 loci of Patel et al. [39].142

3.3 TransferGWAS Polygenic Scores143

Here, we evaluated the potential of variants discovered in our study for downstream prediction144

of phenotypes using 20 PGS fitted for each of the 20 DNN PCs with the summary statistics145

from our GWAS. In order to compute the features of the DNN models, imaging data need to be146

present, which constitutes less than a tenth of all UKB samples. On the other hand, genotyping147
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Figure 5: Number of independent loci per trait with associations reported in previous studies
included in the NHGRI-EBI GWAS Catalog [7]. Shown are the top 35 traits with the highest
number of associated regions.

data were available for all participants. This allowed us to calculate the PGS for all remaining148

N = 451, 450 participants not included in the GWAS sample. The corresponding methods are149

described in Section 5.4, while the weights of the fitted scores are made publicly available as a150

figshare resource under https://doi.org/10.6084/m9.figshare.25933663.v1.151

3.3.1 PGS PheWAS152

To gain insights into which traits the PGS might be predictive of, we performed a PheWAS on153

the 20 PGS and the 7, 744 UKB phenotypes (supplementary Table S2). Note that while the154

“raw” DNN PCs can encode both genetic and environmental signals, the PGS should capture155

only the former, and thus we expected the associations between the phenotypes to differ from the156

PheWAS performed on the PCs. The total number of significant PC-phenotype associations and157

the effect sizes were higher for the original PCs than for the PGS: 28, 767 vs. 25, 948 significant158

associations in total, 2, 928 vs. 2, 860 distinct associated traits, with mean effect sizes of β̄ = 0.08159

vs. β̄ = 0.04. We identified 3 potentially interesting groups of associations (Fig 8):160

• traits related to BMD161

• weight/fat mass/BMI162

• cardiovascular traits163

which we decided to investigate further in a prediction setting.164

3.3.2 Predictive Performance Compared to Trait-Specific PGS165

We tested the utility of our developed PGS by evaluating whether they can improve predictions166

of phenotypes from UKB over PGS designed specifically for particular traits in a multi-PGS167
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Figure 6: Statistical parametric mappings (SPMs) for genetic regions with no previously reported
GWAS associations. Plotted are values of the t-statistics of the correlation coefficients between
lead variants of each region and each single voxel in the MRI scans. We plot values below the
Bonferroni-corrected significance threshold accounting for the total number of voxels tested.

setting [25]. We chose a set of 9 phenotypes based on the PheWAS results and computed their168

corresponding scores using PGS available in the PGS Catalog [26]. For each phenotype, we then169

fitted and evaluated two linear models: one fitted using only the trait-specific PGS, and one ad-170

ditionally using our transferGWAS PGS. While there were statistically significant improvements171

in predictions for 4 out of 9 traits, they yielded arguably small performance increases (∼ 1.5%172

of relative improvement), with the exception of predicting HBMD using a (general) BMD PGS,173

where the relative improvement was over 20% (Table 1). We decided to further investigate the174

HBMD results. Since the improvement could have been stemming from a lower signal in the175

dataset of the external PGS, compared to the UKB, we conducted a further comparison within176

the UKB. We performed a GWAS on HBMD using 19, 909 samples from our GWAS data which177

had HBMD measurements available, and 16, 404 randomly drawn from the remaining samples of178

the white-british participants, to match the sample size and population of our GWAS, and fitted179

a new PGS on the resulting summary statistics. We then evaluated the newly-created HBMD180

PGS with and without our transferGWAS PGS on the remaining UKB data and observed the181

same relative improvement of 1% in performance (p < 0.001). This indicates that transferGWAS182

has the potential to identify additional variants for related traits while using the sample size.183

We hypothesize that this might be due to certain pleiotropic variants having a larger effect on184

the DNN PCs than on HBMD, and thus being able to be detected with our DL GWAS and not185

with the HBMD-dedicated GWAS.186

3.4 Genetic Correlations187

The results of the PheWAS conducted on the learned PCs led us to a set of traits that we188

decided to investigate further. In order to analyze the genetic components of the PCs, we189

computed genetic correlation coefficients between 102 selected traits and each of the 20 PCs190
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Figure 7: Fractions of volume of brain regions correlated with genetic regions with no previously
reported GWAS associations. The values are computed as the total number of voxels in a given
brain region significantly correlated with a lead variant, divided by the total number of voxels in
that brain region. White cells indicate no voxels being significantly correlated for a given brain
region-genetic region pair.

(see Section 5.5 for details). 39 traits were significantly correlated, surpassing the Bonferroni-191

corrected threshold of ≈ 2.5 · 10−5. We grouped the traits into 3 groups:192

• (volumes of) brain ROIs (e.g., ventricles, brain stem, cerebrospinal fluid (CSF))193

• dMRI traits (e.g., fractional anisotropy (FA), orientation dispersion index (ODI))194

• “general” traits: Height, T2D, BMI, HBMD195

Additionally, we tested for correlations with AD, educational attainment, and unipolar depres-196

sion, finding no significant correlations when corrected for multiple testing (p > 0.001). The197

significantly associated traits are shown in Fig 9, where we observed several “clusters” of PC-198

trait associations.199

Several PCs were associated with volumes of multiple brain ROIs. The first two PCs of Ima-200

geNet (IMGNET0, IMGNET1) seemed to capture the overall body size, as they were negatively201

correlated with height and white matter volume, and positively with ventricular ROIs and CSF.202

PCs ADNI2, ADNI3, and IMGNET4 were genetically associated with volumes of several203

brain ROIs, e.g., cerebral white matter, putamen, or thalamus. ADNI2 and ADNI3 were also204

associated with volumes of CSF and the lateral ventricle. Interestingly, ADNI2 had a positive205

correlation both for CSF and the lateral ventricle, as well as for gray and white matter structures,206

whereas one might expect the ventricular volumes (and thus CSF) to grow with the shrinkage of207

brain structures.208

PCs associated with HBMD seemed to capture different aspects of brain anatomy. IMGNET2209

had a negative correlation with HBMD, BMI, and cerebral white matter, but also with multiple210

ventricular volumes. On the other hand, ADNI8 and IMGNET4 also had negative genetic211

correlations with HBMD, but positive ones with cerebral white matter.212
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Figure 8: Results of the PheWAS (N = 451, 450) between the polygenic scores (PGS) fitted
on the features of the DL models (rows) and phenotypes from the UK Biobank (UKB) dataset
(columns). Cell colors represent the magnitudes and the signs of the estimated association
coefficients between each PGS and phenotype combination.

ADNI0 and ADNI4 were associated with a range of Diffusion MRI traits, as well as with213

several ventricular ROIs. Furthermore, ADNI4 was genetically correlated with HBMD and BMI,214

and was the only PC associated with T2D, which we further discuss below.215

3.4.1 ADNI4 and T2D216

BMI was shown to increase the risk of developing T2D [8, 17], as well as being genetically217

correlated to T2D [8]. The signs of genetic correlations between ADNI4, and BMI and T2D were218

also matching. ADNI4 was also positively genetically associated with HBMD. T2D patients have219

been shown to have a higher bone density [42, 27]. Evidence also exists for shared heritability220

between BMD and T2D, albeit relatively small [47, 55]. As with BMI, the sign of the genetic221

correlation between ADNI4 and HBMD was positive. Regarding the brain ROIs, ADNI4 was222

positively correlated with volumes of the lateral, 3rd, and 4th ventricles, as well as with the223

CSF. Ventricular enlargement and increase in CSF are associated with several neurodegenerative224

diseases, such as AD, MS, or schizophrenia [9, 36]. Several studies showed an association between225

T2D and volumes of white matter structures (whole brain volume, frontal lobe), gray matter226

(overall trend in all structures), as well as CSF and ventricular volumes [33]. Furthermore,227

ADNI4 was genetically correlated with 35 different dMRI traits:228
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Trait PGS Catalog Our PGS + PGS Catalog ∆
Height 0.759 0.759 0.000
BMI 0.284 0.284 0.000
Heel bone mineral density (1) 0.273 0.275 0.002*
Heel bone mineral density (2) 0.064 0.078 0.014*
Red blood cell count 0.387 0.387 0.000
White blood cell count 0.104 0.106 0.002*
Systolic blood pressure 0.283 0.284 0.000
Diastolic blood pressure 0.175 0.176 0.001*
Ventricular rate 0.027 0.025 -0.001

Table 1: Comparison of predictive performance of Multi-PGS models using only trait-specific
polygenic scores (PGS) (2nd column) and including our TransferGWAS PGS (3rd column) for
a set of selected phenotypes from UK Biobank (UKB), measured with the R2 coefficient of
determination. Significant differences are marked with (*). Heel bone mineral density (1) and
(2) correspond to results of using PGS for heel bone mineral density, or (general) bone mineral
density respectively.

Mean diffusivity (MD) traits 4 MD traits were positively genetically correlated with ADNI4:229

fornix, superior serebellar peduncle (both sides), and the superior fronto-occipital fasciculus230

(left). Positive associations between T2D and MD have been found in observational stud-231

ies [19, 46].232

Fractional anisotropy (FA) traits FA traits have been found to be negatively correlated233

with T2D in literature [19, 46, 33]. We found 4 traits to be negatively genetically correlated with234

ADNI4, however the posterior limb of left internal capsule was positively genetically correlated235

with the PC. The direction of this correlation seemed to be in opposition to the associations236

found in observational studies [33]. On the other hand, it is postulated to be causal with the same237

sign for fasting insulin [12], an increase of which is an indicator of T2D. We identified two regions238

containing shared variants located at Chr2:27766284 and Chr14:91881387. The first region con-239

tains missense and intron variants for GCKR gene (ENSG00000133962), a glucokinase regulator,240

with no previously reported associations for brain phenotypes, missense and intron variants for241

C2orf16 (ENSG00000221843) and intron variants for ZNF512 (ENSG00000243943) both protein242

coding genes with association with neurodegenerative diseases, T2D, and blood measurements.243

The second region contains intron variants for the CCDC88C (ENSG00000015133), a protein244

coding gene, with associations with glucose metabolism, brain measurements, and neurodegen-245

erative diseases, and CCDC88C-DT (ENSG00000258798), and RNA gene that is a divergent246

transcript for CCDC88C, with associations with brain measurements and hypertension. The247

above may be another indicator of a non-trivial relation between FA of limb of internal capsule248

and T2D, with potentially different shared heritability and environmental effects.249

Orientation dispersion index (ODI) traits 7 ODI traits were positively correlated with250

ADNI4, while 3 traits were correlated negatively. ODI of white matter tracts was reported to251

be positively correlated with duration of T2D and with levels of HbA1c, a marker for T2D,252

while ODI of internal capsule was reported to have a negative correlation [1], which is consistent253

with 9 out of 10 of our findings. We found a negative genetic correlation for the posterior right254

corona radiata, which had shared variants in regions located at chr8:119486034 and 11:27465591.255

The first region has intron variants for SAMD12 (ENSG00000177570), a protein coding gene256

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308721doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308721
http://creativecommons.org/licenses/by-nc-nd/4.0/


with associations with brain measurements, MS, bone density, and blood measurements. The257

second region has intron variants for LGR4 (ENSG00000205213), a protein coding gene with258

associations with brain measurements, bone density, and body mass traits.259

Mode of anisotropy (MO) traits 5 MO traits were genetically positively correlated with260

ADNI4, and 6 negatively. Fasting insulin, a marker for T2D was reported to be negatively261

associated with anterior corona radiata [12]. We found positive genetic correlations between262

both sides of the posterior and superior corona radiata and ADNI4, with shared variants with263

T2D located in the region chr2:27766284 for the superior, and in chr8:119486034 for the posterior.264

The first region contains missense and intron variants for the GCKR and C2orf16 genes, and an265

intron variant for ZNF512 (see the FA regions), and the second region has intron variants for266

SAMD12 (see the ODI regions above). The correlations between the other 7 traits are reported267

in supplementary Table S3.268

Figure 9: Genetic correlation coefficients between the 20 deep neural network (DNN) principal
components (PCs) (rows) and 23 significantly associated phenotypes (columns), out of 27 can-
didate traits from the UK Biobank (UKB). Cell colors represent the magnitudes and the signs
of the estimated genetic correlation coefficients between each PC and phenotype combination.
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4 Discussion269

Using the transferGWAS approach we performed a GWAS on 20 DNN feature representations270

of 36, 311 T1-weighted brain MRI scans from the UKB, identifying 289 loci, 11 of them without271

any previously reported associations, and 72 without any associations for brain-related traits.272

Similar to the findings of the initial transferGWAS study of retinal fundus images of Kirchler273

et al. [24], the features of an ImageNet-pretrained model were associated with a higher num-274

ber of loci related to “general” body structure traits, such as BMD or BMI, whereas features275

from a model pretrained directly on brain MRI data identified more loci corresponding to brain276

measurements and neurodegenerative diseases. Overall, features of both DNN models were as-277

sociated directly, through PheWAS, or genetically, through GWAS-identified loci, with a large278

number of BMD traits. For example, the ImageNet and ADNI-derived features were signifi-279

cantly associated with over 50% and 70% of phenotypes under the UKB category 125 “Bone280

size, mineral, and density by DXA”, and with over 120 and 40 distinct loci associated “Total281

body bone mineral density” in the NHGRI-EBI GWAS Catalog. Detecting these genetic regions282

in features derived from brain MRI data seems to confirm the connections between BMD and283

brain measurements, as well as with neurodegenerative diseases previously reported in the liter-284

ature (as discussed in Section 3.2.1), which we further investigated with an analysis of genetic285

correlations (Section 3.4), highlighting particular brain ROIs genetically associated with BMD.286

Furthermore, the genetic correlations identified by our study shed more light on the relations287

between dMRI measurements and T2D, BMI, as well as cardiovascular traits, also reported in288

several studies (Section 3.4.1). Finally, we demonstrated a practical application of our findings289

by constructing PGS of our DNN-derived phenotypes, which improved predictions of existing290

PGS of BMD, white cell blood count, or diastolic blood pressure. In a further analysis, we fitted291

a PGS directly to HBMD measurements on a UKB sample of the same size as our GWAS and292

observed the same improvement in performance when augmented with our DNN PGS, indicating293

that the transferGWAS approach can identify additional variants for a trait of interest, being294

complementary to conducting a trait-dedicated GWAS.295

We demonstrated how transferGWAS can be applied to discover new variants and in turn,296

lead to better phenotype predictions. However, a drawback of using features of pretrained DNN297

models as traits of interest is their reduced interpretability compared to predefined phenotypes.298

While we analyzed both the DNN-derived traits and the discovered loci with a range of techniques299

(PheWAS, querying the GWAS Catalog, SPMs), we highlight the need for further developing300

apossibly automated pipeline for interpretability of the DNN features, to foster their utility for301

consecutive research and clinical applications.302

5 Materials and Methods303

5.1 Pretraining of the Neural Network Models304

The first model used for feature extraction was trained on 4,480 T1-weighted scans from the305

ADNI dataset [41]. The network architecture was a 3D convolutional variational autoencoder306

(VAE) [23], trained in a multi-task manner. The model consisted of 3 sub-networks: an en-307

coder, a decoder, and a prediction head. The 256-dimensional outputs of the encoder network308

constituted the latent representations of the input data. The first task was the standard VAE309

objective, i.e., reconstructing the input scans from the latent representations, while regularizing310

the representations to match a standard normal prior distribution with a Kullback-Leibler diver-311

gence (KLD) loss term. The second task was to predict the clinical dementia rating (CDR) from312

the latent representations. The aim of the VAE objective was to learn general structural features313
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describing an MRI scan, while the prediction task should promote neurodegenerative features314

associated with the presence of dementia. Additionally, we input the age and sex of each partici-315

pant into the decoder and prediction networks, forcing the model to learn latent representations316

invariant to age and sex, and thus potentially increasing the statistical power of the GWAS.317

We trained the model for 500 epochs with the Adam optimizer [22], with a mini-batch size of318

128. The weights of the reconstruction, KLD, and the predictions loss terms were 1, 10−5 and319

10−2 respectively. For data preprocessing, we skull-stripped each scan using using the HD-BET320

tool [20], performed a non-linear registration to the MNI152 template with a 1mm3 resolution321

using the FLIRT and FNIRT commands from the FSL software [21], and finally downsampled322

the scans to a size of 96 × 96 × 96 voxels each.323

Following Kirchler et al. [24], we also employed a 2D ResNet50 [18] model pretrained on324

ImageNet, a non-medical dataset of natural images [48]. We used a readily available trained325

model from the PyTorch library [38]. We selected the 2048-dimensional output of the penultimate326

layer as the latent features used for the GWAS. Since the model was trained on 2D data, we327

could not directly extract features from the 3D MRI scans. Instead, for each scan, we computed328

the features over each single slice across the axial axis and averaged the results into a single329

vector.330

5.2 GWAS331

We selected a sample of N = 36, 311 UKB participants who “self-identified as ’White British’ and332

have very similar genetic ancestry based on a principal components analysis of the genotypes”333

(UKB field 22006). We performed the association testing within the linear mixed model (LMM)334

framework using the BOLT-LMM software [28]. We adjusted for confounding using age, sex, the335

identifiers of the genotyping array and UKB assessment center, and the first 10 genetic principal336

components. We filtered the SNPs with the following criteria: MAF≥ 0.1%, Hardy-Weinberg337

Equilibrium with a significance level of 0.001, pairwise LD-pruning with R2 = 0.8, and maximum338

missingness of 10% per SNP and participant, which resulted in 577, 570 directly genotyped SNPs.339

Including imputed genotype data resulted in 16,472,121 variants in total, on which we performed340

the GWAS. We clumped the variants into independent loci using the PLINK software [44], with341

a physical distance threshold of 250kb and a significance threshold of 10−9 for the index SNPs.342

We queried the NHGRI-EBI GWAS Catalog [7] using the LDtrait web application [31], with an343

R2 cutoff of 10−1 and a 250kb window.344

5.3 PheWAS345

We performed the PheWAS on the PCs of both pretrained models using the PHESANT soft-346

ware [32], with a P-value threshold of ≈ 6.5 · 10−7 from the Bonferroni correction to account for347

20 PCs and 7, 744 different phenotypes from UKB, adjusting for age and sex.348

5.4 Polygenic Scores349

We fitted the DNN PGS and the custom HBMD PGS using the PRScs method [16], with the350

prspipe software [37, 34]. For the predictive performance comparison, we queried the PGS351

Catalog [26] API for a list of PGS developed for each of the 9 phenotypes, ignoring scores that352

used the UKB for development, to avoid data leakage. We then computed scores for the N =353

451, 450 participants who were not in our GWAS sample using the PGS Catalog Calculator [51].354

For each phenotype, we fitted a baseline linear model using all corresponding trait-specific PGS355

and covariates (age, sex, UKB assessment center, UKB genotyping batch, all UKB genetic PCs)356
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and another linear model which additionally included our 20 DNN PGS. We used 60% of357

the data for model fitting and evaluated it on the remaining 40%. We computed P-values for358

differences between achieved R2 scores of the two linear models using permutation tests with359

1, 000 permutations, randomly selecting predictions from either model for each test sample in360

each permutation.361

5.5 Genetic Correlations362

To compute the genetic correlation scores between the PCs and selected traits, we used the LDSC363

method [6, 5]. We used the provided LD scores precomputed on 1000 Genomes data [10] over364

HapMap3 [11] SNPs, and used the default values for other parameters of the LDSC. In order to365

find regions potentially contributing to the genetic correlations between ADNI4, T2D, and dMRI366

traits (Section 3.4.1), we selected SNPs with a P-value below 0.0001 for which the magnitude367

of the product of the z-scores between both ADNI4 and T2D, and ADNI4 and a dMRI trait368

exceeded a threshold of 15. For the dMRI traits, we selected pairs where the sign of the product369

of the z-scores matched the sign of the genetic correlation with ADNI4. We consider a region a370

set of variants within 250, 000 base pairs from a “central” variant.371
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