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ABSTRACT  
 
Sepsis is the leading cause of death of hospitalized children worldwide. Despite the established 
link between immune dysregulation and mortality in pediatric sepsis, it remains unclear which host 
immune factors contribute causally to adverse sepsis outcomes. Identifying modifiable 
pathobiology is an essential first step to successful translation of biologic insights into precision 
therapeutics. We designed a prospective, longitudinal cohort study of 88 critically ill pediatric 
patients with multiple organ dysfunction syndrome (MODS), including patients with and without 
sepsis, to define subphenotypes associated with targetable mechanisms of immune dysregulation. 
We first assessed plasma proteomic profiles and identified shared features of immune 
dysregulation in MODS patients with and without sepsis. We then employed consensus clustering 
to define three subphenotypes based on protein expression at disease onset and identified a strong 
association between subphenotype and clinical outcome. We next identified differences in immune 
cell frequency and activation state by MODS subphenotype and determined the association 
between hyperinflammatory pathway activation and cellular immunophenotype. Using single cell 
transcriptomics, we demonstrated STAT3 hyperactivation in lymphocytes from the sickest MODS 
subgroup and then identified an association between STAT3 hyperactivation and T cell 
immunometabolic dysregulation. Finally, we compared proteomics findings between patients with 
MODS and patients with inborn errors of immunity that amplify cytokine signaling pathways to 
further assess the impact of STAT3 hyperactivation in the most severe patients with MODS. 
Overall, these results identify a potentially pathologic and targetable role for STAT3 
hyperactivation in a subset of pediatric patients with MODS who have high severity of illness and 
poor prognosis. 
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MAIN TEXT  
 
INTRODUCTION 
 
Sepsis is defined as life-threatening organ dysfunction that develops in the setting of immune 
dysregulation (1) and represents a leading cause of adult and pediatric mortality worldwide (2). 
Pediatric sepsis is associated with distinct epidemiology and outcomes compared to adult sepsis 
(3), with the majority of pediatric sepsis deaths occurring in immunocompromised children (4-6) 
and in the setting of persistent multiple organ dysfunction syndrome (MODS) (7, 8). MODS 
represents a “final common pathway” by which severe, systemic inflammation arising from 
diverse clinical insults (e.g. sepsis, trauma, shock) leads to progressive organ failure due to a 
combination of endothelial, epithelial, mitochondrial, and immunologic dysfunction (9-11); in 
children, sepsis is the most common cause of MODS (12-14). 
 
Identifying modifiable pathobiology is an essential first step to successful translation of core 
biologic insights into precision therapeutics for critical illness (15). In pediatric sepsis, both innate 
and adaptive immune dysfunction (16-18) are associated with secondary infection (19), persistent 
organ dysfunction (20) and mortality (21). Mitochondrial dysfunction, a hallmark of this sepsis-
associated immune suppression (22, 23), is also associated with organ failure in pediatric sepsis 
(24-26). Yet despite the established link between immune dysregulation and both morbidity and 
mortality in pediatric sepsis, successful immune modulation in sepsis has been elusive (27) and it 
remains unclear which host immune factors contribute causally to adverse sepsis outcomes (28). 
 
A successful precision medicine approach to pediatric sepsis will require an understanding of the 
molecular events which underlie the development of organ failure, a knowledge of which events 
are reversible, and an ability to identify high-risk patients in real time (29). Existing approaches to 
identify pediatric sepsis subphenotypes based on clinical and laboratory features have identified 
several high-risk patient subgroups (30-33), but these subgroups lack defined mechanisms of 
immune dysregulation and thus cannot inform treatment decisions. A wide range of pathogenic 
inborn errors of immunity (IEI) have been identified in cohorts of pediatric patients with sepsis 
(34), suggesting that diverse genetic factors may contribute to the dysregulated host immune 
phenotypes that develop in the setting of critical illness. Recent attempts to define this 
heterogeneous host response in adults using molecular approaches (35-41) have yielded new 
mechanistic insights into sepsis pathobiology, suggesting that deep immune phenotyping may be 
able to overcome the immunologic heterogeneity that has previously hampered precision sepsis 
efforts.  
 
Given the role of immune dysregulation in sepsis pathobiology and the lack of novel targeted 
therapies for these high-risk patients, we designed a longitudinal cohort study of pediatric MODS 
patients with and without sepsis with the goal of identifying severity-associated MODS 
subphenotypes. We hypothesized that severity-associated MODS subphenotypes would be 
associated with targetable mechanisms of immune dysregulation. Using longitudinal proteomics, 
cytometry, and transcriptional analysis, we defined three prognostic subphenotypes in critically ill 
children with and without sepsis and identified an association between pathologic STAT3 
hyperactivation and T cell immunometabolic dysregulation in the subset of pediatric MODS 
patients with the highest severity of illness and worst prognosis. 
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RESULTS 
 
Proteomic heterogeneity of pediatric MODS 
 
To identify MODS subphenotypes in patients with and without sepsis, we collected peripheral 
whole blood samples in a prospective, observational cohort of 88 pediatric patients with MODS. 
Blood was collected at MODS onset and then twice weekly through death or resolution of MODS. 
At each timepoint, peripheral blood mononuclear cells (PBMC) and heparin plasma biospecimens 
were cryopreserved for later analysis, as shown in Fig. 1A. We compared these patients to a 
separate cohort of 25 pediatric healthy control (HC) participants. Our initial analyses included a 
1536-marker proteomics panel from Olink Proteomics selected for patient stratification and 
identification of candidate therapeutic targets (42) (Table S1) and a 35-marker spectral flow 
cytometry-based immune phenotyping panel optimized to measure PBMC abundance and 
activation state (Table S2). 
 
Demographics and clinical outcomes were similar between our 35 MODS patients with sepsis and 
53 MODS patients without sepsis (Fig. 1B), and the only organ dysfunction category that differed 
between groups was hematologic dysfunction, which was driven by increased thrombocytopenia 
among patients with sepsis at MODS onset (platelet count median [IQR]: 119 [99-187] vs 199 
[131-278], p<0.001; normal range 150-450 x103/μl). Length of stay, cumulative PELOD-2 
(Pediatric Logistic Organ Dysfunction-2) (13) organ dysfunction score, and survival to PICU 
(pediatric intensive care unit) discharge did not differ between MODS subgroups. 
 
Sepsis is characterized by a surge in pro-inflammatory cytokines, and while we noted the expected 
increased proinflammatory cytokines (interleukin (IL)-1b, IL-6, tumor necrosis factor (TNF), IL-
18, monocyte chemoattractant protein (MCP)-1, interferon (IFN)-γ, all p<0.0001) in patients with 
sepsis compared to HC participants, many of these cytokines were also markedly elevated in 
MODS patients without sepsis. We found that mean IL-1b, TNF, and IL-6 levels did not differ 
between patients with and without sepsis, while IFN-γ was higher in patients with sepsis 
(p<0.0001) (Fig. 1C). We then used principal component analysis to visualize the heterogeneity 
within the MODS cohort and overlap between patients with and without sepsis. We noted 
separation between HC participants and MODS patients but substantial overlap between MODS 
patients with and without sepsis (Fig. 1D). Patients with MODS also exhibited substantial 
heterogeneity along principal component 1 and principal component 2, dimensions which are 
strongly associated with proteins corresponding to shock, growth regulation, and inflammatory 
signaling (Table S3). This biologic overlap suggests that MODS develops in the setting of 
overwhelming proinflammatory signals and may represent a final common pathway of critical 
illness, independent of the inciting diagnosis. 
 
To better understand the shared proteomic landscape of MODS patients with and without sepsis, 
we constructed a heatmap of row-normalized protein expression with the full proteomics dataset 
and used hierarchical clustering to visualize heterogeneity within the cohort at MODS onset. As 
shown in Fig. 1E, hierarchical clustering separates HC participants from patients with MODS but 
does not discriminate between MODS patients with sepsis and without sepsis, findings which are 
complementary to the principal component analysis. 
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Fig 1. Shared proteomic features in pediatric MODS patients with and without sepsis. (A) 
Schematic of participant cohorts and sample processing pipeline using plasma proteomics 
and spectral flow cytometry. (B) Cohort demographics, exposures, and clinical outcomes, 
stratified by MODS etiology (i.e. sepsis vs non-sepsis). Comparisons between groups using 
chi-squared and Wilcoxon rank sum test, as appropriate. (C) Proinflammatory cytokines 
are increased in patients with MODS but do not differ between patients with and without 
sepsis, except for IFN-γ which is increased in patients with sepsis compared to patients 
without sepsis. Comparisons were made between groups as shown and determined by 
Wilcoxon rank sum test. Box-and-whiskers plots include a box indicating median and 
interquartile range, and whiskers extending to the data point not further than the 1.5x 
interquartile range. (D) Principal component analysis based on expression of 1,448 proteins 
analyzed by proximity extension assay in 186 samples from 88 patients with MODS and 
25 pediatric healthy control (HC) participants reveals substantial heterogeneity and overlap 
between MODS patients with and without sepsis. (E) Clustered heatmap showing row-
normalized protein expression among 88 patients at MODS onset and 25 HC participants. 
Colored annotation bar indicates MODS subgroup. 

 
 
Identification of three severity-associated MODS subphenotypes 
 
Given the overlapping proteomic profile between MODS patients with and without sepsis, we 
sought to identify MODS subphenotypes based on plasma protein expression at MODS onset. 
First, we used linear mixed-effects models to identify plasma proteins associated with severity of 
illness, defined by the PELOD-2 organ dysfunction score, after adjustment for age and sex as fixed 
effects and day from MODS onset as a random effect. This yielded a set of 214 plasma proteins 
which were significantly associated with illness severity (Table S4). We then employed consensus 
clustering – an unsupervised machine learning methodology for subclass discovery (43) – to 
identify distinct clusters of patients with MODS based on protein expression (Fig. 2A). Optimal 
cluster number (k=3) was identified via Monte Carlo bootstrapping and confirmed by elbow 
method and gap statistic (Fig. S1). To understand the association between cluster membership and 
clinical outcomes, we tested the effect of MODS subphenotype on the cumulative incidence of 
both mortality and survival to PICU discharge with the Fine-Gray subdistribution hazard model 
(44). In this competing risk survival analysis, patients in Group C have higher cumulative 
incidence of death (p=0.03) and lower cumulative incidence of survival to PICU discharge 
(p=0.04) compared to patients in Clusters A and B, with separation occurring in the first week and 
persisting to day +28 (Fig. 2B).  
 
Though defined by protein expression alone, the identified MODS subphenotypes also differ by 
clinical features and outcomes (Fig. 2C). MODS etiology varies by Group, with most sepsis 
patients in Group B and C and all trauma patients in Group A. Group C patients have higher 
severity of illness, more non-cardiopulmonary organ failures, and increased cumulative organ 
dysfunction scores and mortality compared to Groups A/B. Etiology of MODS and computed 
subphenotype for each patient is detailed in Table S5. Immunocompromised diagnoses were 
identified in 13% of MODS patients (11/88), and patients with immunocompromised status were 
not imbalanced across MODS subphenotypes (p=0.74), as detailed in Table S6. 
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Noting that these protein-derived MODS subphenotypes are associated with an ordinal increase in 
number of organ failures and mortality across subphenotypes, we hypothesized a reduced set of 
plasma proteins could successfully identify MODS subphenotypes and could thus be more suitable 
for translation to the clinical setting. Elastic net regularization is a common approach to generate 
a high-performing sparse model with good prediction accuracy (45). To define a parsimonious 
protein signature, we trained an ordinal elastic net model (46) and generated a 24-protein signature 
which successfully discriminates the three subphenotypes (Fig. S2).  
 
We next sought to evaluate the performance of this parsimonious protein model through two 
complementary approaches. First, we tested the association between the elastic net proteins and 
severity of illness. Using a linear mixed-effects model, we estimated the fold change in protein 
expression associated with one standard deviation change in PELOD-2 organ dysfunction score 
(Fig. 2D). This model demonstrates that modest changes in expression of these 24 proteins are 
associated with meaningful differences in illness severity. Second, we tested the discrimination of 
our 24-protein signature for MODS subphenotype. As shown in the heatmap of protein expression 
at MODS onset in Fig. 2E, hierarchical clustering of elastic net proteins effectively separates 
MODS subphenotypes but does not discriminate between MODS patients with and without sepsis. 
 
To quantify the discrimination of the parsimonious elastic net protein set for MODS 
subphenotypes, we used linear discriminant analysis to calculate the polytomous discrimination 
index (PDI), a measure of rank-based discrimination performance, for each MODS subphenotype. 
Category-specific PDI indicated excellent discrimination for each subphenotype (Group A 0.98, 
Group B 0.96, Group C 0.99), and overall PDI for the model was 0.98. Taken together, these results 
suggest that our reduced 24-protein signature reflects severity of illness and successfully 
discriminates subphenotypes at MODS onset. 
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Fig. 2. Three MODS subphenotypes based on protein expression at MODS onset. (A) 

Principal component analysis based on expression of 214 severity-associated proteins in 
88 patients at MODS onset reveals separation among three MODS subphenotypes defined 
through Monte Carlo consensus clustering (43). (B) Cumulative incidence of survival to 
PICU discharge and PICU mortality by MODS day among three MODS subphenotypes. 
(C) MODS etiology, cohort demographics, exposures, and clinical outcomes, stratified by 
MODS subphenotype. Comparisons between groups by chi-squared and Wilcoxon rank 
sum test, as appropriate. (D) Forest plot showing estimated fold-change in normalized 
protein expression associated with a +1 standard deviation increase in PELOD-2 score for 
24 proteins identified through ordinal elastic net regression (46) which differ across MODS 
subphenotypes. Forest plot includes a point estimate of fold-change and whiskers which 
represent the 95% confidence interval around this estimate. (E) Heatmap showing 
normalized protein expression of the 24 proteins identified by ordinal elastic net regression 
among 88 patients at MODS onset. Colored annotation bars indicate MODS subphenotype 
and sepsis status. 

 
 
Immune cell frequency and activation vary by MODS subphenotype 
 
Having identified three MODS subphenotypes (Groups A, B, and C) based on severity-associated 
protein expression and developed a parsimonious model to classify patients with MODS, we 
hypothesized that protein-derived subphenotypes would be associated with differences in cellular 
immunophenotype. For this analysis, we performed high dimensional spectral flow cytometry on 
cryopreserved PBMCs obtained at MODS onset using a custom-designed 35 marker panel (Table 
S2) which includes both phenotypic and functional markers. After arcsinh scaling (47) and quality 
control with flowAI (48), we performed FlowSOM metaclustering (49) and identified 14 PBMC 
populations by surface and intracellular marker expression. Fig. S3 presents a representative 
example of our manual gating strategy for this immune phenotyping panel, which we used to 
confirm the identity of the FlowSOM metaclusters.  
 
To visualize immunophenotypic differences between HC participants and the three MODS 
subphenotypes (Fig. 3A), we subsampled the data to 100,000 cells per MODS subphenotype and 
applied t-distributed Stochastic Neighbor Embedding with Compute Unified Device Architecture 
(tSNE-CUDA) dimensionality reduction (50). Differences in cell populations by MODS 
subphenotype are quantified in stacked bar plots (Fig. 3B), showing ordinal reduction of lymphoid 
and myeloid effector cells across MODS groups. The proportional abundance of non-naïve (central 
memory, effector memory, and terminally differentiated) CD8+ T cells were markedly reduced in 
Group C patients (Fig. 3C), and this loss of non-naïve CD8+ T cells was strongly associated with 
severity of illness by linear regression (p<0.001). A similar ordinal trajectory was noted across 
many cell types (Fig. 3D), including T cells, B cells, NK cells, and dendritic cells (Cuzik test of 
trend p<0.001 for each cell type shown). As seen with the reduced frequency of non-naïve T cells, 
reduction in frequency of each of these cell types was strongly associated with severity of illness 
by linear regression (all p<0.001). 
 
In addition to shifts in cellular frequency, we hypothesized that protein-derived subphenotypes 
would be associated with differences in immune cell activation, as measured by expression of 
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markers of proliferation (Ki67) and activation (CD38 and HLA-DR), across MODS 
subphenotypes. Representative bivariate plots of Ki67 expression in non-naïve CD4+ and CD8+ 
T cells and cytotoxic NK cells demonstrate increased proliferation in Group B and Group C 
patients compared to Group A patients (Fig 3E). Similarly, CD38 and HLA-DR co-expression in 
non-naïve CD8+ T cells was markedly increased in Group B and Group C patients compared to 
Group A, indicative of CD8+ T cell activation in these groups (Fig. 3F). Corresponding boxplots 
in Fig. 3G quantify these differences in proliferation and activation by MODS subphenotype. 
Taken together, these data suggest that CD8+ T cells have markedly reduced abundance but 
concurrently have increased markers of proliferation and activation in Group C patients, and that 
these cellular phenotypes are associated with worsening severity of illness.  
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Figure 3 
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Fig. 3. PBMC effector cell abundance and activation state vary by plasma protein-derived 

MODS subphenotype. (A) PBMC immune phenotype tSNE-CUDA projection 
demonstrates marked differences in frequency of lymphoid and myeloid lineages between 
HC participants and patients with MODS, and among MODS subphenotypes. Differential 
abundance across groups by cell subtype was determined by Kruskal-Wallis test. (B) 
Stacked bar plots show differences in CD3+ and CD3- cell abundance by MODS 
subphenotype corresponding to the FlowSOM metaclusters in the tSNE-CUDA projections 
at left. (C) Compared to HC participants, the abundance of CD8+ T cell subsets are reduced 
in patients with MODS, with an ordinal trajectory across severity subgroups noted in CD8+ 
central memory cells, CD8+ effector memory cells, and CD8+ Temra cells. Effector CD8+ 
cells in Group C patients are significantly reduced in frequency compared to other MODS 
subgroups. Comparisons were made between groups as shown and determined by 
Wilcoxon rank sum test. (D) Shifts in other lymphoid and myeloid subsets across MODS 
subgroups demonstrate a loss of peripheral non-naïve CD4+ and CD8+ T cells, γδ-T cells, 
memory B cells, cytotoxic NK cells, and plasmacytoid dendritic cells, with the most 
marked differences in the Group C patients with the highest disease severity. Comparisons 
were made between groups as shown and determined by Wilcoxon rank sum test. (E) In 
non-naïve CD4+, non-naïve CD8+, and cytotoxic NK cells, Ki67 expression is increased 
Group B and Group C patients compared to Group A (all p<0.05), indicative of increased 
proliferation of these effector cell subgroups. (F) In non-naïve CD8+ T cells, CD38 and 
HLA-DR co-expression is markedly increased Group B and Group C patients compared to 
Group A (both p<0.01), indicative of CD8+ T cell activation in these groups. (G) Boxplots 
quantifying differences in proliferation and activation by MODS subphenotype. 
Comparisons were made between groups as shown and determined by Wilcoxon rank sum 
test. 

 
 
Multiple concurrent mechanisms of immune dysregulation define Group C patients 
 
Because Group C patients have distinct clinical, proteomic, and cellular features compared to other 
patients with MODS, we hypothesized that expression of key canonical inflammatory pathways 
would differ by MODS subphenotype. Using the proteomics dataset, we first examined differential 
protein expression after adjustment for patient age, sex, severity of illness, and days since MODS 
onset using a linear mixed-effects model. In unadjusted analysis, 1061/1448 measured proteins 
were differentially expressed in Group C (Fig. 4A), and in our adjusted model 1003/1061 proteins 
remained differentially expressed. For 98% (980/1003) of these differentially expressed proteins, 
expression was upregulated in Group C compared to Group A/B. 
 
Using the adjusted protein expression dataset, we then performed pathway enrichment analysis of 
our plasma proteomics data using complementary group- and patient-based strategies. First, we 
used Ingenuity Pathway Analysis (IPA, Qiagen) (51) to identify enrichment of 22 canonical 
pathways in the Group C proteome in comparison to Group A/B (Fig. 4B). Noting that 8 of the top 
10 differentially expressed pathways identified by IPA were related to hyperinflammatory 
signaling, we then applied Gene Set Variation Analysis (GSVA) (52) to study enrichment of five 
canonical proinflammatory pathways on the individual patient level using Human Molecular 
Signatures Database (MSigDB) hallmark gene sets (53). Using GSVA, we assigned patient-level 
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protein module enrichment scores for each pathway of interest based on expression of proteins in 
the corresponding Hallmark gene set, as detailed in Methods. Module enrichment scores for each 
pathway are visualized in Fig. 4C and demonstrate markedly increased IL-6/JAK/STAT3 and IL-
2/JAK/STAT5 module enrichment in Group B and Group C patients (each p<0.001 vs Group A), 
modest increase in TNF/NFkB signaling in Group B and Group C patients (each p<0.05 vs Group 
A), and an ordinal reduction in PI3K/AKT/MTOR signaling across MODS subphenotypes (Cuzik 
test of trend p<0.001). Conversely, IFN-γ response module enrichment scores were minimally 
increased in patients with MODS and did not vary by MODS subphenotype. We then assessed the 
correlation between Hallmark module enrichment and PBMC immune cell subset abundance and 
activation in patients with MODS (Fig. 4D). We noted that IL-6/JAK/STAT3 module enrichment 
had the strongest correlation with proliferation and activation of PBMC subsets previously 
identified in Fig. 3E-F, including non-naïve CD4+ and CD8+ proliferation (Ki67 expression) and 
activation (HLA-DR/CD38 coexpression and PD-1/CD39 coexpression). Classical and non-
classical monocyte HLA-DR expression was inversely correlated with IL-6/JAK/STAT3 module 
enrichment score, while immune regulatory cell populations (regulatory T cells, myeloid-derived 
suppressor cells) were positively correlated with IL-6/JAK/STAT3 module enrichment score. 
 
Finally, we studied the longitudinal expression of canonical cytokine storm markers (54) in 
patients with MODS to understand the duration of immune dysregulation in Group C patients. 
Normalized protein expression by day since MODS onset by subphenotype is shown in Fig. 4E. 
We noted that IL-6, MCP-1, and IL-18 expression are significantly higher in Group C patients for 
the first 7 days after MODS onset (each p<0.001 at day +7), while IL-1β and TNF expression 
remain different for only the first 4 days (p=0.05 and p=0.009 respectively at day +4) and IFN-γ 
does not differentiate MODS subphenotypes. 
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Figure 4 
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Fig. 4. Group C patients have a hyperinflammatory plasma protein phenotype characterized 

by multiple concurrent mechanisms of immune dysregulation. (A) Volcano plot 
comparing proteomic profile of Group C patients to Group A/B patients, showing that 
1061/1448 measured proteins were differentially expressed in Group C. (B) After 
correction for patient age, sex, severity of illness and days since MODS onset with a linear 
mixed-effects model, 1003 proteins remained differentially expressed in group C. Based 
on these differentially expressed proteins, Ingenuity Pathway Analysis was used to identify 
enrichment of 22 canonical pathways in the Group C proteome after Benjamini-Hochberg  
correction. (C) Individual patient module enrichment scores calculated using GSVA and 
MSigDB Hallmark pathways demonstrate markedly increased IL-6/JAK/STAT3 and IL-
2/JAK/STAT5 signaling in Group B and Group C patients, modest increase in TNF/NFkB 
signaling in Group B and Group C patients, and an ordinal reduction in PI3K/AKT/MTOR 
signaling across MODS subphenotypes. Comparisons were made between groups as 
shown and determined by Wilcoxon rank sum test. (D) Spearman’s correlation between 
GSVA module enrichment score and PBMC abundance, activation, and proliferation within 
MODS patients. Correlations with Benjamini-Hochberg corrected p-value <0.05 are 
shown. (E) Longitudinal expression of canonical cytokine storm markers demonstrates 
persistence of immune dysregulation beyond MODS onset. For each panel, longitudinal 
normalized protein expression is presented by days from MODS onset through day 14. 
Loess regression lines with 95% confidence intervals are presented for each MODS 
subphenotype. 

 
 
Cell-specific signatures of immunometabolic dysregulation in patients with 
STAT3 hyperactivation 
 
Having identified a link between STAT3 pathway signaling, severity of illness, relative decrease 
in frequency of effector cells populations, and increased T cell proliferation and activation by flow 
cytometry, we next hypothesized that STAT3 signaling would have cell-specific effects in Group 
C patients. To assess the impact of STAT3 hyperactivation on immune cell phenotype and function 
in patients with MODS, we conducted a single cell RNA sequencing experiment (10X Genomics, 
Pleasanton, CA) on cryopreserved PBMCs obtained at MODS onset for Group C patients (n=9) 
and pediatric HC participants (n=3). IL-6/JAK/STAT3 module enrichment scores were 
significantly different between the 9 patients with MODS and 3 HC participants (0.331 vs. −0.494, 
p<0.0001) selected for the transcriptomics experiment. 
 
Fig. 5A shows the study schematic for this analysis. We sorted live CD45+ PBMCs using a Cytek 
Aurora CS cytometer (Cytek Biosciences, Fremont, CA) and then profiled 10,000 cells per patient 
using a 5’ RNA tag single cell sequencing approach (scRNA-seq; 10X Genomics, Pleasanton, CA). 
Libraries were sequenced to a depth of ~30,000 reads per cell on a Novaseq S2 (Illumina, San 
Diego, CA). Transcripts were aligned to the GRCh38 reference genome using Cell Ranger v8.0 
(10X Genomics, Pleasanton, CA). After quality control and integration, cell identities were 
inferred using the Azimuth reference-based mapping pipeline (55) and used to define 14 PBMC 
populations by transcriptional profile. 
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To visualize immunophenotypic differences between HC participants and Group C patients in the 
scRNA-seq experiment (Fig. 5B), we subsampled the data to 30,000 cells per group and applied 
Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction (56). 
Differences in cell population abundance are quantified in stacked bar plots (Fig. 5C), and 
demonstrate shifts in CD4+ lymphocytes, CD8+ lymphocytes, B cells, NK cells, and monocytes 
abundance between HC participants and Group C (all p<0.001). Compared to the flow cytometry 
immune profiling assay results, our transcriptomics analysis revealed a higher proportion of non-
naïve CD4+ T cells, but other cell subset frequencies are similar between modalities. These shifts 
in differential abundance between flow cytometry and transcriptional data may reflect inherent 
differences in cell subset identification using transcriptional and cell surface markers (57). 
Consistent the flow cytometry data set, the transcriptomic data set reflects the loss of effector cell 
subsets in Group C patients compared to HC participants, including loss of non-naïve CD8+ T 
cells and cytotoxic NK cells. 
 
To understand cell-specific differences in STAT3 signaling in patients with MODS, we performed 
pseudobulk analysis of differential pathway expression using UCell (58). Pseudobulk analysis 
aggregates transcriptional profiles by cell subtype prior to statistical testing and has been shown 
to outperform other methods of differential expression analysis in single cell datasets (59). By 
pseudobulk analysis, we noted that CD4+, CD8+, and TCRgd+ T cells from patients with MODS 
had increased IL-6/JAK/STAT3 module enrichment scores compared to controls (all p<0.001) 
while monocytes, NK cells, and B cell IL-6/JAK/STAT3 module enrichment did not differ between 
groups, as shown in the split enrichment plots in Fig. 5D.  
 
Transcriptomic immune dysfunction scores have recently been applied to adult and pediatric 
sepsis, critical influenza, and COVID-19 for risk stratification (36-40, 60, 61). Among these, the 
quantitative sepsis response signature score (SRSq) is a prognostic metric summarizing the host 
transcriptional response to sepsis based on expression of 19 genes by bulk RNA sequencing (40). 
Because higher SRSq is associated with proinflammatory signaling, lymphocyte dysfunction, 
severity of illness, and higher risk of poor outcomes, we hypothesized that SRS gene enrichment 
would be associated with STAT3 signaling in Group C PBMC subsets. For each PBMC subset of 
interest, we generated a linear regression model to compare proinflammatory module enrichment 
to enrichment of the extended SRS gene set. The heatmap in Fig. 5E depicts the correlation 
between SRS and inflammatory module enrichment scores by cell type, and the adjusted R2 is 
displayed for all significant associations. While the STAT3 pathway had the highest degree of 
correlation to SRSq, the positive correlation was moderate and only applied to gene expression 
within the T cell compartment. 
 
STAT3 pathway activation has been shown to downregulate innate and adaptive immune responses 
in the tumor microenvironment (62), attenuating Th1 lymphocyte responses (63) and enhancing 
MDSC (64) and regulatory T cell function (65). STAT3 signaling also alters immune cell 
mitochondrial respiration, enhancing both oxidative phosphorylation (66) and glycolysis (67). 
Having identified loss of effector T cells and NK cells in our experimental data and increased 
STAT3 signaling in our scRNA-seq data, we next hypothesized that STAT3 hyperactivation would 
be associated with altered PBMC immunometabolic state. 
 
To investigate the link between STAT3 signaling and PBMC immunometabolism, we first 
calculated Hallmark glycolysis and oxidative phosphorylation pathway module enrichment scores 
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using UCell (58) as detailed in Methods. We then constructed bivariate plots of glycolysis and 
oxidative phosphorylation module enrichment scores for both Group C and HC PBMCs (Fig. 5F). 
Compared to HC PBMCs, we identified two distinct populations of PBMCs in Group C – one with 
high module enrichment scores for both glycolysis and oxidative phosphorylation, and another 
with low module enrichment scores for glycolysis and oxidative phosphorylation. These 
populations are denoted on the bivariate plot with labeled boxes. As shown in the ridge plot in Fig. 
5F, among cells with increased metabolic activity, we noted that IL-6/JAK/STAT3 module 
enrichment scores were lower than median pseudobulk values for each PBMC subset, suggesting 
that increased STAT3 signaling is associated with suppressed immunometabolic function.  
 
Based on this insight, we hypothesized that hyperactive STAT3 signaling would be associated with 
reduced effector cell metabolic activity. Because multiple inflammatory signaling pathways are 
concurrently active in Group C patients, we then constructed a mixed effects logistic regression 
model to determine the association between module enrichment score and immunometabolic 
profile of non-naïve CD4+, non-naïve CD8+, and cytotoxic NK cells in patients with MODS at 
the single cell level. As shown in Fig. 5G, IL-6/JAK/STAT3 and IL-2/JAK/STAT5 module scores 
at the single-cell level are associated with low glycolysis and oxidative phosphorylation module 
scores, while IFN-γ response and PI3K/AKT/MTOR module scores are associated with high 
glycolysis and oxidative phosphorylation module scores at the single-cell level (all p<0.01). These 
results suggest that STAT3 and STAT5 hyperactivation in T cells in patients with MODS are 
associated with poor immunometabolic function, which may partially explain the link between 
hypercytokinemia and T cell dysfunction in sepsis. Bulk PBMC mitochondrial function has been 
previously associated with adverse outcomes in pediatric sepsis (24-26), and these results suggest 
a mechanism by which this immunometabolic dysregulation may occur. 
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Fig. 5. Cell-specific signatures of immunometabolic dysregulation in MODS. (A) Study 

schematic for the transcriptomics experiment, which included 9 patients with MODS and 
3 pediatric HC participants. Cells were sorted, sequenced, and analyzed using a 
bioinformatics pipeline to compare pathway enrichment scores by condition and cell type. 
(B) PBMC immune phenotype UMAP projection demonstrates differences in lymphoid 
and myeloid lineages between healthy and Group C patients. Differential abundance by 
cell subtype was determined by Wilcoxon rank sum test. (C) Stacked bar plots show 
differences in CD3+ and CD3- cell abundance by group corresponding to the metaclusters 
in the UMAP projections to the left. (D) Pseudobulk analysis of module enrichment scores 
across PBMC subsets showed that CD4+, CD8+, and TCRgd+ T cells from patients with 
MODS had increased IL-6/JAK/STAT3 module enrichment scores compared to controls 
while monocytes, NK cells, and B cell IL-6/JAK/STAT3 module enrichment scores did not 
differ between groups. (E) Heatmap depicting the correlation between SRSq and 
inflammatory pathway by cell type. Box color depicts the adjusted R2, and the R2 value is 
displayed for all significant associations. (F) Bivariate plots of single-cell glycolysis and 
oxidative phosphorylation enrichment scores for both Group C and HC PBMCs. Labeled 
boxes denote populations of increased and decreased immunometabolic pathway 
enrichment scores. At right, ridge plot denotes IL-6/JAK/STAT3 module enrichment by 
PBMC subset. (G) The estimated effect of inflammatory pathway signaling on 
immunometabolic activity of effector T and NK cells at the single cell level. Pathway beta 
coefficients and 95% confidence intervals are derived from mixed effects logistic 
regression model of the association between module enrichment score and 
immunometabolic profile of non-naïve CD4+, non-naïve CD8+, and cytotoxic NK cells. 
Positive coefficients are associated with increased glycolysis/oxidative phosphorylation 
activity while negative coefficients are associated with decreased glycolysis/oxidative 
phosphorylation activity.  

 
STAT3 as a candidate target for precision immunomodulation 
 
Having established increased plasma expression of STAT3 target proteins in Group C patients and 
that STAT3 module enrichment was associated with dysregulated cellular immunity and 
transcriptional evidence of immunometabolic dysregulation, we next sought to assess whether 
STAT3 activation represented a physiologic or pathologic response in the setting of critical illness. 
The STAT3 signaling pathway is a canonical inflammatory pathway associated with capillary leak, 
endothelial dysfunction, emergency granulopoiesis, and lymphocyte dysregulation (68). A recent 
human study has identified an association between immature CD66b+ neutrophils and STAT3-
mediated emergency granulopoiesis in adult patients with sepsis (69), and two recent preclinical 
studies have demonstrated a protective effect of selective STAT3 inhibition in mice with CLP-
induced sepsis (70, 71). Informed by these studies, we hypothesized that the degree and duration 
of STAT3 activation in Group C patients is pathologic and therefore a candidate target for precision 
immunomodulation. 
 
To test this hypothesis, we compared plasma protein expression between patients with MODS and 
patients with rare, monogenic inborn errors of immunity (IEI) involving constitutive activation or 
inactivation of the STAT1 and STAT3 signaling pathways. IEIs can provide context to help decode 
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complex phenotypes by defining in vivo human immune signatures which correspond to signaling 
pathway perturbation. For this analysis, IEI patients were categorized as STAT1 gain-of-function 
(GOF) (n=9), STAT3 GOF (n=5), STAT1 autosomal dominant and dominant-negative (DN) (n=1), 
or STAT3 DN (n=3). Protein expression was measured using a 384-marker inflammatory 
proteomics panel from Olink Proteomics (Table S7), and we analyzed pathway expression in bulk 
by GSEA (72) and at the individual patient level using GSVA (52). 
 
Fig. 6A shows the study schematic for this analysis, which includes 88 patients with MODS, 18 
patients with IEIs, and 25 HC participants. Orthogonal to our Ingenuity Pathway Analysis findings, 
we first confirmed population-level proteomic enrichment (normalized enrichment score 1.53, p-
value 0.004) of the Hallmark IL-6/JAK/STAT3 signaling pathway in Group C patients at MODS 
onset compared to HC participants using GSEA (Fig. 6B). Leading edge proteins and other 
enriched Hallmark pathways from this analysis are shown in Table S8.  
 
To assess expression of STAT target proteins across MODS and IEI patients, we identified 31 
measured proteins from the KEGG JAK/STAT gene set and performed hierarchical clustering 
based on normalized protein expression. As shown in Fig. 6C, we noted that STAT1 GOF and 
STAT3 GOF co-localize with Group C patients while STAT1 DN and STAT3 DN patients co-
localize with Group A patients in hierarchical clustering. This protein-level analysis also highlights 
the residual biologic heterogeneity within our MODS severity-defined subphenotypes. 
 
Having demonstrated relative enrichment of STAT target proteins in MODS Group C patients, 
STAT1 GOF patients, and STAT3 GOF patients, we next used GSVA to assess patient-level 
enrichment of five inflammatory pathways in MODS and IEI patients. Fig. 6D shows a clustered 
heatmap of module enrichment scores for each patient in the dataset. While the cohort of STAT3 
GOF and some STAT1 GOF patients show increased IL-6/JAK/STAT3 module enrichment scores, 
only STAT3 GOF patients display concurrent decreased PI3K/AKT/MTOR module scores. This 
pattern of concurrent increased STAT3 signaling and decreased mTOR activation was associated 
with PBMC immunometabolic dysregulation in our scRNA-seq analysis (Fig. 5G). 
 
Noting the similarities between Group C patients and STAT3 GOF patients, we next compared IL-
6/JAK/STAT3 module enrichment scores across MODS and IEI patients (Fig. 6E). Compared to 
Group A patients, IL-6/JAK/STAT3 module enrichment scores were increased in Group C patients 
(p<0.001) and STAT3 GOF patients (p=0.001), and many patients with MODS had enrichment 
scores which exceeded the mean score of STAT3 GOF patients. Because patients with STAT3 GOF 
have constitutive pathway activation leading to immune dysregulation, this analysis suggests that 
Group C patients exhibit pathologic dysregulation of the STAT3 signaling pathway at MODS onset. 
 
Finally, we sought to determine the trajectory of STAT3 dysregulation in Group C patients. For 
this analysis, we computed longitudinal IL-6/JAK/STAT3 module enrichment scores among 26 
patients with MODS in whom ≥3 longitudinal samples were obtained. We noted that Group C 
patients had the highest IL-6/JAK/STAT3 module enrichment scores, and that they remained 
persistently elevated through the first two weeks of MODS (Fig. 6F). In contrast, IL-6/JAK/STAT3 
module enrichment scores gradually decreased in Group B patients and rapidly decreased in Group 
A patients. In this longitudinal analysis, it was uncommon for patient IL-6/JAK/STAT3 module 
enrichment scores to increase over time, with two Group C patients increasing from a low IL-
6/JAK/STAT3 module enrichment scores to a higher score around one week after MODS onset. 
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Fig. 6. STAT3 signaling as a candidate target for precision immunomodulation in a subset of 

patients with MODS based on plasma proteomics. (A) Study schematic for this analysis, 
which includes 88 patients with MODS, 18 patients with IEIs, and 25 HC participants. 
Normalized protein expression was analyzed using GSEA and GSVA to determine 
similarities in protein expression between MODS subphenotypes and monogenic IEIs. (B) 
GSEA analysis of population-level enrichment of the Hallmark IL-6/JAK/STAT3 signaling 
pathway in Group C patients at MODS onset compared to HC participants. (C) Heatmap 
showing normalized protein expression of 31 KEGG JAK/STAT target proteins among 88 
patients at MODS onset and 18 patients with inborn errors of immunity (IEI) characterized 
by STAT1 and STAT3 gain-of-function (GOF) and dominant-negative (DN) mutations. 
Colored annotation bars indicate MODS subphenotype and IEI subphenotype. (D) 
Clustered heatmap of patient-level enrichment of five inflammatory pathways in MODS 
patients and IEI patients using GSVA. Colored annotation bars indicate MODS 
subphenotype and IEI subphenotype. (E) Comparison of Hallmark IL-6/JAK/STAT3 
signaling module enrichment scores by MODS subphenotype and IEI subphenotype. 
Comparisons were made between groups as shown and determined by Wilcoxon rank sum 
test. (F) Longitudinal IL-6/JAK/STAT3 module enrichment scores among 26 MODS 
patients with ≥3 sample timepoints. Solid lines represent individual patient trajectories; 
dashed lines represent loess regression lines for each MODS subphenotype. 

 
 
DISCUSSION 
 
In a prospective cohort of children admitted to a quaternary care PICU with MODS from diverse 
etiologies, we have identified an association between pathologic STAT3 hyperactivation and T cell 
immunometabolic dysregulation in a subset of pediatric patients with MODS with the highest 
severity of illness and poor prognosis. These patients can be identified by a 24-protein signature 
at MODS onset regardless of MODS etiology, and they continue to exhibit pathologic STAT3 
hyperactivation for up to two weeks. Pathologic STAT3 signaling is targetable through approved 
anti-cytokine antibodies, JAK inhibitors, and experimental STAT inhibitors (73), and thus 
represents a viable target for precision medicine in pediatric patients with MODS. 
 
During the COVID-19 pandemic, some patients requiring supplemental oxygen were noted to 
benefit from a combination of dexamethasone and a JAK inhibitor (74). In randomized controlled 
trials, use of the JAK inhibitors baricitinib and tofacitinib were associated with reduced mortality 
(75-78), faster recovery (79), and lower rates of disease progression (75) in multiple adult trials 
focusing on varying levels of illness severity. Several available JAK inhibitor agents have good 
bioavailability, rapid onset of action, and short half-lives, features that are favorable for use in the 
critical care setting. If STAT3 hyperactivation is in fact a causal contributor to organ failure in 
pediatric MODS, the safety and efficacy of baricitinib in critical COVID-19 suggests a strong 
rationale for targeting JAK signaling in future pediatric clinical trials. 
 
Our highly granular approach yields insights complementary to many previous translational adult 
and pediatric sepsis studies and identifies a novel targetable mechanism of immune dysregulation 
in critically ill children with and without sepsis. As other investigators have shown, the highest 
severity patients in our cohort have innate (17, 21) and adaptive (18, 20) immune dysfunction and 
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mitochondrial dysfunction (25, 26, 80). Our findings redemonstrate the association we previously 
reported (23) between T cell dysfunction, mitochondrial dysfunction, and clinical outcomes in 
pediatric sepsis, and suggest a potential causative molecular mechanism for sepsis-associated T 
cell immunometabolic dysregulation.  
 
Sepsis-3 criteria define sepsis as organ dysfunction that develops in the setting of a dysregulated 
response to infection (1), and nearly all patients with sepsis in this study had evidence of immune 
dysregulation. To our surprise, we identified features of immune dysregulation in many patients 
with MODS who did not have suspected infection, and our subphenotypes include patients with 
and without sepsis. These findings supplement the findings of previous studies (60, 81) which have 
focused on identifying clinical and transcriptional differences between patients with sepsis 
compared to sterile inflammation. Our findings demonstrating overlapping signatures of septic and 
sterile MODS may be explained by the high severity of illness in our cohort, as these patients may 
exhibit a final common pathway of critical illness which develops in the setting of overwhelming 
proinflammatory signals. Conversely, it is possible that populations of patients with MODS are 
enriched with children who have undiagnosed primary immune regulatory disorders. The 
PHENOMS study estimated that inborn errors of immunity could be present in up to 60% of 
pediatric patients with sepsis (34); increased prevalence of IEIs in pediatric MODS cohorts may 
therefore influence the association between immune dysregulation and clinical outcomes. Future 
multiomic immune profiling studies should also incorporate genomic data to identify novel 
genotype-phenotype associations which will further our mechanistic understanding of immune 
dysregulation in the setting of pediatric critical illness. 
 
Leveraging the proteomics dataset, we used penalized regression to identify a prognostic protein 
signature detectable at MODS onset and demonstrated excellent discrimination using linear 
discriminant analysis. Elastic net regularization is a common approach applied to feature selection 
in high-dimensional data which generates a high-performing sparse model with good prediction 
accuracy (45). Prior to potential use for prognostication or selection of targeted therapeutics, the 
proposed parsimonious 24-protein MODS severity model will require prospective validation. It 
will also benefit from validation across multiple proteomics platforms, as aptamer-based and 
antibody-based approaches are susceptible to both technical and genetic variation among samples 
(82). A validated severity model derived from the plasma proteome would present an opportunity 
for reverse translation to the bedside, as clinical labs in many centers can perform in-house 
multiplex protein assays. 
 
The longitudinal analysis of protein and pathway expression in this study provides evidence that 
immune dysregulation present at MODS onset persists for more than a week in many patients. 
Persistent immune dysregulation is amenable to consideration of a trial of precision therapeutics 
in which patients could be identified at MODS onset and then assigned to a treatment arm based 
on biomarker-based prognostic and predictive enrichment strategies. Equally relevant, prognostic 
subphenotypes defined at MODS onset demonstrated relatively stable proinflammatory pathway 
enrichment scores through time, suggesting that subphenotype membership is patient/episode-
specific and minimally impacted by time from MODS onset. 
 
Cellular features of immune dysregulation associated with STAT3 hyperactivation were identified 
through both spectral flow cytometry and single cell transcriptomics and could serve as a surrogate 
marker for evaluating ex vivo response to candidate targeted therapeutics, including cytokine 
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blockade and JAK inhibition. Assessment of PBMC mitochondrial function (e.g. via Seahorse or 
SCENITH (83) assays) could also serve as a candidate preclinical readout for response to 
immunomodulatory therapy. 
 
In our single cell analysis, IL-6/JAK/STAT3 module scores were moderately correlated with 
enrichment of sepsis response signature (SRS) genes in lymphoid subsets and not associated with 
SRS genes in myeloid subsets. This stands in contrast to a recent report of adult ICU patients with 
and without sepsis in which proportion of immature CD14+ MS1 monocytes was positively 
correlated with expression of SRS genes and TNF signaling (84). An alternative pathway of 
immune dysregulation has recently been described in which immature CD66b+ neutrophils drive 
emergency granulopoiesis via STAT3, which represents an immunocompromised disease endotype 
in adult patients with sepsis (69). Taken together, these observations suggest that immune 
dysregulation in pediatric MODS is somewhat distinct from that captured by the SRS gene 
signature, and that immature neutrophil driven emergency granulopoiesis may contribute to STAT3 
hyperactivation and resulting immune dysregulation in our sickest pediatric patients with MODS. 
Further studies are required to test these hypotheses. 
 
Recent human and murine data identify a central role for STAT3 signaling in the pathogenesis of 
sepsis (69-71), and our results concordantly demonstrate associations between STAT3 signaling, 
clinical outcomes, and features of immune dysregulation implicated in pediatric sepsis 
pathobiology. However, the JAK/STAT signaling pathway is complex, and while we have focused 
on STAT3 as a candidate target for precision immunomodulation, it is likely that additional STAT 
pathways (including STAT5) are also dysregulated and may be targetable in pediatric patients with 
MODS. Future ex vivo studies assessing the impact of JAK inhibition on cellular immune 
phenotype and transcriptional profile are necessary to dissect the molecular mechanisms which 
underly these associations. 
 
Rare, monogenic IEIs offer unique insights into the mechanisms of human immune dysregulation 
and can provide context to help decode complex sepsis subphenotypes, and is a strength of our 
study. Typically identified in children with severe presentations of specific infectious diseases (85), 
IEIs are known to be enriched in pediatric patients with COVID-19 (86-89), influenza (90-92), 
and sepsis (34, 93, 94). Genotype-phenotype associations between monogenic IEIs and disease 
susceptibility may offer insights into causal pathobiology of illness which subsequently inform 
precision therapeutics (95). Our comparison between patients with MODS and patients with gain-
of-function and dominant-negative STAT disorders allows us to learn from human disease the 
impact of chronic amplification of these key pathways and suggests that the extent of STAT3 
hyperactivation in the most severe MODS subphenotype acutely exceeds that of patients with 
constitutive STAT3 activation, and that this hyperactivation is slow to resolve among survivors. 
 
Going forward, it will be important to replicate our prognostic MODS subphenotypes in a 
validation cohort using rapid, quantitative diagnostic test, as the highly multiplexed Olink assays 
are performed in batch in a reference lab. We must also understand the determinants of STAT3 
hyperactivation in our defined subset of pediatric patients with MODS, which we hypothesize may 
reflect a host-specific susceptibility to excess inflammatory response in the setting of infectious 
and sterile insults. Integration of genomics, proteomics, and functional cellular assays into a single 
informatics pipeline may uncover new genotype-phenotype associations and highlight the key 
markers of immune dysregulation in patients with MODS. 
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Limitations of our study include an a priori sample size that may have only been powered to 
resolve 3 subphenotypes of a heterogeneous syndrome. This reflects a pragmatic approach to study 
design and does not preclude the existence of other pediatric MODS subphenotypes. Additionally, 
our flow cytometry and transcriptomics experiments relied on cryopreserved PBMC samples. 
While this approach improved study feasibility and minimized batch effect associated with 
longitudinal sample collection, it is possible that rare and fragile cell populations may have been 
impacted by a single freeze/thaw cycle. The use of PBMCs also precludes cellular analysis of 
granulocyte populations, particularly neutrophils, which may be of particular relevance in the 
setting of STAT3 hyperactivation. Finally, we conducted our analysis on circulating blood cells 
and plasma protein expression based on the assumption that circulating immune cells reflect what 
happens in the injured tissues of patients with MODS, but the functional similarities between 
circulating immune cells and tissue resident immune cells are not known in the setting of 
hyperinflammation. 
 
Collectively, our longitudinal multiomics analysis defines a prognostic plasma proteomic signature 
present at MODS onset which is shared between patients with and without sepsis, demonstrates 
concordance across proteomic, cellular, and transcriptional analysis, and identifies a pathologic 
and potentially reversible role for STAT3 hyperactivation in a subset of pediatric patients with 
MODS who have high severity of illness and poor prognosis. These findings advance our 
understanding of MODS immunobiology and highlight potential opportunities for a precision 
medicine approach to the treatment of hyperinflammation in critically ill children. 
 
 
MATERIALS AND METHODS 
 
STUDY DESIGN AND PARTICIPANTS 
 
Experimental design: After obtaining IRB approval (IRB #19-017032), we enrolled patients with 
multiple organ dysfunction syndrome (MODS) into a prospective observational cohort study in 
the Pediatric Intensive Care Unit and Cardiac Intensive Care Unit at Children’s Hospital of 
Philadelphia. Patients with new dysfunction of ≥2 organs defined by modified Proulx criteria (96) 
(Table S9) within the last three calendar days and age >40 weeks post-conceptual age and <18 
years were eligible for enrollment. Exclusion criteria included limitations of care orders at the time 
of eligibility, clinical suspicion for brain death, and prior enrollment. This study co-enrolled with 
the multicenter PediAtric ReseArch of Drugs, Immunoparalysis and Genetics during MODS 
(PARADIGM) study, with shared inclusion/exclusion criteria and case report form but independent 
biospecimen collection, processing, and analysis. Patient (or legal guardian) consent (and assent, 
if appropriate) were obtained prior to study enrollment in accordance with our IRB approved 
protocol. We enrolled June 2020 to December 2022, when we reached our prespecified enrollment 
target of 88 patients, which we expected to achieve 90% power to detect moderate differences 
(Cohen’s d = 0.5) between three MODS subgroups, based on pilot flow cytometry and proteomics 
data. Longitudinal whole blood samples were obtained twice weekly in sodium heparin tubes from 
onset of MODS through death or resolution of all organ failure. 
 
Clinical metadata: Clinical metadata were abstracted by a nurse research coordinator using a 
standardized case report form into REDCap (97) for the parent PARADIGM study. Data quality 
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was verified through manual and automated queries. MODS onset was defined as the calendar day 
that a patient developed new dysfunction of ≥2 organs defined by modified Proulx criteria (Table 
S9) (9). MODS inciting diagnosis was abstracted from attending physician daily progress notes 
and coded as “sepsis,” “trauma,” “cardiopulmonary bypass,” or “non-infected.” Sepsis was 
identified as the MODS inciting diagnosis based on clinical suspicion for infection by the primary 
team and positive microbiologic or virologic testing. Patients with “culture negative sepsis” were 
classified as sepsis if they developed organ dysfunction in the setting of a clinical suspicion for 
infection and received sepsis therapies, in concordance with pediatric sepsis guidelines (98, 99). 
Immunocompromised status was defined by diagnosis of active malignancy, prior hematopoietic 
cell transplant, or primary immune deficiency syndrome. Daily data were extracted from MODS 
onset through day +28 to allow for daily calculation of the PELOD-2 organ dysfunction score (13). 
We defined cumulative PELOD-2 score through day +28 as our primary outcome because it 
incorporates both degree and duration of organ failure into a composite outcome variable which is 
associated with meaningful differences in long-term mortality (100) and health related quality of 
life (101) in pediatric patients with sepsis. For each patient and healthy control participant, a one-
way hash function was used to generate a “hashed patient ID” number which cannot be linked to 
patient records or used to identify patients by anyone outside of the study team. These hashed 
patient IDs are included in supplemental tables where required. 
 
Healthy control participant samples: Cryopreserved PBMC and heparin plasma samples from 
25 pediatric participants without immunological disease were identified from an existing pediatric 
biorepository (IRB #18-015920) to serve as a healthy control group. Participant (or legal guardian) 
consent (and assent, if appropriate) were obtained prior to study enrollment in accordance with our 
IRB approved protocol. Age range and sex of healthy control participants are shown in Table S10. 
 
Inborn errors of immunity patient samples: Heparin plasma samples from patients with STAT1 
gain-of-function (9), STAT1 dominant-negative (1), STAT3 gain-of-function (5), and STAT3 
dominant-negative (3) mutation were identified from collaborators and used as comparators for 
MODS patients with dysregulated STAT3 signaling. These participants were consented in 
accordance with local IRB protocols and samples were shared through collaborative research 
agreements. 
 
STUDY PROCEDURES 
 
Sample processing: Biospecimens were collected starting within 3 calendar days of MODS onset 
and continued twice weekly through death, recovery from all acute organ failures, or until six 
samples were obtained. Blood samples were obtained in heparin plasma tubes by clinical research 
coordinators and processed on site within one hour of acquisition. Platelet poor plasma was 
separated by centrifugation and snap frozen on dry ice. Peripheral blood mononuclear cells 
(PBMCs) were isolated using SepMate (STEMCELL Technologies, Vancouver, Canada) density 
gradient centrifugation using Lymphoprep media. Whole blood was mixed 1:1 with PBS and 
layered onto Lymphoprep gradient. SepMate tubes were centrifuged and the buffy coat suspension 
was spun down for cell isolation. ACK lysis was completed and cells were resuspended in 
complete RPMI (cRPMI; RPMI 1640 supplemented with 10% FBS, 1% L-Glutamine, 1% Pen-
Strep) for counting prior to cryopreservation in 500μl of freezing media (90% FBS, 10% DMSO). 
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Plasma proteomics by proximity extension assay: For each patient and timepoint, 100μl of 
heparin plasma was submitted to Olink Proteomics (Uppsala, Sweden) for analysis on the Explore 
1536 proximity extension assay (PEA) platform. PEA is a dual-recognition assay which uses 
paired antibodies labeled with DNA oligonucelotides to identify and quantify protein expression 
through Next Generation Sequencing (42). After normalization and quality control, protein 
concentrations are reported in log2-transformed Normalized Protein eXpression (NPX) units. In 
total, we analyzed 229 samples from 131 patients across three experiments using 8 shared bridging 
samples for between-plate-normalization. 1448 proteins met quality control thresholds in all three 
experiments and were included in downstream analyses (Table S11). 
 
Spectral flow cytometry staining and acquisition: Cryopreserved PBMCs were thawed in 10mL 
cRPMI and 1x106 cells per sample were plated in a 96-well round-bottom plate. Cell pellets were 
sequentially incubated with live/dead blue with Fc block, surface antibody stain with Brilliant 
Stain buffer, permeabilization reagent, and intracellular antibody stain with Brilliant Stain buffer. 
After staining, cell pellets were resuspended in 1.6% PFA and held at 4°C until acquisition on a 
Cytek Aurora spectral flow cytometer (Cytek Biosciences, Fremont, CA) the following morning. 
In total, we analyzed 303 samples from 113 patients across eight experiments. Please see Table S2 
for details of flow cytometry antibodies and buffers and Supplemental Methods for complete 
staining protocol. 
 
Flow cytometric cell sorting for scRNA-seq: Cryopreserved PBMCs were thawed in 10mL 
cRPMI and 1x106 cells were transferred to a new tube for staining. Cell pellets were incubated 
with 100μl mixture of live/dead blue and CD45 antibody, then washed and passed through a 35µm 
nylon mesh cell strainer prior to acquisition. Using a Cytek Aurora CS cell sorter (Cytek 
Biosciences, Fremont, CA), live singlet CD45+ cells were sorted into 1.5ml Eppendorf tubes 
prefilled with 500μl of PBS + 20% FBS. Sorted cells were washed with 500μl PBS + 10% FBS 
twice to remove sheath fluid EDTA prior to 10X processing. Please see Supplemental Methods for 
complete FACS staining protocol. 
 
Single cell RNA sequencing (scRNA-seq): We utilized the 10X Chromium Next GEM Single 
Cell 5' Kit v2 and Chromium Single Cell Human TCR Amplification Kit (10X Genomics, 
Pleasanton, CA) for single cell analyses of sorted PBMC samples (see above) from 9 patients in 
MODS Group C and 3 pediatric HC participants. Single-cell isolation and library preparation were 
performed in the Center for Applied Genomics at Children’s Hospital of Philadelphia. Sequencing 
was performed using the Illumina S2 flow cell (Illumina, San Diego, CA). Data were 
demultiplexed and processed using the Cell Ranger 8.0 analytical pipeline (10X Genomics, 
Pleasanton, CA), with reads aligned to the GRCh38 reference genome. 
 
STATISTICAL ANALYSES 
 
Identification of MODS subphenotypes: We constructed linear mixed effects models for each 
protein to determine the association between normalized protein expression and cumulative 
PELOD-2 score, with age and sex modeled as fixed effects and day from MODS onset modeled 
as a random effect. Proteins which were significantly associated with cumulative PELOD-2 score 
after Benjamini-Hochberg correction (FDR p<0.05) were retained for further analysis. We used 
consensus clustering to define subphenotypes and identified optimal k via the Monte Carlo 
reference-based consensus clustering algorithm (43) which uses the proportion of ambiguous 
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clustering (PAC) score to test the hypothesis that k=n clusters is more informative than k=1. 
Optimal number of clusters in the MODS data (k=3) was confirmed by Monte Carlo bootstrapping, 
elbow method, and gap statistic. The clinical and proteomic datasets contained no missing data 
elements, thus imputation was not necessary for our analyses. 
 
Competing risk survival analysis: We fit a proportional subdistribution hazards regression model 
to assess the effect of covariates on the subdistribution of death and survival to PICU discharge in 
a competing risk setting and then estimated the cumulative incidence function from this model for 
each MODS subphenotype and outcome using the Fine and Gray model (44). We then tested the 
hypothesis that the subdistribution hazard differed between Group C and Group A/B for both death 
and survival to PICU discharge. 
 
Model reduction via ordinal elastic net: We defined a parsimonious protein signature to classify 
MODS subphenotypes by training an ordinal elastic net model (46) for feature selection using the 
severity-associated proteins previously identified through linear mixed effects modeling. This 
approach fit a semi-parallel elementwise link multinomial-ordinal regression model with elastic 
net penalty which defines coefficients for each protein:subphenotype and then shrinks the model 
to a single coefficient for each protein via elastic net penalty to minimize Gini index. We assessed 
the performance of the parsimonious elastic net protein set to discriminate the three subphenotypes 
using principle component analysis, linear mixed effects post-estimation, and polytomous 
discrimination index (102). 
 
Identification of spectral flow cytometry metaclusters: After arcsinh scaling (47) and quality 
control with flowAI (48), we performed FlowSOM metaclustering (49) to identify 14 PBMC 
populations by surface and intracellular marker expression. PBMCs were first clustered into k=60 
FlowSOM metaclusters and then combined in a stepwise fashion to generate the 14 canonical 
populations identified in the figure and used for downstream analysis. Metacluster similarity was 
determined by surface and intracellular marker expression and tSNE-CUDA (50) proximity and 
then confirmed with manual gating. Proliferation and activation markers were analyzed using 
bivariate plots. 
 
Single cell transcriptomics analytic pipeline: After sequencing and alignment to the GRCh38 
reference genome, transcriptomics data were analyzed using the Seurat 5.0 preprocessing and 
integration pipeline (103). Briefly, after review of standard quality control metrics, we selected 
cells with 1200-20000 transcripts per cell, 750-5000 genes per cell, and <20% mitochondrial RNA 
content for downstream analysis. After standard normalization and scaling, we performed anchor-
based RPCA integration across samples and conditions. After quality control and integration, cell 
identities were inferred using the Azimuth reference-based mapping pipeline (55) and used to 
define 14 PBMC populations by transcriptional profile. Results of each quality control and 
integration step are shown in Fig. S4. Pseudobulk analysis was performed by condition, sample, 
and cell type using Seurat’s AggregateExpression function. Differential expression analysis was 
performed using DESeq2 (104). The association of effector cell pathway enrichment and 
immunometabolic profile at the single cell level was determined using a generalized linear mixed-
effects model incorporating pathway enrichment scores as fixed effects and patient identity as a 
random effect. 
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Pathway enrichment analysis: We first performed pathway enrichment analysis by subphenotype 
by analyzing estimated protein expression in Group C patients (adjusted for age, sex, and PELOD-
2 score) with Ingenuity Pathway Analysis (Qiagen) (51). We then analyzed pathway expression in 
the protein dataset in bulk by GSEA (72) and at the individual patient level using GSVA (52), with 
a focus on enrichment of five canonical proinflammatory pathways using Human Molecular 
Signatures Database (MSigDB) Hallmark gene sets (53):  

“TNF Signaling via NFkB” (HALLMARK_TNFA_SIGNALING_VIA_NFKB), 
 “IL-6/JAK/STAT3 Signaling” (HALLMARK_IL6_JAK_STAT3_SIGNALING), 
“IL-2/JAK/STAT5 Signaling” (HALLMARK_IL2_STAT5_SIGNALING), 
“IFN-γ Response” (HALLMARK_INTERFERON_GAMMA_RESPONSE), 
“PI3K/AKT/MTOR Signaling” (HALLMARK_PI3K_AKT_MTOR_SIGNALING). 

 
We also applied GSVA to pseudobulk and single cell transcriptomics data in a similar approach 
using UCell (58) and extended our analysis to include two relevant Hallmark immunometabolic 
pathways: 

“Glycolysis” (HALLMARK_GLYCOLYSIS), 
 “Oxidative Phosphorylation” (HALLMARK_OXIDATIVE_PHOSPHORYLATION). 

 
A list of the gene sets used in GSEA and GSVA analysis in this manuscript are included in Table 
S12. Throughout the manuscript, we refer to Hallmark pathways as “modules” as opposed to “gene 
sets” because the analytic approach is applied to both proteomics data (via GSVA) and 
transcriptomics data (via UCell). 
 
SRS module concordance: To determine the concordance between Hallmark proinflammatory 
module enrichment scores and the extended sepsis response signature (SRS) gene set, we 
calculated an extended SRS gene set enrichment score for each cell in the transcriptomics dataset 
using UCell (58). We then generated a linear regression model to compare to enrichment of the 
extended SRS gene set to each Hallmark proinflammatory pathway. We calculated the adjusted R2 
for the correlation between extended SRS and inflammatory pathway enrichment by cell type. 
 
Analysis software: All computational analysis was completed using R 4.3.2 and Bioconductor 
3.18. Flow cytometry data was processed using FlowJo 10.9. Figures were compiled in Adobe 
Illustrator. 
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LIST OF SUPPLEMENTARY MATERIALS 
 
The Supplementary Materials file includes the following: 
 

• Supplemental methods 
 

• Fig. S1. Supporting evidence for k=3 clusters in Fig. 2A. 
• Fig. S2. PCA resolving three MODS subphenotypes based on expression of 24 elastic net 

derived severity-associated proteins. 
• Fig. S3. Representative gating strategy for spectral flow immune phenotyping panel. 
• Fig. S4. Results from single cell transcriptomics quality control and integration steps. 

 
• Table S1. 1472 proteins measured in proteomics panel used in MODS and healthy control 

cohorts. 
• Table S2. Antibodies used in 35-marker spectral flow immune phenotyping panel. 
• Table S3. PCA loadings in Fig. 1D, using the full proteomics dataset. 
• Table S4. Severity-associated proteins identified through linear mixed-effects model after 

adjustment for age, sex, and day from MODS onset. 
• Table S5. Etiology of MODS and computed subphenotype for each patient with MODS. 
• Table S6. Immunocompromised diagnoses by MODS subphenotype. 
• Table S7. 368 proteins measured in proteomics panel used in IEI cohort. 
• Table S8. Leading edge analysis of protein expression in Group C patients compared to 

HC participants. 
• Table S9. Modified Proulx criteria used for screening and enrollment in the MODS 

cohort. 
• Table S10. Age and sex for each healthy control participant. 
• Table S11. Final set of 1448 proteins which met quality control thresholds in all three 

experiments and were included in downstream analyses. 
• Table S12. Gene sets used in GSEA and GSVA analysis. 
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