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Abstract 

INTRODUCTION: Normal pressure hydrocephalus (NPH) patients undergoing cortical shunting 

frequently show early AD pathology on cortical biopsy, which is predictive of progression to 

clinical AD. The objective of this study was to use samples from this cohort to identify CSF 

biomarkers for AD-related CNS pathophysiologic changes using tissue and fluids with early 

pathology, free of post-mortem artifact. 

METHODS: We analyzed Simoa, proteomic, and metabolomic CSF data from 81 patients with 

previously documented pathologic and transcriptomic changes. 

RESULTS: AD pathology on biopsy correlates with CSF b-amyloid-40/42, neurofilament light 

chain (NfL), and phospho-tau-181(p-tau181)/b-amyloid-42, while several gene expression 

modules correlate with NfL. Proteomic analysis highlights 7 core proteins that correlate with 

pathology and gene expression changes on biopsy, and metabolomic analysis of CSF identifies 

disease-relevant groups that correlate with biopsy data.. 

DISCUSSION: As additional biomarkers are added to AD diagnostic panels, our work provides 

insight into the CNS pathophysiology these markers are tracking. 
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1. Background: 

Chronic hydrocephalus in the elderly may occur for a variety of reasons, although in the 

absence of a clear etiology most of these cases are classified as idiopathic normal pressure 

hydrocephalus (NPH) [1, 2]. Placement of a ventricular CSF shunt can provide symptomatic 

relief for many elderly patients with NPH [3-5]. At some centers, a cortical brain biopsy is sent to 

pathology, obtained at the shunt insertion point. Early AD pathology has been reported in a 

percentage of these biopsies, with b-amyloid plaque pathology ranging from 42% to 67%, and 

tau pathology relatively sparse in NPH cortical biopsies [6], although some studies have found 

trace tau pathology at higher levels [7]. Perhaps not surprisingly, AD pathology on biopsy 

predicts future development of clinical AD, which suggests that at least a subset of the NPH 

population is in the early stages of AD [8, 9]. For these reasons, AD pathology in NPH patients 

has been studied by several groups as a way to understand early AD pathophysiology [5, 6, 8-

11]. An additional advantage is that biopsy tissue is free of post-mortem changes, and since 

these are living subjects, longitudinal follow-up after biopsy is possible.  

 

Our group has recently analyzed RNA-seq data from a cohort of 106 NPH patients with varying 

degrees of accompanying AD pathology [10]. This analysis identified a limited set of genes that 

correlated with quantified histologic measurements of b-amyloid and tau pathology, with a 

significant enrichment of immune response genes. Weighted Correlation Network Analysis 

(WGCNA) identified 4 out of 58 modules that correlated with AD pathology. Two of the modules 

were enriched for microglial genes, and we found that these two modules partially captured the 

reported downregulation of homeostatic genes and upregulation of disease-associated 

microglial (DAM) genes reported in the mouse AD model literature [12]. We also identified an 

astrocytic module and a neuronal module that correlated with quantified pathology, suggesting 

that transcriptomic changes accompanying early AD pathology encompass a multi-cellular 
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response with a prominent immune response component (Figure 1). We subsequently validated 

that these modules correlate with AD pathology in autopsy brain transcriptomic datasets, 

although our microglial modules capture the downregulation of homeostatic genes reported in 

the mouse AD model literature better than several autopsy datasets [10].  Our interpretation of 

these results is that we are capturing an early response to AD pathology in our data, and that 

this may also be partially captured in the mouse AD model literature. Interestingly, recent 

snRNA-seq data from human tissue with early pathologic changes has identified a microglial 

response that is similar to what we reported [11, 13], which further validates the relevance of our 

data for understanding the early stages of AD.   

 

In summary, our prior work has produced a useful dataset for understanding early 

transcriptomic changes in AD, and this has motivated us to identify biomarkers that can track 

these changes. Our study allows us to ask this question in a unique way, as we are able to 

obtain CSF at the same timepoint as brain tissue, free of post-mortem artifact.  In the present 

study, we perform proteomics, mass spectrometry-based metabolomics, and Simoa AD 

biomarker measurements on ventricular CSF that was collected at the same time as the biopsy 

tissue on 81 NPH patients from our prior study, and analyze this data to identify biomarkers of 

disease that correlate with biopsy pathology and gene expression changes. We identify a 

number of previously unreported patterns between brain and CSF, which addresses the 

challenge of identifying biomarkers for established pathophysiologic CNS changes that occur in 

the setting of early AD pathology.   

 

2. Methods:   

This study is a retrospective study that uses tissue and CSF samples not required for clinical 

diagnosis and associated clinical and demographic data. This study was reviewed and 

approved by the Columbia University Institutional Review Board (IRB), and all relevant ethical 
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regulations have been followed. Processing and analysis of brain tissue, including RNA-seq and 

histologic analysis of β-amyloid and tau, has been previously reported [10], and is briefly 

summarized below.  Biopsies were taken from frontal cortex in 2/3 of the subjects and parietal 

cortex in 1/3 of the subjects in our original cohort, with the location for a given patient chosen for 

cosmetic reasons.  This ratio in the subgroup of 81 subjects analyzed in this study is similar. As 

noted in [10], changes in gene expression that correlate with AD pathology trend similarly in 

both regions, and we combined all subjects together [10] for purposes of analysis. The average 

age of our original 106 subjects is 74.9 years, and the subgroup of 81 subjects analyzed in this 

study (that have both biopsy and ventricular CSF collected)  is 74.5 years (see Supplementary 

Table 1 for patient demographics). CSF analyzed in this study was obtained through the shunt 

catheter into polypropylene tubes, and promptly frozen and stored at -80°C. 

 

2.1 Summary of Previously Reported Data Analyzed in this Study 

As reported in [10], RNA was extracted from biopsy samples using miRNeasy Mini Kit 

(QIAGEN; Cat No./ID: 217004), and samples with RIN values ≥ 6 were selected for sequencing. 

RNAs were prepared for sequencing using the Illumina TruSeq mRNA library prep kit, and 

samples underwent single-end sequencing to 30M read depth. The quality of all fastq files was 

confirmed with FastQC v 0.11.8 [14], followed by variance stabilizing Transformation (VST) [15], 

and surrogate variable analysis (SVA) [16] and removeBatchEffect [17] were sequentially used 

to remove confounding variables in our dataset. To generate gene expression modules, we 

utilized Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene co-

expression modules [18]. Immunohistochemistry for tau (AT8; Thermo Fisher; Catalog # 

MN1020), and b-amyloid (6E10; BioLegend; Catalog # 803003) was performed using the 

Ventana automated slide stainer. b-amyloid plaques were counted per square mm; in slides with 

enough tissue, three fields were averaged together, whereas in slides with less tissue, the 
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largest number of possible fields were counted.  For tau quantification, we devised a rating 

scale to grade the minimal degree of tau pathology seen in NPH biopsies (Supplementary 

Figure 1).  Grade 0 was given to biopsies with no tau pathology.  Grade 1 was given to biopsies 

that have any tau pathology at all, usually one or more dystrophic neurites, but do not make 

criteria for Grade 2.  Grade 2 was given to biopsies that have at least one tau-positive neuron or 

neuritic plaque, but do not make criteria for Grade 3.  Grade 3 was reserved for biopsies with 

tau pathology evenly distributed throughout the biopsy.   

 

2.2 SIMOA ELISA Analysis 

SIMOA technology (Quanterix, Inc.,  Billerica, MA) on the SR-X platform was used to measure 

Aβ-40, Aβ-42, and total-tau with the multiplex Neurology 3-plex A kit #101995, NfL with the NF-

light Advantage kt (SR-X) kit #103400 , and p-tau181 with the p-tau181 Advantage V2 kit 

#103714. All assays were performed in duplicate for each sample, using 8 calibrators and 2 

positive controls (low and high concentrations) in 96-well plates. CSF was rapidly thawed, gently 

vortexed, centrifuged, and, diluted as per kit specifications depending on assay, and added to 

kit beads (100 uL) by pipette in each well. Then in succession, plates are incubated for 15 min 

at 30°C,  shaking at 1000 rpm, magnetic-washing 3X for 5 min total, followed by addition of SBG 

reagent (100 uL), another incubation for 10 min at 30°C at 1000 rpm, washing again 5X for 7 

min total and then reading on the SIMOA SR-X machine. Each plate assays in duplicate 34 

samples. This highly sensitive assay system has lower limits of quantitation of about 1, 0.1, and 

0.1 pg/ml for Aβ-40, Aβ-42, and tau, 0.1 pg/mL for -p-tau181, and 0.3 pg/mL for NfL; coefficients 

of variation within duplicates are between 3 and 10%. Simoa measurements (Aβ-42/Aβ-40 ratio, 

total tau, p-tau181, p-tau181/Aβ-42 ratio) were regressed for age and sex with 

limma::removeBatchEffect (version 3.54.2). Of the 81 CSF samples, a small number of samples 

failed and we were unable to produce a value.  In summary, 78 samples have CSF Aβ40/42 
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values, 80 have CSF ptau 181 values, 77 have CSF ptau 181/Aβ42 values,  80 have CSF tau 

values, and all 81 have CSF NfL values. 

 

2.3 Proteomics Analysis 

Proteins from CSF were studied by quantitative measurement of protein abundance with a mass 

spectrometry-based proteomic method. Prior to proteome analysis, depletion of high abundance 

proteins was performed with High-Select Top14 Abundant Protein Depletion Resin columns  

(Pierce/Thermo Fisher Scientific). CSF proteins were resuspended in 8 M urea, 3 mM 

dithiothreitol (DTT), 100 mM ammonium bicarbonate in liquid chromatography/mass 

spectrometry grade water, reduced with dithiothreitol, and alkylated with iodoacetamide. For 

proteolytic digestion, samples were diluted 5-fold in 100 mM ammonium bicarbonate and then 

digested using sequencing grade trypsin (Promega V511) at a protease/protein ratio of 1:50 at 

37°C for 16 h as described previously [19]. Samples were then desalted with Nest Group C18 

Macrospin columns (Southborough, MA). Peptide concentration was evaluated by NanoDrop 

spectrophotometry (Thermo Fisher Scientific) at 205 nm and LC/MS inject loading amounts 

were adjusted (normalized) based on peptide concentration. Peptides were separated with an 

acetonitrile / formic acid gradient at 300 nL / min on a 75 μm ID x 50 cm Acclaim PepMap C18 2 

μm particle size column with an UltiMate 3000 RSLCnano liquid chromatograph. This was 

coupled to a Q-Exactive HF mass spectrometer (Thermo Scientific). Data were acquired in data 

dependent acquisition mode (DDA) and proteins were identified by database search using 

PEAKS Studio (version 10.6; Bioinformatics Solutions Inc.) and a Human UniProt reviewed 

database with isoforms (UniProt release 2020_04, Aug 11 2020). All raw mass spectrometry 

files produced in this work are publicly available at the MassIVE proteomics repository 

(https://massive.ucsd.edu). 
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Protein abundance was measured by label-free quantitation with PEAKS Studio. Peaks 

software detected 701,261 features across 81 LC/MS/MS runs. Identifications were returned for 

1021 proteins with a 1% false discovery rate by the Peaks program. Of the 1021 proteins, 14 

proteins subjected to partial antibody depletion, 394 proteins were represented by a single 

peptide and six added proteins and lab contaminants were deleted from the analysis. 607 total 

proteins and 528 unique proteins represented by two or more peptides were included in the 

analysis. No imputation of missing values was performed. Batch correction was achieved using  

a tunable approach for median polish of ratio (TAMPOR) algorithm [20] for removing technical 

variance, and protein abundance values were normalized within each batch with no Global 

Internal Standard (GIS) (1). Effects attributable to age and sex were regressed with 

limma::removeBatchEffect (version 3.54.2). Log2 normalized protein abundances of 528 CSF 

proteins from 81 samples were Spearman-correlated to histologic metrics (β-amyloid load, tau 

load, and GFAP staining) and brain transcriptomic eigengenes for WGCNA-inferred modules 

(saddlebrown, mediumpurple3, orange, and darkgrey) using Hmisc::rcorr (version 4.4.2).  

 

The major strength of this study is the paired biopsy data, and as such we did not approach our 

data from the standpoint of attempting to identify novel biomarkers. Instead, our goal was to 

identify proteins that have been well validated in prior work and examine how these markers 

correlate with our biopsy data. Using this approach, we started with a recently published 

analysis of AD CSF that also included data from four additional published validation datasets (5 

cohorts total [20-22]). We focused on proteins in our own data that significantly increased or 

decreased in AD in at least one of the cohorts from this study with a corrected p-value (FDR) of 

0.05, and at least nominally (unadjusted p-value less than 0.05) trended in a similar direction in 

at least one other cohort. This resulted in 45 proteins. We then tested whether any of these 45 

proteins were nominally significantly correlated with either the histologic measurements of b-

amyloid or tau on biopsy or any of our four gene expression modules. For module correlations, 
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we only considered CSF proteins that were significantly correlated with a module eigengene if 

the same gene also correlated significantly and in a similar direction with the module eigengene 

in the brain RNA-seq data, as this would suggest that the CSF protein correlation is reflective of 

underlying CNS biology. Using these thresholds, we focused on 7 proteins from the proteomics 

data for further analysis. Note that all 7 CSF proteins that passed our criteria are correlating with 

our biopsy data in a similar direction to the reported correlations in the AD literature (i.e. if a 

CSF protein is reported to increase in AD, in our data it positively correlates with either AD 

pathology or a module that increases in AD, and vice versa). We did not apply an explicit 

threshold that this be the case in our filtering, and this supports the idea that our filtering has 

focused on CSF biomarkers of disease relevant for AD. One caveat to our proteomics analysis 

is that because of our filtering, we are not performing multiple testing correction (MTC) across 

all 607 proteins initially detected in our mass spectrometry data, and what we report in Figure 

2A are unadjusted p-values. Many groups in the proteomics field have realized that the 

uncritical application of MTC for some datasets will result in a failure to detect any true positives 

even when many exist [23]. This has led several AD-related studies to use alternatives to MTC 

[24-27], and a recent meta-analysis indicated that useful data can be derived even in the face of 

limited statistical power for CSF proteomes [28]. Our confidence in our findings is supported in 

part by the filtering we have already done, and we are only focusing on the 7 proteins in our 

data that reliably trend similarly in at least two other AD studies. 

 

In an effort to further reinforce our findings, we identified commercially available ELISAs that 

have been used extensively in the literature for two proteins of interest (YKL-40 and NPTXR) 

[29-34]. We performed ELISA measurements for these two proteins on CSF aliquots from all 81 

subjects for ELISA validation, according to the manufacturers’ instructions. Levels of NPTXR 

(#ELH-NPTXR; Ray Biotech, GA, USA), and YKL-40 (# DC3L10; R&D systems, MN, USA), 

were assessed using a 1:10 and 1:100 dilution, respectively.  
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2.4 Metabolomics Analysis 

The details on the acquisition of the untargeted metabolomics has been previously described 

[35, 36]. Briefly, the metabolites were extracted from plasma using acetonitrile and the extracts 

were injected in triplicate on two chromatographic columns: a hydrophilic interaction column 

(HILIC) under positive ionization (HILIC+) and a C18 column under negative ionization (C18-), 

to obtain three technical replicates per sample per column. Data was collected in full scan mode 

for molecules within 85-1250 kDa on a Thermo Orbitrap HFX Q-Exactive mass spectrometer. 

The untargeted metabolomic data were processed through a computational pipeline that 

leverages open source feature detection and peak alignment software, apLCMS [37] and 

xMSanalyzer [38]. Correction for batch effects was performed using ComBat, which uses an 

empirical Bayesian framework to adjust for known batches in which the samples were run [39]. 

Metabolic features detected in at least 70% of the samples were retained, leaving 3638 features 

from the HILIC+ column and 4532 features from the C18- column for further analysis. Zero-

intensity values were considered below the detection limit of the instrument and were imputed 

with half the minimum intensity observed for each metabolic feature. The intensity of each 

metabolic feature was log10 transformed, quantile normalized, and auto-scaled for 

normalization and standardization. Normalized feature values for HILIC+ and C18- columns 

were regressed for sex and age and spearman correlated with each variable of interest 

(histological b-amyloid, tau, and GFAP, and the 4 modules). Correlation values of metabolic 

features with each variable of interest from each column were combined and fed into 

mummichog (MetaboAnalyst version 5.0) [40] to highlight significantly enriched metabolomic 

pathways (Gamma FDR adjusted p < 0.05).  For the mummichog algorithm parameters, only 

pathways containing at least 5 metabolites were considered.   
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2.5 Statistics  

All statistical analyses were performed in R (version 4.3.0), except those conducted with ELISA 

data which were performed using GraphPad Prism software (version 9.4.1). All correlations 

were performed using Spearman’s Rank Correlation Coefficient. Correlations for metabolomics 

and proteomics were assessed using the rcorr function as implemented in the Hmisc package 

(version 4.4.2) in R. FDR correction was used to adjust p-values for multiple comparisons where 

indicated. Hub genes were identified using the intramodularConnectivity function as 

implemented in WGCNA (version 1.72.1). The TAMPOR algorithm used for batch correction for 

the proteomics data can be downloaded from https://github.com/edammer/TAMPOR. 

Regressions for the proteomics and simoa data were performed using the function 

removeBatchEffect (version 3.54.2) as implemented in the package limma in R. Regressions for 

the metabolomics data were performed using the function ComBat as implemented in the 

package sva in R. Pathway enrichment analysis for the metabolomics data was conducted by 

the Mummichog algorithm in MetaboAnalyst (version 5.0). Of the 81 CSF samples, all analyses 

were performed successfully on the full set of 81 with the following exceptions; 78 have CSF 

Aβ40/42 values, 80 have CSF ptau 181 values, 77 have CSF ptau 181/Aβ42 values, 80 have 

CSF tau values, and 80 have immunohistochemical GFAP values.  

 

2.6 Immunohistochemistry 

Immunohistochemistry for GFAP was performed on sections of formalin fixed, paraffin 

embedded tissue using the rabbit monoclonal EP672Y antibody run on the Ventana Ultra 

platform.  Brightfield microscopy was used to capture images of the GFAP stained slides at 4x 

magnification. Images were processed with CellProfiler v4.2.5 [41]. Tissue region within each 

image was distinguished from slide background through global minimum cross entropy 

thresholding, excluding objects below 50 pixels and any object that did not overlap with a 

manually drawn outline of the tissue region. Regions of histological artefact to exclude from 
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tissue regions such as folded sections were identified through the global robust 

background thresholding for pixels over 2 standard deviations above the mean after discarding 

85% of the bottom intensity pixels. Average GFAP intensity was then measured over the 

entire thresholded tissue area for each case. We were able to perform GFAP staining on 80 of 

the 81 specimens. 

 

3. Results: 

3.1 Biopsy histologic changes and gene expression modules correlate with AD CSF biomarkers 

We first sought to determine how pathology and transcriptomic changes in biopsy tissue relate 

to established AD biomarkers in CSF. In Figure 1B , we show that all four modules originally 

identified in [10] significantly correlate with previously quantified b-amyloid and tau pathology in 

our cohort of 81 subjects used in this study, similarly to the original group of 106 (WGCNA 

modules are labeled by color names, and we reproduce the same color names for these 

modules from [10]). In this study we have added quantified GFAP staining as a measure of 

astrogliosis in order to assess how this metric might also relate to our CSF analysis. Here, we 

note that GFAP staining correlates not only with the orange (astrocytic) module, but also with 

the darkgrey module, suggesting that neuronal function may decline in tandem with astrogliosis. 

To examine how our four modules and the quantified pathology on biopsy related to well-

established AD CSF markers, we first performed Simoa measurements for b-amyloid-42 and -

40, total tau, phospho-tau-181 (p-tau181), and neurofilament light chain (NfL) (Figure 1C). 

Quantified b-amyloid plaques and tau pathology on biopsy correlate with Simoa measurements 

of b-amyloid-40/42 ratio, which is a superior biomarker for AD than b-amyloid-42 alone[42].  Tau 

pathology also correlates significantly with NfL. Both b-amyloid plaques and tau pathology trend 

positively with p-tau181 but are not significant, and p-tau181/b-amyloid-42 positively correlates 

with both. We next examined whether our modules correlated with any of the above Simoa 
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measurements. All four modules have trends with b-amyloid-40/42, p-tau181, and p-tau181/b-

amyloid-42 in directions consistent with the modules’ relationship with AD pathology, with 

modules that positively correlate with pathology having trends similar to b-amyloid plaque and 

tau pathology, and modules that decline with increasing pathology showing opposing trends.  

However, only correlations with NfL pass significance with three of the modules, with 

saddlebrown and orange positively correlating with NfL, and darkgrey negatively correlating with 

NfL. 

 

In summary, all of the correlations found between the gene expression modules, pathology on 

biopsy, and Simoa metrics are internally consistent and support the view that the CSF of these 

patients is reflective of the ongoing AD-related disease captured on biopsy. Also encouragingly, 

this suggests that analysis of a very small piece of cortical tissue can give information that is 

partially predictive of CSF analysis. This should not immediately be assumed, as the CSF 

presumably captures changes found throughout the neuraxis, and may not correspond to the 

highly local analysis seen in a small piece of tissue. The logical reciprocal argument is that the 

findings in our biopsies are in fact reflecting similar biology seen in other areas of cortex, and 

that this is not only true of the measured pathology, but also of the gene expression data. 

Interestingly, GFAP staining does not appear to reach significance with any of the Simoa 

markers, although GFAP staining does correlate with quantified b-amyloid plaque pathology 

(Spearman’s r = 0.22, p-value = 0.047) and tau pathology (Spearman’s r = 0.32, p-value = 

0.0044), suggesting that astrogliosis in these biopsies is at least partially reflective of AD 

pathology, particularly tau pathology. 
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3.2 CSF proteomics identifies concordant changes between AD-related CSF proteins and 

transcriptomic and pathologic changes in brain 

We next performed label-free proteomics on our CSF samples. Our study is not as well powered 

as some prior analyses [20-22], and the major strength of this study is the paired biopsy data. 

Therefore, we did not approach our data from the standpoint of attempting to identify novel 

biomarkers, and instead used our data to study proteins that have been well validated in prior 

work and examine how these proteins correlate with our biopsy data.  Specifically, we selected 

proteins that passed an FDR of 0.05 in at least one study and trended in the same direction (i.e. 

up or down in AD) with an unadjusted p-value of 0.05 in at least one other study, and which also 

correlated with one of our pathology variables or gene expression modules with an unadjusted 

p-value of 0.05. (see Methods for all details of our filtering steps). We focused on 7 proteins 

from the proteomics data that passed these thresholds for further analysis. In Figure 2A, we 

show these proteins and how they correlate with the biopsy data. Three neuronal proteins that 

have been shown to decrease in AD (NPTXR, SCG2, and VGF) [28], all positively correlate with 

darkgrey (our neuronal module), which is also consistent with darkgrey declining in tandem with 

AD pathology on biopsy (Figure 1; see Supplementary Table 2 for reproduced module genes). 

Mediumpurple3 (our microglial module enriched for homeostatic genes, which negatively 

correlates with AD pathology), also positively correlates with two of the neuronal markers, and 

GFAP negatively correlates with VGF.  Tau pathology also positively correlates with several 

proteins previously shown to increase in AD CSF [20-22]. YKL-40 (otherwise known as CHI3L1) 

is a well-established marker of inflammation, and is widely studied in AD [28, 43]. In our data, 

this protein correlates with the orange (astrocytic) module and the saddlebrown (DAM 

microglial) module, suggesting that a multicellular response accompanies YKL-40 upregulation 

in CSF.  
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One caveat to our proteomics analysis is that we are not powered to perform multiple testing 

correction (MTC) across all proteins detected in our mass spectrometry data, and what we 

report in Figure 3 are unadjusted p-values.  The variability of the CSF proteome is well 

documented [44], and it has been noted that the uncritical application of MTC for some datasets 

will result in a failure to detect any true positives even when many exist [23]. This has led 

several AD-related studies to use alternatives to MTC [24-27], and a recent meta-analysis 

indicated that useful data can be derived even in the face of limited statistical power for CSF 

proteomes [28].  Reproducibility across studies has been used as a filter in other analyses of AD 

CSF [28, 45], and here we have selected proteins that have reproducible trends across 

independent AD CSF studies and also significantly correlate with one of our AD-related 

variables.  Note that all 7 CSF proteins that passed our criteria are correlating with our biopsy 

data in a similar direction to the reported correlations in the AD literature (i.e. if a CSF protein is 

reported to increase in AD, in our data it positively correlates with either AD pathology or a 

module that increases in AD, and vice versa). We did not apply an explicit threshold that this be 

the case in our filtering, and this supports the idea that our filtering has focused on CSF 

biomarkers of disease relevant for AD. Below, we also validate two key proteins with ELISAs 

that have been used extensively in the literature.  Nevertheless, this lack of statistical power is a 

weakness of our study, which we further discuss in detail at the end of the Discussion section. 

 

In an effort to further reinforce our findings, we identified commercially available ELISAs that 

have been used extensively in the literature for two proteins of interest (YKL-40 and NPTXR) 

[29-34]. We performed ELISA measurements for these two proteins on CSF aliquots from all 81 

subjects in order to test the reliability of our proteomics data using a method orthogonal to mass 

spectrometry (in this case, sandwich ELISA). In Figure 2B, we show that ELISA measurements 

for these two proteins demonstrate a similar correlational profile to the proteomics data 

(additional correlations not shown are not significant - see Supplementary Table 6). Intriguingly, 
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YKL-40 does not appear to correlate with AD pathology on biopsy. Although the lack of a 

significant correlation between CSF YKL-40 and AD pathology in biopsy tissue may be a power 

issue, at minimum it appears that in our cohort, CSF YKL-40 correlates more strongly with gene 

expression changes than AD pathology or traditional measures of astrogliosis (i.e. GFAP 

staining). As mentioned earlier, the saddlebrown and orange module are enriched for genes that 

are highly expressed in microglia and astrocytes respectively. In Figure 3, we show hub genes 

for each of these modules, with microglia and astrocytic genes highlighted in saddlebrown and 

orange respectively (hub genes are defined by intramodular connectivity [18], cell-type specific 

genes are from snRNA-seq data and are defined as enriched in a specific cell type compared to 

other cell types, which we have previously used to characterize these modules [10]). Mean gene 

expression vectors composed of only cell-type specific genes from these modules correlate as 

well with YKL-40 as the module eigengenes themselves, suggesting that the cell-type specific 

changes reported by these modules are correlating with YKL-40 (see Discussion). 

 

3.3 CSF metabolomic analysis identifies pathways that are altered in the setting of early AD 

pathology 

Finally, we analyzed our CSF with mass spectroscopy-based metabolomics to identify any 

biological pathways that may correspond to early AD pathology in brain tissue using 

mummichog, an analysis pipeline that identifies metabolic pathways enriched in metabolome 

correlations with variables of interest (see Methods). Pathways from several metabolic 

processes that have previously been reported in AD are also predicted to be altered in our CSF 

(Figure 4). Interestingly, fatty acid oxidation is predicted to be altered in tandem with b-amyloid 

pathology. Fatty acid oxidation has previously been linked to AD though several lines of 

investigation (reviewed in [46]). Fatty acid oxidation is relatively limited in neurons, in contrast to 

astrocytes, which metabolize fatty acids transported from neurons in ApoE-positive lipid 

particles as a protective mechanism in the setting of lipid peroxidation [47, 48]. Lipoic acid is an 
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antioxidant and cofactor for several metabolic enzymes, and similarly to fatty acid oxidation, is 

linked to the generation of acetyl-CoA [49, 50], suggesting that there may be alterations in 

oxidative metabolism across multiple pathways as b-amyloid accumulates in the brain.  

 

Additional findings in our metabolomics data are alterations in aspartate and asparagine 

metabolism; marked alterations in aspartate metabolism have recently been found in AD brain 

tissue using metabolomics analysis [51]. N-glycan degradation is also significantly affected. 

Glycosylation abnormalities are common in AD, and a variety of abnormalities have been 

described [52, 53]. Tau undergoes glycosylation in AD brain tissue and not in control brain 

tissue, and this has been shown to be important for maintenance of paired helical filament 

structure [54]. In summary, several metabolic pathways that are relevant to AD are predicted to 

be altered in our CSF analysis, and suggest future avenues for investigating how these changes 

may correlate with AD pathophysiology (see Supplementary Table 8 for all pathways identified).  

 

4. Discussion: 

The goal of this study is to address the major challenge of identifying biomarkers for established 

pathophysiologic CNS changes that occur in the setting of early AD pathology. Of particular 

interest is our finding that YKL-40 correlates primarily with two modules enriched for astrocytic 

and microglial genes. The interaction between microglia and astrocytes in AD is an area of 

active research, and recent work suggests that this interplay may contribute to 

neurodegeneration [55, 56]. YKL-40 is secreted by astrocytes, although its secretion is thought 

to be in part modulated through activated microglia [57, 58], which further supports our data 

showing that specific gene expression changes relating to these two cell types correlate with 

CSF YKL-40. Of note, our orange and saddlebrown modules are also highly correlated (r = 

0.47, p-value = 5.066612E-07). One could speculate that we may be partially capturing a 

disease-relevant interplay between these two cell types in our data, and YKL-40 may be a 
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useful marker to track this process. Future work could use these findings to examine this 

hypothesis in AD model systems. Our data also shows several CSF neuronal proteins that 

decrease in parallel with the darkgrey (neuronal) module. Interestingly, GFAP staining also 

(inversely) correlates with our neuronal module as well as VGF, and mediumpurple3 (our 

homeostatic microglial module) declines in parallel with some of the neuronal CSF proteins. 

This also points to aspects of the microglial/astrocytic response that may be most proximal to 

early neuronal dysfunction.  

 

Although this study offers a unique opportunity to correlate analysis of CSF and brain tissue 

taken at the same timepoint from living patients, there are important limitations. First of all, 

unlike some large-scale studies [20, 22] we are not powered to perform MTC on our proteomics 

data.  As mentioned earlier, this is a common problem with proteomics data from smaller 

cohorts, and other groups have reported unadjuted p-values and used alternate rationales for 

validation [23-28], including significant protein-protein interactions [24], coherent ontology 

groupings [27], and utility with predictive algorithms [25, 26]. Here, we have relied on prior 

validation in AD CSF in at least two other studies, as well as ELISA validation for two of our 

markers.  We consider the two proteins validated by ELISA (NPTXR and YKL-40) to be the 

proteins where we are able to make the strongest argument concerning relationships with brain 

transcriptomic data.  The other findings from our proteomics data are trends we consider 

reportable, but requiring additional validation in a future study.  To our knowledge, this is the first 

study to directly link CSF biomarkers and AD-related changes in CNS gene expression in the 

same patients.  While this certainly lends novelty to our findings, it also limits us in options to 

validate our results. As NPH cohorts are increasingly studied by AD researchers, there will 

hopefully be more reports where cross-comparision with the data presented here is possible. 
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In addition, all of the patients in this study have the comorbitidy of hydrocephalus. Although it is 

not easy to disentangle what effect this might have on the data presented here, it should be 

noted that AD is usually accompanied by co-morbid neurologic disease, and that “pure AD” 

actually constitutes a minority of AD cases [59-61]. Thus, pure AD is actually less common 

among patients with dementia than mixed pathology, and there is no a priori reason to expect 

hydrocephalus to uniquely affect our analysis more than other common confounders found in 

various autopsy and clinical cohorts.  Although the interaction of NPH and AD is an area of 

ongoing research [5, 8, 9], the fact that we find correlations between AD pathology on biopsy 

and AD biomarkers in CSF taken at the same timepoint is itself internal validation that aspects 

of AD pathophysiology can be studied using our approach, even in the presence of potential 

confounders.  

 

In summary, we show for the first time how CNS transcriptomic changes (and accompanying 

early AD pathology) are related to CSF biomarkers.  As new disease-modifying therapies are 

developed targeting specific physiologic aspects of AD (such as synaptic dysfunction or the 

immune response), biomarkers that track these changes will be crucial.  The data presented 

here offers both biomarkers that can be used for these purposes as well directions for future 

work. 

 

Figure 1 – AD pathology, gene expression modules, and AD CSF Simoa markers co-

correlate A) Top ontology groups characterizing our four modules reproduced from [10]. 

Saddlebrown and mediumpurple3 are both enriched for immune response ontology groups, and 

this is consistent with additional analysis using cell-type specific gene lists that showed that both 

modules are enriched for microglial genes [10]. We previously showed that the saddlebrown 

module is enriched for disease associated microglial (DAM) genes identified in AD mouse 

models, while mediumpurple3 is enriched for homeostatic genes, and this is consistent with 
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saddlebrown positively correlating with AD pathology and mediumpurple3 negatively correlating 

with AD pathology. The darkgrey module is enriched for neuronal genes, and orange is enriched 

for astrocytic genes, although this enrichment is less obvious from its ontology analysis. B) Our 

four modules correlate with quantified b-amyloid and tau pathology on the 81 biopsies with CSF 

similarly to the correlations reported in [10]. For this study, we also added quantified GFAP 

staining, and correlations with the four modules are shown. In all three cases, FDR adjusted p-

values are shown. C) Correlations of histologic data and gene expression modules with CSF 

Simoa measurements of AD biomarkers. * = FDR adjusted p-value < 0.05 (each column 

adjusted separately). All correlations shown in this figure are Spearman’s rank correlation 

coefficient. See text for details, and Supplementary Tables 3 and 4 for numbers used in this 

figure. The n for each Simoa analysis is variable due to some sample failure. In summary, 78 

samples have CSF Aβ40/42 values, 80 have CSF ptau 181 values, 77 have CSF ptau 

181/Aβ42 values, 80 have CSF tau values, and all 81 have CSF NfL values. GFAP staining was 

also only achieved on 80 samples.  All other analyses here and in the rest of the study are 

completed on all 81 samples. 

 

Figure 2 – CSF proteomics data correlates with biopsy pathology and gene expression 

modules. Seven core proteins are shown that pass our filters for reproducibility (see Methods). 

In A) we show the Spearman’s correlations of these proteins with the eigengene of the four 

modules and quantified b-amyloid, tau, and GFAP on biopsy. * = p-values < 0.05. In B) we show 

Spearman's correlation of 81 CSF samples with YKL-40 ELISA values vs. saddlebrown and 

orange module eigengenes and NPTXR ELISA values vs. darkgrey and mediumpurple3 module 

eigengenes. r and p values indicated. See Supplementary Tables 5 and 6 for numbers related 

to this figure. 
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Figure 3 – CSF YKL-40 correlates with microglial and astrocytic genes. Shown are the hub 

genes for the orange and saddlebrown modules, with astrocytic genes highlighted for orange 

and microglial genes highlighted for saddlebrown. Both modules correlate with CSF YKL-40. 

The mean gene expression vector of the astrocytic genes from orange and microglial genes 

from saddlebrown also correlate with YKL-40, supporting a role for these genes in the 

relationship between brain pathophysiology and CSF YKL-40. See Supplementary Table 7 for 

numbers used in this figure. 

 

Figure 4 – CSF metabolomics highlights AD relevant pathways. We analyzed our CSF with 

high-resolution mass spectroscopy-based metabolomics in order to identify any biological 

pathways that may correspond to early AD pathology in brain tissue using mummichog (see 

Methods). Representative pathways that are predicted to be altered in tandem with AD histology 

and gene expression changes are shown. * = FDR p-values < 0.05. See Supplementary Table 8 

for numbers used in this figure. 
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Figure 1 
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Figure 1 – AD pathology, gene expression modules, and AD CSF Simoa markers co-correlate A) Top ontology groups characterizing our four 
modules reproduced from [10]. Saddlebrown and mediumpurple3 are both enriched for immune response ontology groups, and this is consistent 
with additional analysis using cell-type specific gene lists that showed that both modules are enriched for microglial genes [10]. We previously 
showed that the saddlebrown module is enriched for disease associated microglial (DAM) genes identified in AD mouse models, while 
mediumpurple3 is enriched for homeostatic genes, and this is consistent with saddlebrown positively correlating with AD pathology and 
mediumpurple3 negatively correlating with AD pathology. The darkgrey module is enriched for neuronal genes, and orange is enriched for 
astrocytic genes, although this enrichment is less obvious from its ontology analysis. B) Our four modules correlate with quantified b-amyloid and 
tau pathology on the 81 biopsies with CSF similarly to the correlations reported in [10]. For this study, we also added quantified GFAP staining, and 
correlations with the four modules are shown. In all three cases, FDR adjusted p-values are shown. C) Correlations of histologic data and gene 
expression modules with CSF Simoa measurements of AD biomarkers. * = FDR adjusted p-value < 0.05 (each column adjusted separately). All 
correlations shown in this figure are Spearman’s rank correlation coefficient. See text for details, and Supplementary Tables 3 and 4 for numbers 
used in this figure. The n for each Simoa analysis is variable due to some sample failure. In summary, 78 samples have CSF Aβ40/42 values, 80 
have CSF ptau 181 values, 77 have CSF ptau 181/Aβ42 values, 80 have CSF tau values, and all 81 have CSF NfL values. GFAP staining was also 
only achieved on 80 samples.  All other analyses here and in the rest of the study are completed on all 81 samples. 
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Figure 2 
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Figure 2 – CSF proteomics data correlates with biopsy pathology and gene expression modules. Seven core 
proteins are shown that pass our filters for reproducibility (see Methods). In A) we show the Spearman’s correlations of 
these proteins with the eigengene of the four modules and quantified b-amyloid, tau, and GFAP on biopsy. * = p-values 
< 0.05. In B) we show Spearman's correlation of 81 CSF samples with YKL-40 ELISA values vs. saddlebrown and 
orange module eigengenes and NPTXR ELISA values vs. darkgrey and mediumpurple3 module eigengenes. r and p 
values indicated. See Supplementary Tables 5 and 6 for numbers related to this figure. 
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Figure 3 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 – CSF YKL-40 correlates with microglial and astrocytic genes. Shown are the hub genes for the orange 
and saddlebrown modules, with astrocytic genes highlighted for orange and microglial genes highlighted for 
saddlebrown. Both modules correlate with CSF YKL-40. The mean gene expression vector of the astrocytic genes from 
orange and microglial genes from saddlebrown also correlate with YKL-40, supporting a role for these genes in the 
relationship between brain pathophysiology and CSF YKL-40. See Supplementary Table 7 for numbers used in this 
figure. 
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Figure 4 

 
Figure 4 – CSF metabolomics highlights AD relevant pathways. We analyzed our CSF with high-resolution mass 
spectroscopy-based metabolomics in order to identify any biological pathways that may correspond to early AD 
pathology in brain tissue using mummichog (see Methods). Representative pathways that are predicted to be altered in 
tandem with AD histology and gene expression changes are shown. * = FDR p-values < 0.05. See Supplementary Table 
8 for numbers used in this figure. 
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Supplementary Figure 1 

 

Supplementary Figure 1 (reproduced from [10]) - We devised a rating scale to grade the minimal degree of tau 
pathology seen in NPH biopsies.  All panels display tau immunohistochemistry of NPH biopsies at low-power (10x 
magnification, upper row) or high-power (40x magnification, lower row).  Grade 0 was given to biopsies with no tau 
pathology.  Grade 1 (left panels) was given to biopsies that have any tau pathology at all, usually one or more dystrophic 
neurites, but do not make criteria for Grade 2 (middle panels).  Grade 2 was given to biopsies that have at least one tau-
positive neuron or neuritic plaque, but do not make criteria for Grade 3 (right panels).  Grade 3 was reserved for biopsies 
with tau pathology evenly distributed throughout the biopsy.  It is difficult to appreciate tau pathology at low-power in 
grade 1 slides (upper left panel), and high-power is required to see single dystrophic neurites (lower left panel - red 
arrow, see blow-up insert).  In grade 2 slides, one can usually see neuritic plaques at low-power (middle upper panel, 
red arrow), as well as at high-power (middle lower panel, red arrow).  Grade 3 slides have obvious tau pathology at all 
magnifications.   

 

The biopsies in our cohort have minimal tau pathology on immunohistochemistry
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