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Abstract 
 
Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung 
cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. 
Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the 
tumor microenvironment (TME) composition directly from histopathology images of NSCLC 
patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-
specific molecular signatures directly from whole slide images, achieving an average Pearson 
correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find 
that HistoTME-predicted microenvironment signatures and their underlying interactions improve 
prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 
0.75[95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, 
utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective 
approach for interrogating the TME and predicting ICI response, complementing PD-L1 
expression, and bringing us closer to personalized immuno-oncology. 
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Introduction 
Lung cancer is the leading cause of cancer-related mortality globally, of which non-small cell lung 
cancer (NSCLC) is the most common histological subtype1. In recent years, immune checkpoint 
inhibitors (ICI) have radically transformed the prognosis of clinically advanced NSCLC. Biomarkers 
such as Programmed Death Ligand 1 (PD-L1) expression have been clinically approved to identify 
patients who may respond to ICI. Yet, even after selecting patients based on PD-L1 expression, 
response rates to treatment can vary widely, ranging from 17-49% in patients with Tumor 
Proportion Score (TPS) > 1%2. This variability stems from the lack of standardized testing criteria 
for PD-L1, limiting its robustness as a predictive biomarker3. The clinical utility of other 
biomarkers such as the Tumor Mutational Burden (TMB) has been explored in several different 
clinical trials4-7. However, both PDL-1 expression and TMB fail to encapsulate various tumor 
microenvironmental features influencing ICI responses8-10. Hence, there is a clinically unmet need 
for additional predictive biomarkers capturing both tumor and microenvironmental factors 
associated with ICI responses.  
 
In recent years, several new multiplex tissue imaging and spatial transcriptomics technologies 
have been used for profiling the tumor microenvironment (TME) of patients in unprecedented 
detail11-19. However, they are quite expensive, which does not allow them to be implemented for 
wider use in a clinical setting. Hematoxylin and Eosin (H&E)-stained pathology slides, on the other 
hand, are relatively cheap and easily accessible in any pathology labs. These slides hold a wealth 
of TME-related information that can be unlocked with the help of Artificial Intelligence (AI)20. One 
of the first large-scale attempts to characterize the TME of patients from H&E slides was the work 
of Saltz etal, who mapped the abundance and spatial distribution of tumor infiltrating 
lymphocytes (TILs) across 23 different cancer types21,22. Graham et al developed Hover-Net23, a 
pan-cancer nuclei segmentation and classification neural network that enables single-cell 
quantification of tumor, stroma and lymphocyte populations from H&E slides. More recently, 
Diao et al developed a collection of supervised machine learning (ML) methods to quantify 607 
human interpretable TME features from histopathology images24. While these approaches are 
extremely valuable, they are limited by availability of relevant pixel-level annotations from expert 
pathologists, which are time and resource consuming to generate. To overcome these 
limitations, several research groups have alternatively proposed the use of weakly-supervised 
deep learning models, which can be trained to perform various downstream computational 
pathology tasks such as tumor subtyping and prognosis25-30 without any region or pixel-level 
annotations.  
 
Building on these recent AI-based advances, we introduce HistoTME: a weakly supervised multi-
task learning approach to infer the TME composition of patients from routinely collected 
pathology slides. Unlike previous approaches, HistoTME harnesses recently developed digital 
pathology foundation models to infer the expression of specific TME signatures, capturing the 
TME composition, without relying on any pathologist annotations or additional 
immunohistochemistry (IHC) data as labels.  HistoTME is trained in a weakly supervised fashion 
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utilizing matched whole slide H&E and bulk transcriptomics data of 865 NSCLC patients from The 
Cancer Genome Atlas (TCGA), validated on matched whole slide H&E and bulk transcriptomic 
data of 333 NSCLC patients from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and 
tested on whole slide H&E and IHC data from 82 NSCLC patients that had complete surgical 
resection at SUNY Upstate Medical University. We further demonstrate the clinical utility of 
HistoTME predictions by retrospectively analyzing needle biopsy specimens and clinical outcome 
data from an additional 570 NSCLC patients from the SUNY Upstate cohort treated with either 
chemotherapy or immune checkpoint inhibitors. Importantly, we show that HistoTME AI scores 
complement low PD-L1 expression and can identify more patients responding to immune 
checkpoint inhibitor therapy. Taken together, HistoTME presents a versatile and accessible tool 
for unravelling the complex dynamics of TME, leading to improved risk stratification and 
management of NSCLC patients.  
 
 

Results 
Overview of HistoTME 
HistoTME is a deep learning model trained to predict the average normalized gene expression 
levels of 30 cell type-specific TME signatures from whole slide H&E images, collectively providing 
a comprehensive profile of the TME composition31,32 (Figure 1A). HistoTME was trained using 
whole slide images (WSI) of H&E staining  and matched bulk transcriptomics data from the TCGA-
NSCLC cohort (N=865 patients) and validated it using an external cohort of 333 NSCLC patients 
from CPTAC using the same data modalities (Supplementary Figure 1). The HistoTME model 
consists of two main components: a frozen feature extraction component and a trainable 
attention-based multiple instance learning (AB-MIL) component33.  In our efforts to efficiently 
train HistoTME, we explored three state-of-the-art open-source foundational models—
CTransPath, RetCCL, and UNI25,26,30—as potential feature extractors. Additionally, we conducted 
experiments with two distinct approaches for AB-MIL: a single-task approach featuring a unique 
attention and multilayer perceptron (MLP) head for each TME signature, and a multitask 
approach, which incorporates a shared attention head for functionally related TME signatures 
but maintains separate MLP heads for each individual TME signature (Fig. 1B).  
 
HistoTME accurately infers the TME composition of NSCLC patients from histopathology 
images 
Of all versions of HistoTME that were explored, we observed that the version utilizing multi-task 
AB-MIL + the UNI foundation model produced the most accurate predictions when compared 
with the ground truth, achieving an average Pearson correlation coefficient of 0.50 (Figure 1C, 
Supplementary Figure 2A). The performance of single-task AB-MIL + UNI was slightly worse than 
the performance of multi-task AB-MIL + UNI. However, both single-task AB-MIL + UNI and multi-
task AB-MIL + UNI significantly outperformed other versions of HistoTME for predicting 
antitumor and protumor immune signatures while displaying similar performance for other 
signature prediction tasks (Supplementary Figure 3) Therefore, we settled on multitask AB-
MIL+UNI as the final version of HistoTME. Having validated the accuracy of HistoTME on CPTAC-
NSCLC data, we next tested HistoTME on whole slide H&E images of 82 NSCLC patients from SUNY 
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Upstate Medical University, which had serial immunohistochemistry (IHC) performed on surgical 
resection specimens for immune cell panel: T cells (CD3, CD4, DC8), B cells (CD20) and 
Macrophage (CD163) markers using adjacent serial sections (Supplementary Figure 1). Overall, 
we found that HistoTME predicted expression levels were correlated with the abundance of each 
cell type derived from IHC, achieving Pearson correlations of 0.60 [95% CI: 0.49-0.69] for T cells, 
0.48 [95% CI: 0.21-0.67] for B cells, and 0.41 [95% CI: 0.28-0.53] for macrophages, and Spearman 
correlations of 0.60 [95% CI: 0.44-0.72] for T cells, 0.54 [95% CI: 0.34-0.71] for B cells, and 0.49 
[95% CI: 0.30-0.65] for macrophages (Figure 1D, Supplementary Figure 2B). Spearman 
correlations were included due to the uncertain linear correlation between gene expression and 
IHC-measured protein abundance34.  
 
We then trained a simple unsupervised model on the TCGA + CPTAC cohorts to cluster NSCLC 
patients into distinct subgroups based on their predicted TME signatures (Figure 2A, see 
Methods). This model effectively identifies two main clusters recapitulating the Immune-
Inflamed and Immune-Desert phenotypes35-37(Figure 2B, Supplementary Figure 4). 
Subsequently, we applied this two-cluster model to the entire institutional SUNY Upstate cohort, 
including patients with core needle biopsies (N=652 patients) (Figure 2C). Upon examining the 
feature importance scores assigned to each TME signature by the trained two-class classification 
model (Figure 2D), we found that the following signatures: T cell traffic, Antitumor Cytokines, 
MDSC(myeloid-derived suppressor cells), Co-activation molecules and Macrophage/Dendritic 
Cell Traffic were among the top 5 TME signatures driving the distinction between the Immune-
Inflamed and Immune-Desert clusters. Interestingly, in line with these results, we noted 
substantial differences in the abundances of T cells, B cells and macrophages, when observed 
through IHC, among patients predicted to be either in the Immune Inflamed or in the Immune 
Desert cluster (Figure 2E).  
 
To understand the histopathological features influencing HistoTME predictions, we generated 
attention maps for all 652 patients within the SUNY Upstate cohort. In general, HistoTME attends 
to different areas of the TME to estimate the expression of antitumor, pro-tumor, 
angiogenesis/stroma and malignant cell signatures, with the exception of antitumor and 
protumor immune signatures (Supplementary Figure 5). We additionally performed a qualitative 
review of four randomly chosen resection cases (2 Immune-Inflamed, 2 Immune-Desert) with the 
help of a board-certified pathologist (Figure 3 and 4, Supplementary Figures 6 and 7). Overall, 
for immune-inflamed cases, which have relatively high predicted expression levels of antitumor 
and protumor immune signatures, HistoTME assigns great attention to regions abundant with 
lymphocytes and the formation of lymphocytic aggregates around tumor-stroma boundaries. 
For, immune desert cases, which have relatively low predicted expression levels of antitumor and 
protumor immune signatures, HistoTME assigns great attention to regions containing solid areas 
of more pleomorphic cells, and in addition, dense fibrotic areas within and around the tumor 
periphery. Collectively, these results suggest that HistoTME effectively captures the TME 
composition of tumors from H&E slides. 
 
Association between the tumor microenvironment status and survival outcomes of NSCLC 
patients treated with immune checkpoint inhibitors 
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We next conduct a retrospective analysis to assess how the TME status (Inflamed vs Desert), 
inferred from H&E slides, relates with survival outcomes of NSCLC patients from the SUNY 
Upstate cohort treated with immune checkpoint inhibitor therapy. All patients that underwent 
independent PD-L1 IHC testing with PD-L1 > 1% were considered for treatment with immune 
checkpoint inhibitors with a total of 292 patients ultimately receiving either an anti-PD1 or PD-
L1 inhibitor as monotherapy or in combination with chemotherapy. Overall, 77% of these 292 
patients had PD-L1 >= 1% and 50% had metastatic disease (stage IV). A detailed summary of the 
clinical cohort is available in Supplementary Table 1.  
 
Interestingly, we found that the TME status is particularly predictive of overall survival of patients 
receiving ICIs as first line of therapy (Figure 5A, log-rank test p-value = 0.0012, HR = 0.53 [95% CI: 
0.36-0.78]), especially when administered in combination with chemotherapy (First line 
ICI+chemo log-rank test p-value: 0.00067, HR = 0.39[95% CI: 0.22-0.68], First line ICI monotherapy 
log-rank test p-value: 0.22, HR = 0.68[95% CI: 0.37-1.26]; Supplementary Figure 8). Importantly, 
TME status remains predictive of overall survival of first line ICI-treated patients even after 
accounting for differences in clinical stage (HR = 0.52[95% CI: 0.35-0.77], p-value: 0.0012). The 
TME status, however, is less effective at predicting overall survival when considering all lines of 
ICI-treated patients (Supplementary Figure 9A, log-rank test p-value: 0.02, HR = 0.7 [95% CI: 0.52-
0.95]). When looking at PD-L1 expression, patients with PDL1 expression >= 50% and receiving 
ICI treatment as first line of therapy showed markedly improved survival compared to those with 
PD-L1 1-49% or < 1% (Figure 5B, log rank test p-value = 0.0059, HR = 0.62 [95% CI: 0.37- 1.04]). 
PDL1 expression was however not predictive of overall survival when considering all lines of ICI-
treated patients (Supplementary Figure 9B, log rank test p-value = 0.13, HR = 0.9 [95% CI: 0.68 – 
1.18]). When looking at progression-free survival (PFS), we observe that both the TME status and 
PD-L1 expression are primarily predictive of PFS at first line ICI therapy (TME status: log rank test 
p-value = 0.0037, HR = 0.59[95% CI: 0.41-0.85]; PD-L1 expression: log rank test p-value = 0.003, 
HR = 0.55[95% CI: 0.35-0.88]; Supplementary Figure 10). When performing additional subgroup 
analysis of patients receiving first line ICI treatment, we find that the H&E-inferred TME status is 
primarily predictive of overall survival outcomes of PD-L1 absent (<1%) patients  (Fig. 5C; log rank 
test p-value = 0.08, HR = 0.4[95% CI: 0.13- 1.18]), and PD-L1 low (1-49%) patients (Fig. 5D; log 
rank test p-value = 0.009, HR = 0.44[95% CI: 0.23-0.82]) but not PD-L1 high (>= 50%) patients 
(Figure 5E; log rank test p-value = 0.85, HR = 0.94[95% CI: 0.48-1.84]). 
 
When utilizing the TME status to predict treatment responses (i.e., predict immune inflamed as 
responder and immune desert as non-responder), we achieve a sensitivity of 0.46[95% CI: 0.35-
0.58], specificity of 0.72[95% CI: 0.60-0.81] and positive predictive value of 0.64[95% CI: 0.51-
0.76] for first line ICI-treated patients and a sensitivity of 0.44[95% CI: 0.35-0.54], specificity of 
0.73[95% CI: 0.63-0.81] and positive predictive value of 0.63[95% CI: 0.52-0.74], when 
considering all ICI-treated patients. When utilizing PD-L1 expression to predict treatment 
response (i.e., predict PD-L1 >=50% as responder and PD-L1 1-49% or < 1% as non-responder), 
we achieve a sensitivity of 0.49[95% CI: 0.38-0.60], specificity of 0.74[95% CI: 0.63-0.84] and 
positive predictive value of 0.67[95% CI: 0.54-0.79] for first line ICI-treated patients and 
sensitivity of 0.44[95% CI: 0.35-0.54], specificity of 0.72[95% CI: 0.62-0.80] and positive predictive 
value of 0.63[95% CI: 0.51-0.73] when considering all ICI-treated patients. When combining TME 
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status and PD-L1 expression into a single predictor, which defines any patient with either an 
inflamed TME or PD-L1 >= 50% as responders, we achieve a sensitivity of 0.69[95% CI: 0.58-0.79], 
specificity of 0.59[0.47-0.70] and positive predictive value of 0.64[95% CI: 0.54-0.74] for first line 
ICI-treated patients and a sensitivity of 0.65[95% CI: 0.56-0.74], specificity of 0.56[95% CI: 0.47-
0.66] and positive predictive value of 0.62[95% CI: 0.52-0.70] when considering all ICI-treated 
patients. Collectively, these results highlight the complementary value of HistoTME for 
prognostication of NSCLC patients, especially for those with PD-L1 < 50% and being considered 
for first line treatment with ICI+chemotherapy. 
 
Interactions between TME signatures improve prediction of immunotherapy response  
Interactions among the various components of the TME play a key role in influencing 
immunotherapy responses38. A previous study by Liu et al highlighted an example of this 
complexity, revealing in NSCLC patients treated with ICI that only high PD-L1 expression in 
macrophages was correlated with better overall survival, while high PD-L1 expression in tumor 
or stromal cells was not39. Hence, we developed a supervised ML model that incorporates 
interactions between H&E-inferred TME signatures to predict immunotherapy responders (See 
Methods). 
 
Specifically, we engineered 1740 interaction features by taking the sum, difference, product, and 
quotient of each pair of signatures to characterize interactions between TME signatures, then 
used a random forest model to select the most important interaction features from the training 
set, and trained XGBoost, a gradient boosted decision tree, using selected interaction features 
for ICI response prediction (Figure 6A; Methods). After applying 5-fold cross-validation to the 
training set to optimize the number of features selected, 18 TME signature interactions were 
chosen. These interactions maximize the cross-validation receiver operating characteristic curve 
(AUROC), achieving a CV AUROC of 0.68 (Supplementary Figure 11). Of the 18 pairwise 
interactions, coactivation molecules, T cell traffic, and MDSC traffic were incorporated most 
frequently (Figure 6B). We then retrained XGBoost on the full training set using these 18 selected 
interaction features. The trained model utilizing interaction features predicted response on the 
test set with an AUROC of 0.68 [95% CI: 0.55-0.80], whereas using TME signatures alone, without 
interactions, achieved an AUROC of 0.55 [95% CI: 0.41-0.69], although the difference was not 
significant (p=0.17, paired DeLong’s test) (Figure 6C). Furthermore, when only considering 
patients from the test set that received first line ICI-treatment, we found accuracies for predicting 
treatment response improved to an AUROC of 0.75 [95% CI: 0.61-0.88], while achieving a lower 
AUROC of 0.51 [95% CI: 0.23-0.78] for non-first-line ICI-treated patients.  
 
At a probability threshold that maximized the Youden index, the model predicted responders 
with a sensitivity of 0.80 [95% CI: 0.63-0.92], specificity of 0.50 [95% CI: 0.32-0.68], and positive 
predictive value of 0.71 [95% CI: 0.49-0.87]. At this threshold, the predicted responders did not 
have significantly higher overall survival compared to non-responders in the entire test set (OS: 
HR = 0.35; 95% CI: -0.26 to 0.96; p = 0.26). However, when considering only first-line ICI-treated 
patients in the test set, the predicted responders had significantly longer survival time compared 
to non-responders (OS: HR = 0.90; 95% CI: 0.20 to 1.60; p = 0.0095) (Figure 6D, 6E). Furthermore, 
we observed significantly higher progression-free survival (PFS) outcomes for patients that were 
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treated with first line ICI and predicted to be responders (PFS: HR = 0.94; 95% CI: 0.29 to 1.59; p 
= 0.0035) but not for second-line or subsequent-line ICI-treated patients (Supplementary Figure 
12). Using a Shapley additive explanation (SHAP)40 summary plot ordered based on feature 
importance, we determined TME signature interactions that had the most influence on the 
response prediction, with the most important interaction consisting of the sum between 
coactivation molecules and Th2 signatures (CM+Th2) (Figure 6F). High levels of CM+Th2 
corresponded to higher SHAP values, indicating higher predicted probabilities of response.  
 

Discussion 
Immune checkpoint inhibitors have emerged as a promising treatment option for lung 

cancer. Yet only a minority of patients respond to these treatments, sometimes at the cost of 
severe toxicities and financial implications for those who may not respond to this therapy. Hence 
it is imperative to identify effective biomarkers capable of differentiating responders from non-
responders prior to therapy initiation. The tumor microenvironment plays a fundamental role in 
shaping the responses of patients to immunotherapy. However, its dynamic nature, with multiple 
interacting components, makes it challenging to identify robust predictive biomarkers32,33. The 
integration of deep learning methods with digital pathology presents a promising and potentially 
cost-effective approach to interrogate the TME and alleviate some of these issues41.  

In this work, we introduce HistoTME, a novel weekly supervised deep learning method to 
characterize the TME of patients from H&E slides, leveraging enhanced feature extraction 
capabilities of recent digital pathology foundation models. In contrast to recent deep learning 
approaches, which aim to predict spatially resolved gene expression profiles from histopathology 
images42-45, our approach aims to infer the TME composition through estimating the expression 
of distinct functional TME signatures. A key advantage of this approach is that by learning to 
predict the expression of gene signatures, we not only avoid overfitting to the expression of 
individual genes but also increase interpretability by directly relating specific histopathological 
features to previously established biological concepts32. Due to the limited benchmarking of 
foundation models for continuous biomarker prediction tasks, we experimented with three 
popular foundation models as feature extractors.  We found out that the UNI foundation 
model25, when paired with multi-task AB-MIL, achieved the best predictive performance for the 
various TME signature prediction tasks. This improved performance likely stems from the 
considerably large histopathology datasets used to pre-train the UNI foundation model, as well 
as the added regularization induced by multitask learning. 

With the help of HistoTME, we next classify patients into two distinct TME subtypes: 
Immune-Inflamed and Immune-Desert, characterized by distinct expression of anti-tumor and 
protumor immune signatures. These observations were further corroborated by significant 
differences in cellular abundances of T cells, B cells and macrophages within tumor tissue, based 
on matched IHC data of patients. Moreover, the two distinct TME subtypes were significantly 
predictive of OS and PFS in the patients treated with first-line immune checkpoint inhibitors. 
While the strongest evidence of ICI benefit in NSCLC can be attributed to patients with PD-L1 >= 
50%, ICI has also been approved for patients with PD-L1 >= 1%, with the caveat that the benefit 
may not be as robust as the former group2.  Our results suggest that predicted immune-inflamed 
TME may be utilized to better predict, and thereby select NSCLC patients for ICI treatment when 
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PD-L1 is less than 50%, especially when considering ICI treatment in combination with 
chemotherapy. 

In addition to clustering, we developed a novel supervised model to predict ICI response, 
which analyzes interactions between distinct TME signatures. Our supervised model achieves an 
AUROC of 0.68 in the unseen test patient cohort, improving to an impressive AUROC of 0.75 when 
predicting responses to first-line immunotherapy, highlighting the significance of interactions 
among various TME components in shaping treatment responses. On performing SHAP analysis, 
we found that the total expression of coactivation molecules and the Th2 signature were the 
most predictive of ICI response. This observation likely stems from the importance of coactivation 
molecules, such as CD28, which is essential for T cell activation after interacting with antigen-
presenting cells, in cancer immunotherapy response46. Although Th2 signatures have been 
associated with an immune suppressive TME, their role in responses to ICI treatment remains 
unclear47. The emphasis laid by the AI model on this interaction could be explained by 
coactivation molecules promoting production of Th2 cytokines48, indicating that high levels of 
coactivation molecules and Th2 may offer a favorable environment crucial for therapeutic 
response. It is important to note, however, that interpreting the feature importance of ML 
models requires caution due to potential variability in feature importance depending on the 
training set, particularly with limited-size datasets.  

Compared to previous studies of predicting response to ICI from H&E slides, we 
demonstrated a unique ability to identify responders using both unsupervised and supervised ML 
techniques. Both these approaches can be valuable for deriving ICI response biomarkers 
depending on the availability of clinically annotated datasets. Hu et al developed a supervised 
deep learning model that used extracted hidden features from histopathology images to predict 
anti-PD-1 response in melanoma and lung cancer. However, a main caveat of their approach was 
the limited interpretability of their hidden features49. In addition, they reported modest 
accuracies (AUROC: 0.645[95% CI: 0.495-0.784]) in predicting ICI response for lung cancer 
patients, which they attribute to the dataset consisting of core-needle biopsy samples rather than 
surgery samples. In another recent study, Wang et al achieved an impressive performance by 
using hand-crafted features derived from spatial interactions of tumor cells and TILs20; however, 
their approach required a minimum of five large image patches due to the reliance on spatial 
interactions, which may not generalize well on needle biopsies. Most importantly, to our 
knowledge, this is the first study showing that predicting molecular features of TME is feasible 
from scanned H&E images. This makes HistoTME extremely versatile and useful for analysis of 
both surgical resection and needle biopsy data. In fact, HistoTME signatures are able to 
effectively predict responses of patients while also maintaining interpretability, despite limited 
availability of tumor tissue from core needle biopsies, which make up ~85% of the SUNY cohort.  

This work has some limitations that should be further considered. First, although a large 
clinical cohort of ICI-treated patients was studied, we lacked additional external validation 
datasets to further validate the prediction of responses to ICI.  Second, this work was conducted 
in a retrospective manner. We plan to further validate HistoTME in additional external cohorts 
of patients treated with ICI, both retrospectively and prospectively. Third, the development of 
HistoTME was limited to patients with NSCLC, implying that further testing and development will 
be required to extend the approach to different cancer types. Fourth, only three TME signature 
predictions were validated using IHC due to the lack of other strictly comparable IHC markers for 
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other signatures. Bagaev et al32, who previously analyzed these TME signatures directly from 
transcriptomics data identified 4 distinct TME subtypes, which besides capturing differences in 
the activity of immune signatures also capture notable differences in activity of stromal and 
angiogenesis-associated signatures. In contrast, our approach results in the identification of two 
subtypes (Immune-Inflamed and Immune-Desert).  This difference could potentially be explained 
by lower predictive accuracies of HistoTME for stroma and angiogenesis-associated signatures 
compared to immune signatures. We plan to utilize more complex molecular profiling tools, such 
as spatial transcriptomics, to further train and validate the accuracy of HistoTME predictions for 
other signatures. Lastly, while we showed promising results for predicting responses to first-line 
ICI treatment, the predictive accuracy of HistoTME was limited for the patients who received 
immune checkpoint blockade as second and subsequent-line treatment. This finding can be 
attributed to the fact that a majority of patients in this cohort received ICI as first-line treatment. 
In addition, since the TME is dynamically changing throughout the treatment, reflecting either 
response to therapy or tumor progression50, the H&E WSIs may not accurately represent the TME 
of patients following first-line treatment. Hence, it is important to consider the time interval 
between the H&E biopsy and ICI treatment to assess the utility of HistoTME for the prediction of 
treatment response.  

In conclusion, HistoTME is an effective approach to characterize the TME of NSCLC 
patients and identify patients who will benefit from ICI therapy. Being based on H&E slides alone, 
HistoTME allows for a broad characterization of the TME without the need for expensive 
molecular tests or additional tissue stains. Given the routine use and low cost of H&E slides in 
diagnostic pathology along with the increasing adoption of digital and computation pathology in 
clinical practices, HistoTME promises to improve clinical management of cancer patients 
undergoing immunotherapy.  Future research should focus on validating HistoTME in diverse 
patient populations and exploring its applicability to other cancer types, potentially extending its 
benefits beyond lung cancer. Finally, HistoTME can help advance our understanding of the role 
of TME in the context of other cancer treatments, opening avenues for the discovery of novel 
biomarkers and accelerate the adoption of personalized immuno-oncology. 
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Code Availability 
The codes to implement HistoTME are available at: https://github.com/spatkar94/HistoTME.git  
 

Data Availability 
The TCGA Whole slide Imaging and bulk transcriptomics data is publicly available and can be 
downloaded from the GDC portal (https://portal.gdc.cancer.gov). The CPTAC lung cancer whole 
slide imaging data is publicly available at The Cancer Imaging Archive 
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(https://www.cancerimagingarchive.net/collection/cptac-luad, 
https://www.cancerimagingarchive.net/collection/cptac-lscc), whereas the CPTAC lung cancer 
bulk transcriptomics data is available from the GDC portal. Whole slide imaging data from the 
SUNY Upstate cohort is currently not publicly available owing to restrictions of patient privacy. 
However, the data will be made available upon reasonable request. Full clinical metadata and 
HistoTME predictions for each cohort are available through Zenodo 
(https://zenodo.org/uploads/11490460) 
 
 

Methods 
Description of the SUNY NSCLC cohort 
This retrospective institutional cohort was assembled based on the following criteria: primary 
diagnosis of non-small cell lung cancer who were followed at SUNY Upstate for at least a 
minimum of 2 years, and had PD-L1 testing record along with IHC slide availability including 
corresponding H&E slides (n=652 patients, 1329 H&E slides). The query and chart review were 
done using electronic medical records (EMR, EPIC) and pathology information system (Co-Path) 
for abstracting clinico-pathological, treatment and follow-up information. The study was 
reviewed by the ethics committee at SUNY Upstate and considered exempt from IRB oversight. 
The details of the cohort description are provided in Supplementary Table 1. Briefly, 292 (44.8%) 
patients were treated with immunotherapy, and of these patients, 230 had treatment response 
information (partial, complete, stable) as documented radiographically or clinically by the 
treating physician in the patient’s charts (progress notes, EPIC). More specifically, the responders 
were defined as patients that exhibited a partial, complete, or stable disease without 
experiencing any recurrence or death for at least 6 months since the start of ICI treatment. Non-
responders were defined as patients who exhibited progressive disease or death within 6 months 
since the start of ICI treatment. Overall survival (OS) of patients was defined as the time from the 
date of diagnosis until death from any cause. Patients who were alive at the last follow-up were 
censored for overall survival analysis. Progression-free survival (PFS) of patients receiving 
checkpoint inhibitor treatment was defined as the time interval from immune checkpoint 
inhibitor start until progression or death. Patients who were alive without disease progression at 
their last follow-up were censored for PFS.  
 
Specimen availability, immunohistochemical analysis and slide scanning  
Briefly, from 652 patients, 445 had tumor specimens available from primary disease sites 
(biopsy=398, resection=47) and 207 from metastatic sites (biopsy=169, resection=35). Briefly, 
serial immunostaining was done on four-micrometer-thick freshly cut serial sections using 
archived FFPE blocks of surgically resected specimens from 82 cases diagnosed with NSCLC (47 
primary sites, 35 metastatic sites). The following biomarker panel was used for immune (CD3, 
CD20, CD4, CD8, CD163, FOXP3), cancer-specific (TTF-1, P40) and epithelial markers (Pac-CK). The 
staining was performed in a CLIA-certified clinical pathology lab using an automated 
immunostainer BenchMark Ultra (Roche Diagnostics, Germany) at SUNY Upstate Medical 
University. For pretreatment, antibody detection and counterstaining, the following reagents 
were used: ULTRA CC1 (Cat #950-124), UltraView DAB (Cat. 760-500), UltraView Red (Cat # 760-
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501) and Hematoxylin (Cat. 760-2021) according to the manufacturer's instructions (Ventana 
Medical Systems; Roche Diagnostics, Germany). The details of the primary and secondary 
antibodies, antigen retrieval conditions, as well as detection methods are listed in 
Supplementary Table 2. PD-L1-stained slides (clone 22C3 PharmDx, Dako), along with negative 
controls and corresponding H&E of 406 patients, were requested from LabCorp and the rest (n= 
246 patients) were obtained from the local pathology archives at SUNY Upstate Medical 
University. Glass slides were digitized using an Aperio AT2 Dx scanner (Leica Biosystems, CA, USA) 
at 40x magnification at the Pathology Research Core at SUNY Upstate. PD-L1 manual scoring was 
performed by expert pathologists using an FDA-approved assay and scoring guidelines at 
LabCorp. Tumor proportion score (TPS) was calculated as the % of viable positive tumor cells/all 
tumor cells, where positivity was defined as partial and/or complete membrane staining at any 
intensity (>1%) in tumor cells. PD-L1 quantification was categorized into clinically relevant groups 
as approved by the FDA: <1% (absent), 1-49% (low), and ≥50% (high).  
 
Description of Pre-processing Steps for Whole Slide H&E images 
All WSI in the experiments were first preprocessed to mask out the tumor tissue from background 
using RGB to HSV color transformation, median blurring and Otsu thresholding51. Following tissue 
segmentation, each WSI was split into image tiles of physical size 256µm x 256µm (i.e 512 x512 
pixels at 20x magnification). Each whole slide image tile with an overlap >25% with the tumor 
tissue was stain normalized using the Macenco algorithm52 and scaled to have 0 mean pixel 
intensity and standard deviation of 1 prior to being fed as input to an open-source foundation 
model—CTransPath26, RetCCL30 or UNI25—which learns to extract informative histopathologic 
features from each tile. CTransPath model consists of a convolutional neural network (CNN) and 
a multi-scale Swin Transformer architecture as its backbone, RetCCL uses a CNN-based 
architecture, and UNI implements a vision transformer (ViT). All foundation models were pre-
trained self-supervised learning; CTransPath and RetCCL were pretrained on ~30,000 WSIs, while 
UNI was pretrained on ~100,000 WSIs. Feature extraction from each pretrained foundation 
model results in a feature matrix of shape (n x 768) for CTransPath, (n x 2048) for RetCCL, and (n 
x 1024) for UNI per patient, where n represents the number of total number image tiles derived 
from WSI of each patient.  
 
Experimental Setup and Implementation Details of HistoTME 
HistoTME was trained using matched patient-level bulk RNA sequencing and whole slide imaging 
data of 865 patients (955 WSIs) from the TCGA cohort and validated on patient-level bulk RNA 
sequencing and whole slide imaging data of 333 patients (1501 WSIs) from the CPTAC cohort. 
Pre-processed bulk RNA sequencing data (gene level TPM counts) from each patient were 
downloaded from NCI Genomic Data Commons and further analyzed using the bioinformatics 
pipeline previously published by Bagaev et al to calculate the average normalized expression of 
distinct functional gene sets32, referred to as TME signatures, which comprehensively capture 
TME composition and its various functional characteristics. 
 
For each patient, histopathologic features were extracted from WSI tiles using one of the three 
foundation models described above. WSI tile-level features were then concatenated together 
into a single “bag-of-features” representation to facilitate weakly supervised regression, using 
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the attention-based multiple instance learning (AB-MIL) method proposed by Ilse et al33. The AB-
MIL model consists of a learnable attention module, which assigns a weight, commonly referred 
to as attention, to each tile, and a feature aggregation module, which calculates the weighted 
sum of features across all tiles. This results in a single patient-level representation, summarizing 
key histopathological characteristics of the TME.  The output of the feature aggregation module 
is then fed to a multilayer perceptron (MLP) module, which learns to predict the expression of a 
specific TME signature (single task) or multiple functionally related TME signatures (multi-task) 
as established previously by Ayers et al31 and Bagaev et al32. The AB-MIL model was trained with 
the AdamW optimizer53 and Huber loss function with delta set to one, which mitigates overfitting 
of model predictions to outliers by balancing the mean squared error and mean absolute error 
together, defined as follows:  

𝐿(𝑦, 𝑓(𝑥))  =  {

1

2
(𝑦 − 𝑓(𝑥))2

𝛿|𝑦 − 𝑓(𝑥)| −
1

2
𝛿2

 
𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤  𝛿

 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
The learning rate was set to 1x10-4 with a weight decay of 1x10-4.  Batch size was set to 1 with 
gradient accumulation for 8 batches. Overall, for each model benchmarked in this study, training 
was done for 40 epochs with early stopping criteria of 10 consecutive epochs with no 
improvement in validation loss.  
 
After completion of training, the Pearson correlation metric was utilized to evaluate accuracy of 
predictions of each model on the independent validation set (CPTAC-NSCLC). 95% confidence 
intervals (CI) of the Pearson correlation metric were estimated through 1000 bootstrapping 
iterations using the SciPy package54. The model achieving the highest Pearson correlation 
coefficients, on average, was eventually selected for external testing and determining ICI efficacy. 
All AI models were developed using open source PyTorch version 2.1.055. 
 
The external test cohort consisted of serial H&E and multiplex IHC sections of surgically resected 
tumors from 82 NSCLC patients (47 primary tumors, 35 metastases) enrolled at SUNY Upstate 
Medical University (See cohort description above).  The best model, as determined from the 
benchmarking experiments on the CPTAC validation set, was applied to this test cohort to 
estimate the expression of T cell, B cell and Macrophage signatures. These expression predictions 
were then compared against the actual cellular abundances of respective cell types from 
corresponding IHC slides, using both Pearson and Spearman correlation metrics given the 
different scales of quantification.  Cellular abundances of T cells (CD4, CD8), B cells (CD20) and 
Macrophages (CD163) were estimated from corresponding IHC stains using an open-source cell 
counting software QuPath (v0.5.0)56. Specifically, for each whole-slide IHC image, the tumor 
tissue was manually segmented and separated from the background. Following manual 
segmentation, a standard pipeline of stain deconvolution and positive cell segmentation was 
implemented to quantify the cell type abundance, defined as the total number of marker-positive 
cells per mm2 (https://qupath.readthedocs.io/en/stable/docs/tutorials/cell_detection.html).  
Three patients from this test cohort contained surgical resections from lymph-node metastases 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308696doi: medRxiv preprint 

https://qupath.readthedocs.io/en/stable/docs/tutorials/cell_detection.html
https://doi.org/10.1101/2024.06.11.24308696
http://creativecommons.org/licenses/by-nc-nd/4.0/


with an extremely high number of immune cells and were excluded from correlation calculations, 
to avoid reporting inflated accuracies. 
 
Predicting TME status using HistoTME 
K means clustering algorithm was utilized to cluster patients from the TCGA and CPTAC-NSCLC 
cohorts into distinct TME subtypes based on HistoTME-predicted microenvironment signatures. 
Optimal number of clusters for K means clustering was determined using the average silhouette 
score metric (Supplementary Figure 4), which revealed 2 distinct TME subtypes. Finally, a 
random forest classification model was trained on the clustered data to enable classification of 
individual patients from the SUNY cohort into distinct TME subtypes. To mitigate issues arising 
from data distribution shifts across cohorts, all predicted signature expression values were 
further scaled by their respective dataset-specific means and standard deviations prior to the 
development of the TME subtype classification model. 
 
Prediction of ICI Response Utilizing HistoTME-derived microenvironment signatures 
Training and test sets were derived from 230 NSCLC patients with matched whole slide imaging 
data and treatment response labels as described above for supervised machine learning analysis 
using a stratified random splitting strategy (70% train, 30% test) implemented in scikit-learn 
package57. A total of 161 patients (84 responders, 77 non responders) were assigned to be part 
of the IO training set and 69 patients (35 responders, 34 non responders) were assigned to be 
part of the IO test set. A supervised machine learning model was trained to predict 
immunotherapy response using data from the IO training set. The model takes as input the 30 
HistoTME predicted microenvironment signatures. In addition, 1740 interaction features were 
engineered by taking the sum, difference, product, and quotient of each pair of TME signatures. 
Since HistoTME signatures include negative and positive values, we take the exponent of each 
signature prior to computing the product and quotient to maintain monotonic relationships and 
preserve interpretability. A Random forest feature selection approach was used to select the top 
k most important features predictive of ICI response from the training set. A gradient-boosted 
decision tree model,  XGBoost58, was trained using these selected features to predict ICI 
response. To identify the best set features for ICI response prediction, we utilized a 5-fold cross-
validation strategy on the training data. Here, 80% of the training set was randomly allocated for 
model training, while the remaining 20% of the training set was reserved for validation purposes. 
A separate cross-validation iteration was conducted for each set of k features, and the number 
of boosting rounds was selected to optimize two metrics (minimize logistic loss and maximize 
AUROC) during cross-validation. Early stopping was set to 100 to select boosting rounds, where 
additional boosting rounds are not created if the metric does not improve after 100 rounds. The 
set of features that maximized the cross-validation AUROC was chosen as the final set of features. 
These features were then utilized along with XGBoost to train the final model on the entire 
training set. XGBoost learning rate was selected at 0.1, gamma was set to 0.1 to reduce 
overfitting, and the number of boosting rounds was set to 35 based on cross-validation. SHAP 
(Shapley Additive exPlanations) was used to interpret the output of the XGBoost model and 
estimate contribution of each feature40. 
 
Additional Analyses and Statistical Tests 
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The Wilcoxon ranked sum test was used to determine the significance of differences in cellular 
abundances, as inferred from IHC, between the two predicted TME subtypes. The log-rank test 
was used to evaluate the prognostic significance of HistoTME in predicting PFS and OS. Response 
prediction was evaluated by AUROC. 95% Confidence intervals for AUROC were computed by the 
DeLong approach59. The optimal cutpoint of the ROC curve was chosen at the threshold that 
maximized the Youden index (J)60. 95% confidence intervals of precision, recall, and positive 
predicted value of the response predictions were calculated using exact binomial confidence 
limits. Kaplan-Meier survival curves were used to visualize the differences in the OS and PFS of 
AI-predicted responders and non-responders. Hazard ratios between survival groups with 95% 
CIs were calculated using a univariate Cox proportional hazards regression model. All statistical 
tests were two-sided, with a p-value less than 0.05 considered statistically significant. All 
statistical analyses were performed in R version 4.3.1 unless otherwise specified. 
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Main Figures 
  

 
Figure 1: (A-B) Overview of Study Design and pipeline of HistoTME. Each Whole Slide Image is 
tessellated into smaller tiles and preprocessed by a pretrained digital pathology foundation 
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model to extract meaningful tile embeddings. The tile embeddings generated by the foundation 
model are then provided as input to an attention-based multiple instance learning (AB-MIL) 
module followed by a multi-layer perceptron head (MLP), which learns to predict expression 
levels to 30 tumor microenvironment-related molecular signatures. Overall, to develop 
HistoTME we experiment with three open-source foundation models - CTransPath, RetCCL, and 
UNI21,22,26  - and two configurations of AB-MIL: single task AB-MIL, where the predictions of 
each signature are optimized separately, and multi-task AB-MIL, where predictions of 
functionally related signatures are jointly optimized. The signature prediction performance of 
each foundation model coupled with each configuration of AB-MIL is shown on held out CPTAC 
validation data in Supplementary Figure 3. Overall, the UNI foundation model + multitask AB-
MIL produces the most accurate predictions and is hence chosen as the final version of 
HistoTME (C) Pearson correlations between the ground truth expression levels of each patient 
derived from bulk transcriptomics and predicted expression levels of each patient derived from 
the final version of HistoTME (UNI+multi-task AB-MIL) on the held out CPTAC validation cohort. 
(D) Pearson and Spearman correlations between the cell type abundance of each patient, 
defined as the number of marker positive cells per mm2 from immunohistochemistry (IHC) 
slides, and the predicted cell type-specific signature expression levels of each patient derived 
from final version of HistoTME (UNI+multitask AB-MIL) is shown on the external SUNY Upstate 
test cohort. Error bars represent the 95% confidence intervals. Cell type abundances were 
estimated from whole slide immunohistochemistry images using QuPath v0.5.0 cell detection 
and classification algorithms with default parameter settings. TME = tumor microenvironment; 
LUAD = lung adenocarcinoma; LUSC = lung squamous cell carcinoma; MLP = multilayer 
perceptron 
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Figure 2 (A): Overview of the computational pipeline to classify patients into distinct clusters 
based on their H&E-predicted TME composition. H&E stained digitized tumor samples from 
TCGA+CPTAC are processed by HistoTME and subsequently clustered into two clusters based on 
partition around medoid (PAM) clustering and a Random Forest classification model that is 
trained on cluster membership data (B) 3D PCA plot visualizing the two distinct clusters of TCGA 
+ CPTAC NSCLC patients: Immune Inflamed and Immune Desert, based on their HistoTME-
inferred TME profiles. (C) Heatmap depicting the H&E-predicted TME composition and clinical 
attributes of NSCLC patients from the SUNY cohort. Patients were classified into Immune 
Inflamed cluster or Immune Desert cluster using a two class classification model (Random 
Forest) trained on TCGA+CPTAC data. (D) Random forrest-derived feature importance rankings 
of TME signatures driving the distinction between the Immune Inflamed and Immune Desert 
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cluster.(E) Immunohistochemistry-derived T cell, B cell and Macrophage abundances, defined 
as number of marker positive cells per mm2 , in cases belonging to the immune-inflamed or 
immune desert cluster. Cell type abundances were quantified from whole slide 
immunohistochemistry images using QuPath v0.5.0 positive cell detection and quantification 
pipline. Statistical significance between groups was determined by non-parametric Wilox rank 
sum test (***: p-value < 0.001, ****: p-value < 0.0001)  
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Figure 3 (A-B): Low magnification view of a primary NSCLC tumor resection sample and its 
predicted TME signature profile. (C-E) Matched whole slide immunohistochemistry images of 
the same tumor sample dual stained for CD4 (brown)+CD8 (magenta), CD3 
(brown)+CD20(magenta), and P40 (brown)+CD163 (magenta) markers respectively. (F) 
HistoTME generated attention maps for each attention head. Below each whole slide attention 
map are 4 high magnification image tiles (50x50 µm) randomly sampled from high attention 
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areas. Supplementary Figure 6 shows another related example along with higher magnification 
image tiles randomly sampled from high attention areas. 
 
 
 

 
Figure 4 (A-B): Low magnification view of a metastatic NSCLC tumor resection sample and its 
predicted TME signature profile. (C-E) Matched whole slide immunohistochemistry images of 
the same tumor sample dual stained for CD4 (brown)+CD8 (magenta)markers, CD3 
(brown)+CD20(magenta) markers, and P40 (brown)+CD163 (magenta) markers respectively. (F) 
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HistoTME generated attention maps for each attention head. Below each whole slide attention 
map are 4 representative high magnification image tiles (50x50 µm) sampled from high 
attention areas. Supplementary Figure 7 shows another related example along with higher 
magnification image tiles randomly sampled from high attention areas. 
 

 
 
Figure 5: Association between HistoTME-based TME classification and overall survival outcomes 
of SUNY NSCLC patients treated with first-line anti-PD1/PD-L1 therapy (first-line IO patients). 

(A) Kaplan Meier plot depicting overall survival−defined as time from date of diagnosis to date 

of death −of patients that received first-line anti-PD1/PD-L1 treatment (B) Kaplan Meier plot 
depicting overall survival of SUNY patients that received first-line anti-PD1/PD-L1 therapy 
stratified by PD-L1 IHC expression (C-E) Kaplan Meier plots depicting overall survival of first-line 
patients in PD-L1 negative (TPS < 1%), PD-L1 low (TPS = 1-49%) and PD-L1 high (>= 50%), cases. 
Significance of survival differences between distinct subgroups of patients was determined by 
the log-rank test. 
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Figure 6: (A) Model development for response prediction: 1) HistoTME predictions are 
engineered into new features by taking pairwise sums, differences, products, and quotients. 2) 
random forest feature selection. 3) XGBoost trained for response prediction. (B) Feature 
network pairwise interactions of 18 selected features. Arrow endpoints denote the signature 
subtracted or divided from the signature at the start point. (C) Test set receiver operating 
characteristic (ROC) curve of the model trained on engineered features or TME signatures 
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alone. Optimal cut point shown based on the Youden index. Kaplan Meier plot depicting overall 
survival of the test set stratified by AI response prediction for (D) all patients that received anti-
PD1/PD-L1 treatment and (E) first-line immunotherapy (IO)-treated patients. (F) Shapley 
additive explanation (SHAP) summary plot ordered by SHAP importance. 
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Supplementary Tables 
 
 
Supplementary Table 1 Summary of the clinical demographics of the SUNY Upstate NSCLC 
cohort. A total of 652 patients with whole slide imaging and/or clinical follow-up data were 
analyzed in this study. PD-L1 manual scoring was performed by expert pathologists using an 
FDA-approved assay and scoring guidelines at LabCorp. In an event where multiple biopsies 
were taken from a single patient, the overall PD-L1 score assigned to that patient was 
maximum of PD-L1 scores assigned to each biopsy. The full clinical table is accessible from the 
GitHub repository. 
 
Supplementary Table 2 Overview of reagents used for serial immunohistochemical staining of 
surgical resection specimens from the SUNY Upstate NSCLC cohort. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Overview of the study design. To train HistoTME matched whole slide 
imaging and bulk RNA sequencing data from 865 patients from TCGA was utilized. To validate 
HistoTME matched whole slide imaging and bulk RNA sequencing data from 333 patients from 
CPTAC was utilized. For testing HistoTME predictions, matched whole slide H&E imaging and 
immunohistochemistry imaging data from surgical resection specimens of 82 patients from 
SUNY Upstate Medical University was utilized. For evaluating ICI efficacy surgical resection or 
needle biopsy specimens from 290 patients of the test cohort with matched clinical follow-up 
data following ICI treatment was utilized. 
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Supplementary Figure 2: (A) Scatter plots between the observed values derived from 
transcriptomics and HistoTME predicted values is shown at the patient level on the CPTAC 
validation cohort (N=333). (B) Scatter plots between the cell type density, defined as the 
number of marker positive cells per mm2 from the immunohistochemistry (IHC) stain, and 
HistoTME predicted values is shown at the patient level on the external SUNY cohort (N=79). 
Cell type densities were quantified from whole slide immunohistochemistry images using 
QuPath v0.5.0 cell detection and classification algorithms and default parameters. 
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Supplemental Figure 3: Pearson correlation between the observed values derived from 
transcriptomics and each model configuration’s predicted values is shown at the patient level 
on the external CPTAC validation cohort for antitumor, protumor, angiogenesis/stromal, and 
cancer/malignant cell-related signatures. Model configurations consisted of single-task and 
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multi-task AB-MIL with CTransPath, RetCCL, or UNI as the feature extractor. Error bars 
represent the 95% confidence intervals. The mean, minimum, and maximum for each model 
across all TME signatures is shown in the table. 
 
 
 
 
 

 
Supplementary Figure 4: Silhouette score analysis to determine the optimal number of clusters 
from K means clustering. This analysis reveals K= 2 clusters maximize the average silhouette 
width. The input to the clustering algorithm were HistoTME-predicted expression of 30 TME 
signatures for TCGA+CPTAC-NSCLC patients  
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Supplementary Figure 5: Distribution of pairwise Pearson correlations between attention maps 
for antitumor, protumor, angiogenesis/stroma, and malignant cell signatures, calculated on the 
SUNY cohort (652 patients, 1329 slides). Each data point in the distribution represents a single 
whole slide image. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2024. ; https://doi.org/10.1101/2024.06.11.24308696doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.11.24308696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 6: HistoTME-generated attention maps for a case predicted to have an 
Immune Inflamed TME.  (A) attention maps highlighting regions of interest corresponding to 
antitumor immune signatures (B) attention maps highlighting regions of interest corresponding 
to protumor immune signatures. (C) attention maps highlighting regions of interest 
corresponding to angiogenesis/stroma-associated signatures (D) attention maps highlighting 
regions of interest corresponding to malignant cell-associated signatures. 
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Supplementary Figure 7: HistoTME-generated attention maps for a case predicted to have an 
Immune Desert TME.  (A) attention maps highlighting regions of interest corresponding to 
antitumor immune signatures (B) attention maps highlighting regions of interest corresponding 
to protumor immune signatures. (C) attention maps highlighting regions of interest 
corresponding to angiogenesis/stroma-associated signatures (D) attention maps highlighting 
regions of interest corresponding to malignant cell-associated signatures. 
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Supplementary Figure 8: Association between HistoTME-based TME classification and overall 
survival outcomes of SUNY NSCLC patients treated with first-line ICI as combination therapy 
(first-line IO + Chemo) and monotherapy (IO monotherapy). (A) Kaplan Meier plot depicting 

overall survival−defined as time from date of diagnosis to date of death −of patients that 
received first-line IO + chemo (B) Kaplan Meier plot depicting overall survival of SUNY patients 
that received first-line IO monotherapy. Significance of survival differences between distinct 
subgroups of patients was determined by the log-rank test. 
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Supplementary Figure 9: Overall survival (OS) of all immunotherapy (IO)-treated patients (A) 
stratified by Immune Inflamed and Immune Desert TME subtype (B) stratified by PD-L1 
expression. Statistical significance between groups was estimated using the log-rank test. 
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Supplementary Figure 10: (A-C) Progression-free survival (PFS) of (A) first-line immunotherapy 
(IO)-treated, (B) second-line IO-treated, or (C) subsequent-line IO-treated patients in the SUNY 
Upstate cohort stratified by TME subtype. (D-F) Progression-free survival (PFS) of (D) first-line 
immunotherapy (IO)-treated, (E) second-line IO-treated, or (F) subsequent-line IO-treated 
patients in the SUNY Upstate cohort stratified by PD-L1 expression. Statistical significance 
between groups was estimated using the log-rank test. 
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Supplementary Figure 11: Random forest feature selection that maximized 5-fold cross-
validation AUROC when XGBoost was trained to predict ICI response using (A) pairwise 
engineered TME signature interactions and (B) TME signatures alone. The number of features 
where AUROC was maximized was used. 
 

 
Supplementary Figure 12: Progression-free survival (PFS) of (A) first-line immunotherapy (IO)-
treated, (B) second-line IO-treated, or (C) subsequent-line IO-treated patients in the SUNY held-
out test set (N=69) predicted to be responders or nonresponders. Statistical significance 
between groups was estimated using the log-rank test. 
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