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Abstract We extend Bayesian Logistic Regression to model the dose-toxicity re-
lationship in the setting of phase I dose-escalation/ dose-finding trials for cancer
immunotherapies. Immunotherapy drugs are associated with Cytokine Release Syn-
drome, a systemic immune system reaction that can be mitigated when initial lower
doses of the drug are administered to generate immune tolerance. This changes the
classic dose-finding problem of determining an optimal safe dose, to a more complex
problem where the search is for both the optimal safe dose and the dose regimen that
allows patients to quickly and safely reach that dose without CRS. As part of solving
this methodological challenge, we show how to jointly model CRS and non-CRS
toxicities, which have distinct mechanisms, while controlling for the overall toxicity
rate to make dose-escalation decisions.

1 Introduction

The goals of a phase I, first-in-human, dose-finding clinical trial are to collect
information on the safety and tolerability of a new drug, identify the maximum
tolerated dose (MTD), and identify one or more doses to assess in a phase II study
(recommend phase II doses or RP2D)[5].

The MTD is the highest dose which can be administered to humans which best
balances toxicity (i.e. probability that a subject experiences a serious adverse event,
also called a dose-limiting toxicity or DLT). Generally, both drug efficacy and drug
toxicity increase with dose. In order to find the MTD, the general approach of a phase
I trial is to start at a low dose and carefully escalate to higher doses in subsequent
groups of participants (usually size 3-6). As the dose increases, DLTs will start to
occur, and at some point we will stop increasing the dose when we conclude that the
toxicity of any further increase will be too high.
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The use of Bayesian response adaptive models for phase 1 studies has been ad-
vocated by the European Medicines Agency adopted guideline on small populations
[3] and by Rogatko and colleagues [1, 7] and was one of the key elements of the
FDA’s Critical Path Initiative.

The Bayesian Logistic Regression Model (BLRM) using Escalation with Over-
dose Control (EWOC) is an increasingly common methodology used to carry out
dose escalation [1]. It performs significantly better than the widely used 3+3 design,
showing better targeting rates ( 30% in the 3+3 vs. 60% in the BLRM) with fewer
patients treated above the MTD. Additionally, the BLRM considers the previously
observed data and provides added flexibility as it allows cohorts of different sizes
and escalation to intermediate dose levels [6].

The advent of novel treatments in oncology has lead to the development of multiple
immuno-therapeutic agents whose action is to stimulate the immune system to act
against the tumour cells. An import toxicity caused by these drugs is Cytokine
Release Syndrome (CRS), a systemic inflammatory reaction that occurs when many
immune cells are activated and release large amount of cytokines into the body[4].

CRS is more likely to occur at lower doses in naı̈ve patients vs. patients whose
immune system has already been primed to the drug. To avoid CRS therefore,
subjects are first exposed to lower doses of a drug compound in preparation to
receiving the target dose. As such, modelling dose-toxicity in this setting poses three
novel problems:

1. Instead of modelling a single dose level, we need to model a dose regimen whereby
patients receive several lower doses of the drug before reaching the target dose.
The goal is now to find the maximum tolerated dose regimen (MTD-R), which
is a much more challenging problem than finding the MTD because we need to
consider multiple additional factors including the number of prior doses, and the
shape of the dosing curve.

2. To capture the ameliorating effects of exposing subject to preparatory lower doses,
we need to model both CRS toxicities and non-CRS toxicities, and then combine
these models to estimate the joint posterior probability of toxicity.

3. In case of toxicity, we need to identify the step(s) in the dose regimen that need(s)
adjustment, to better drive dose regimen-escalation decisions during the phase I
trial.

This work focusses on extending the BLRM to accommodate modelling of both
CRS and non-CRS toxicities in dose regimen-finding phase I trials for immunother-
apy drugs. Our approach builds on an adaptation of the methodology proposed by
Gerard et al. [2].

2 Models

The standard BLRM defines the probability of DLT, 𝑃(𝐷𝐿𝑇) at dose 𝐷 as:
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Modifying the BLRM for Cytokine Release Syndrome 3

𝑃(𝐷𝐿𝑇) = logit−1 (log(𝛼) + 𝛽 ∗ log(𝐷/𝐷∗)), (1)

Where 𝛼 and 𝛽 are the parameters of the model and 𝐷∗ is the reference dose such
that the odds of DLT at dose 𝐷∗ are equal to 𝛼.

At each stage in a standard phase I trial, the posterior distributions of parameters
𝛼 and 𝛽 would be updated via Bayes’ Rule based on the incidence of DLTs observed
in subjects thus far. These posteriors would then be used to generate the probability
of 𝑃(𝐷𝐿𝑇), i.e. the posterior probability density over possible true DLT rates at the
next dose, or doses, under consideration. Doses can then be described as being in the
underdose, overdose, or target dose range. Using thresholds often used in Oncology
trials, these ranges are as follows:

• Underdose: Probability 𝑃(𝐷𝐿𝑇) < 0.16 is greater than 0.5, and not
• Target dose: Probability 0.16 <= 𝑃(𝐷𝐿𝑇) < 0.33 is greater than 0.5, and not
• Overdose: Probability 𝑃(𝐷𝐿𝑇) >= 0.33 is greater than 0.25

If the current dose satisfies the requirements for target dose, and the next possible
dose is an overdose, then escalation stops and the dose is declared the MTD. If the
next dose is an overdose, but the current dose does not satisfy the condition to be the
target dose, the dose might still be considered as the RP2D. Alternatively, escalation
to a slightly higher, intermediate dose level may be tested to accurately ascertain the
MTD.

2.1 Modified BLRM

In the context of CRS, to find the maximum tolerable dose regimen (MTD-R), rather
than modelling simply the relationship between dose and response, we need to model
the relationship between a vector of doses, and response.

Our approach is to track two distinct types of adverse events - those due to
CRS, and those which are due to other types of toxicity (non-CRS adverse events).
The probabilities of each type of event are modelled separately, and assumed to be
independent.

Consider a dose regimen which includes an escalation period and a steady state
period. For example, a four-step regimen might include the doses 5, 10, 25, 50, 50,
50 at intervals of several days to complete a cycle whose ‘steady state‘ or target dose
dose is 50𝜇g. We call the period between two doses a ’stage’; for example, the above
is a four-step dose regimen (four distinct doses), but has 6 stages (the final stage will
extend from the final dose until end of the safety follow-up).

As with the standard approach, the goal is to generate the posterior probability of
𝑃(𝐷𝐿𝑇) for any dose regimen, and determine if this regimen corresponds to a target
dose, underdose, or overdose. Figure 1 plots example distributions after 0 out of 3
subjects experienced a DLT when given the first regimen, and 1 out of 4 subjects
experienced a DLT when given the second dosing regimen. Regimens are indexed
by their steady state dose; the third and next regimen to be considered in Figure 1 is
the four-step regimen described above, with a steady state dose of 50𝜇g.
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2.1.1 CRS Model

We assume that for each stage 𝑖, the principle positive correlate with probability of
CRS in stage 𝑖 is 𝐶𝑚𝑎𝑥,𝑖 , the maximum concentration reached after dose adminis-
tration. Whilst we lack the pharmacokinetic data to capture this directly (this data
is seldom available at the time of dose escalation), we will take the approach of
approximating it using the dose at the start of stage 𝑖, 𝐷𝑖 , i.e.

𝐶𝑚𝑎𝑥,𝑖 ≈ 𝐷𝑖 (2)

This is counter-balanced by the exposure to the drug prior to stage 𝑖 (since
exposure decreases the likelihood of CRS). We approximate this exposure using the
‘area under the dose’, AUD𝑖 ,

AUD𝑖 =

𝑘=(𝑖−1)∑︁
𝑘=0

𝑇𝑘 ∗ 𝐷𝑘 (3)

where 𝑇𝑘 is the length of stage 𝑘 .
For any stage 𝑖 we define the probability that a CRS-related DLT occurs within

that stage, 𝑃(CRS𝑖) as

Fig. 1 Posterior densities after 1 DLT observed out of 4 subjects in the second regimen, and 0
DLTs observed out of 3 subjects in the first regimen. Red colour indicates that the probability mass
>= 0.33 is > 0.25.
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𝑃(CRS𝑖) = logit−1
(

log(𝛼1𝑖) + 𝛾1𝑖 ∗ log(𝐷𝑖/𝐷∗
𝑖 ) − 𝛽1𝑖 ∗ log(AUD𝑖/AUD∗

𝑖 )
)

(4)

Where AUD∗
𝑖 is the AUD for the 𝑖th stage of a selected reference regimen, and

𝐷∗
𝑖

is the dose for the 𝑖th stage of that reference regimen. Note that it is possible
to choose references from different dose regimens - however, for simplicity, we will
assume here that a single dose regimen is chosen as reference, and used as such
across all stages. If this assumption is not kept, then 𝛼 no longer has a particularly
informative interpretation.

The probability that no CRS occurs in a subject is the joint probability of
CRS not occuring in each stage, which assuming 𝑆 stages, we can write as
𝑃(no CRS1, ..., no CRS𝑖 , ..., no CRS𝑆).

Firstly, we note that 𝑃(no CRS𝑖) is independent of all 𝑃(no CRS 𝑗 ), 𝑗 > 𝑖. This
follows from the direction of causality.

Secondly, we note that 𝑃(no CRS𝑖) ⊥⊥ 𝑃(no CRS(𝑖−1) |AUD𝑖), i.e. that the prob-
ability of CRS/no CRS for stage 𝑖 is conditionally independent of the probability of
CRS/no CRS for the previous stage (𝑖−1) given the dose exposure up until the end of
that previous stage. This follows from the fact that our model’s calculation of AUD𝑖

includes all components contributing to the probability of CRS at the previous stage
(𝐷 (𝑖−1) and AUD(𝑖−1) ). Given this Markov property for dose stages, it follows that
𝑃(no CRS𝑖) ⊥⊥ 𝑃(no CRS 𝑗 |AUD𝑖), for all 𝑗 < 𝑖.

Hence we can write

𝑃(no CRS1, ..., no CRS𝑖 , ..., no CRS𝑆) =
𝑖=𝑆∏
𝑖=0

𝑃(no CRS𝑖) (5)

=

𝑖=𝑆∏
𝑖=0

(1 − 𝑃(CRS𝑖)) (6)

which is the probability that no CRS occurs. As CRS either occurs or does not
occur, the probability that CRS occurs is simply

𝑃(CRS) = 1 −
𝑖=𝑆∏
𝑖=0

(1 − 𝑃(CRS𝑖)), (7)

which completes our model of CRS related DLTs.

2.1.2 Non-CRS Model

This model is similar to the standard BLRM, with the exception that it uses uses
the cumulative dose over the regimen, 𝐷𝑐𝑢𝑚, to predict the probability that any
other DLT occurs. Note that this model does not consider where DLTs fall in terms
of stages, but rather estimates the probability of a non-CRS DLT, 𝑃(non-CRS),
occuring at any time. We write
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𝑃(non-CRS) = logit−1 (log(𝛼2) + 𝛿2 ∗ log(𝐷𝑐𝑢𝑚/𝐷∗
𝑐𝑢𝑚)), (8)

which completes our model of non-CRS related DLTs.

2.1.3 Joint Model

The probability of any DLT occuring is the probability that either a CRS or non-CRS
DLT occurs. This is 1 minus the probability that neither a CRS or non-CRS DLT
occurs. We assume that CRS and non-CRS DLTs, as modelled, are independent.
Hence

𝑃(DLT) = 1 − 𝑃(no CRS) ∗ 𝑃(no non-CRS)

= 1 −
( 𝑖=𝑆∏
𝑖=0

(1 − 𝑃(CRS𝑖)) ∗
(
1 − logit−1 (log(𝛼2) + 𝛿2 ∗ log(𝐷𝑐𝑢𝑚/𝐷∗

𝑐𝑢𝑚)
) )

(9)
This completes our joint model of DLTs.

2.2 Prior Elicitation

In the context of Bayesian analysis, it is necessary to specify priors. As a phase
I trial generally marks the first introduction of the study drug to humans, there
is little information about the dose-tolerance relationship for CRS (characterised
by parameters [𝛼1𝑖], [𝛽1𝑖], [𝛾1𝑖], 𝑖 ∈ {1, ..., 𝑆}) and non-CRS DLTs (parameters 𝛼2,
𝛿2). The uncertainty about this relationship is therefore specified as a set of minimally
informative priors.

The priors are defined such that for the prospective dose regimens defined at the
start of the trial we expect to have minimal toxicity at the lowest dose regimen, and
some toxicity (e.g. 𝑃(𝐷𝐿𝑇) ≈ 25%) at the highest regimen.

The prospective dose regimens are selected by pharmacokinetic and clinical
experts based on available data from animal studies and other sources of information
such that the first dose regimen should be safe, but by the highest regimen we should
have encountered some DLTs. If no DLTs have been encountered by the end of the
study, but efficacy is still increasing with dose, then this indicates that too many
subjects have been given low-efficacy doses, and the escalation should have been
more rapid.

Setting our priors such that we expect some toxicity in the higher regimens
reflects our belief that the dose regimens have been correctly chosen such that we
will escalate from a safe dose to a dose which begins to produce DLTs.
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2.2.1 Standard BLRM

In the context of the standard BLRM, for a range of prospective doses from 𝐷1
to 𝐷𝑁 , we might assume that 𝑃(𝐷𝐿𝑇 |𝐷1) = 0.01 and 𝑃(𝐷𝐿𝑇 |𝐷𝑁 ) = 0.25. The
equation for 𝑃(𝐷𝐿𝑇) for the standard BLRM only has two parameters 𝛼 and 𝛽

(see Equation 1); assuming 𝛼 and 𝛽 are Gaussian distributed we can use these two
assumed toxicities to solve for point estimates for prior means 𝜇𝛼 and 𝜇𝛽 . Setting the
vector of standard deviations [𝜎𝛼, 𝜎𝛽] to reasonably large values, e.g. [2, 1] gives
us a first estimate of the prior.

Following this step, the behaviour of the BLRM with this initial prior estimate is
checked by simulation. Several basic scenarios which might be examined include:

• If no DLTs have been observed to date, the BLRM should always recommend to
escalate (i.e. the next dose under consideration should be estimated to be either
underdose or target dose by the BLRM).

• If 3/3 DLTs are observed at any dose, the BLRM should recommend to de-escalate
the dose (i.e. the current dose and the next dose under consideration should be
estimated to be overdoses), possibly by more than one dose level.

• If 1/3 DLTs or 2/3 DLTs are observed at any dose, the BLRM should recommend
either expansion or de-escalation. Which is appropriate would depend on several
factors such as the relative size of the jump from the previous dose, and would be
subject to the judgment of the expert eliciting the prior.

If the required behaviour is not met, then the prior can be adjusted by changing
the assumed true probability of DLT at 𝐷𝑁 , and re-solving.

2.2.2 Extended BLRM

Rather than two parameters, the extended BLRM has (3 ∗ 𝑆) + 2 parameters. As
such, assuming low toxicity at the starting dose regimen and high toxicity at a final
or high dose regimen will not allow us to estimate the means of the priors for each
parameter (as the matrix of the two equations generated by this assumption will be
non-invertable).

To handle this, we first treat the probability of CRS and non-CRS DLTs separately.
This has the advantage of allowing us some flexibility in the assumed toxicities (for
example, we might expect the probability of DLTs due to non-CRS related causes
to be higher than that of CRS DLTs). As non-CRS DLTs are modelled by only two
parameters, this gives us an initial estimate of the prior for the non-CRS DLT BLRM.

To gain an initial estimate of the prior for the CRS DLT BLRM, our approach
is to assume that the CRS model has the form log(𝛼1𝑖) + 𝛿1𝑖 [log(AUD𝑖/AUD∗

𝑖 ) +
log(𝐷𝑖/𝐷∗

𝑖
)]. We assume that toxicity at the final dose regimen decreases linearly

with stage, and solve the two-point problem for 𝛼 and 𝛿 for each stage. We then set
𝛽1𝑖 = 𝛿1𝑖 − 𝜖𝑀𝑎𝑢𝑑 , and 𝛾1𝑖 = 𝛿1𝑖 + 𝜖𝑀𝐷 , where 𝜖 is some constant (here 0.01), and
𝑀∗∗ is a scaling factor which adjusts 𝜖 roughly by the relative magnitude of mean
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AUD to mean D across all regimens. Again, we assume Gaussian priors with these
point estimates as the means, and wide standard deviations.

Once the initial prior estimates have been established, the priors are adjusted until
the model exhibits satisfactory predicted behaviour as with the standard BLRM.

This approach works well in practice, but is currently an open area of research;
finding a prior which is well behaved is something of an artform: the above approach
to find point estimates of the parameter prior is extremely heuristic, and relies on
the fact that the priors are kept minimally informative by the addition of noise for
its validity. Mixture priors may often be used if there are competing sources of
information, but this adds a further layer of complexity beyond the scope of this
work.

3 Methods

To demonstrate the improved efficacy of the modified BLRM in the setting where
dose regimens are being used in place of single doses, compared with the stan-
dard BRLM, we simulate the operating characteristics of the models across three
scenarios:

1. Priors Correct: In this scenario the priors of the BLRM are correct. The number
of DLTs in a simulated trial are generated by drawing a sample from the prior.
This simulates a scenario where we have elicited priors which reflect the true
dose-tolerance relationship.

2. High Toxicity: The priors of the BLRM are an under-estimate. The number of
DLTs in a simulated trial are generated with probability 125% that of the prior.
This is a scenario where we have elicited priors which consistently under-estimate
the probability of toxicity; the BLRM should swiftly discard its priors in favour
of evidence of high toxicity.

3. Low-High Toxicity: The priors of the BLRM are correct for the first four regi-
mens under consideration. However, in the last three regimens the toxicity spikes
sharply: true probability of DLT for trials simulated for these regimens are 25%
higher than predicted by the prior. This simulates a worst case scenario where
the BLRM has both prior and evidence from lower dose regimens supporting a
particular dose-tolerance relationship, but this does not generalise correctly to
higher dose regimens. The BLRM should quickly adjust its posteriors to reflect
the new evidence at higher doses.

Each scenario assumes that we have pre-selected 7 regimens with increasing dose.
Each regimen has four distinct doses (’steps’) across five stages. Table 1 outlines the
prospective dose regimens used for simulation.

For each scenario, 500 trials were simulated as follows, where 𝐷𝑅𝐶 denotes the
current regimen under consideration:

For each dose regimen 𝐷𝑅 𝑗 , for each scenario, RJAGS was used to draw 10000
samples of 𝑃(non-CRS|𝐷𝑅 𝑗 ) using Equation (8) and Gaussian priors with 𝜇𝛼2, 𝜇𝛿2,
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Algorithm 1 Simulation algorithm for a single trial
1. Set 𝐷𝑅𝐶 = 𝐷𝑅1.
2. Sample CRS and non-CRS DLTs separately from the true scenario distribution, for 3 subjects,
at 𝐷𝑅𝐶 .
3. Using sample data, update BLRM via Bayes’ rule to obtain new posterior;
if 𝐷𝑅𝐶+1 is not an overdose then

set 𝐷𝑅𝐶 = 𝐷𝑅𝐶+1,
go to 2.

else if 𝐷𝑅𝐶+1 is an overdose then
if 𝐷𝑅𝐶 is target dose then

end trial with MTD = 𝐷𝑅𝐶 .
else if 𝐷𝑅𝐶 is underdose then

go to 2.
else if 𝐷𝑅𝐶 is overdose then

check 𝐷𝑅𝐶−1, 𝐷𝑅𝐶−2, etc to find a dose regimen which is not an overdose (𝐹).
if found, set 𝐷𝑅𝐶 = 𝐷𝑅𝐹 and go to 2.
else if not found, end trial with no MTD.

end if
end if

* If in any case a dose regimen does not exist (i.e. 𝐶 − 1 < 1 or 𝐶 + 1 > 7), end trial with no
MTD.
** If in any case 2 would require the recruitment of > 10 subjects to a single dose regimen, end
trial with no MTD.

𝜎𝛼2, 𝜎𝛿2 generated assuming 𝑃(non-CRS|𝐷𝑅1) = 0.05 and 𝑃(non-CRS|𝐷𝑅7) =

0.2.
For each stage 𝑖, for each dose regimen 𝐷𝑅 𝑗 , for each scenario, 10000 sam-

ples were drawn from 𝑃(CRS𝑖 |𝐷𝑅 𝑗 ) using Equation (7) and Gaussian priors
on [𝛼1𝑖], [𝛽1𝑖], [𝛾1𝑖], 𝑖 ∈ {1, ..., 𝑆} generated assuming 𝑃(CRS|𝐷𝑅4) = 0.1 and
𝑃(CRS|𝐷𝑅7) = 0.3 with 𝜖 set to 0.01.

To simulate whether, for a single patient, a CRS DLT occurred at a specific stage
or a non-CRS DLT occurred at any point during a regimen’s administration, a single
sample of 𝑃(non-CRS|𝐷𝑅 𝑗 ) or 𝑃(CRS𝑖 |𝐷𝑅 𝑗 ) was drawn uniformly at random. If
the sample was >= 0.5, DLT occurred, if < 0.5, no DLT occurred. If a CRS DLT
occurs at an early stage (i.e. 𝑖 < 5), the subject is assumed to have withdrawn from
the study, and is not counted for later stages when updating the posterior.

Table 1 Prospective Dose Regimens for simulation. ’DR’ = Dose. All values in 𝜇g.
Day 1 Day 5 Day 10 Day 14 Day 21

DR1 1 2 5 15 15
DR2 3 6 20 75 75
DR3 10 20 50 250 250
DR4 25 50 150 550 550
DR5 25 50 300 1000 1000
DR6 25 50 300 1500 1500
DR7 25 50 300 2850 2850
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The standard BLRM was simulated using both the steady state dose from each
regimen 𝑗 as 𝐷 𝑗 , and the cumulative dose across each regimen 𝑗 as 𝐷 𝑗 . These gave
very similar results: for clarity only the results from the cumulative dose approach
are given.

For the priors to match between the standard BLRM and the extended BLRM,
the extended BLRM prior defined above was used to estimate the overall probability
of DLT at DR1 and DR7 (using Equation 9), and then these estimates were used
to generate point estimates of the means of the priors on 𝛼 and 𝛽 for the standard
BLRM, as described in Section 2.2.1.

4 Results

Table 2 shows the operating characteristics for each of the three scenarios described,
for both the standard BLRM and the modified BLRM. These are the percentage
of trials which either stop with no MTD declared, or which declare an MTD with
the true DLT rate for that dose regimen in either the overdose (0.33-1], target dose
(0.16-0.33], or underdose [0-0.16] ranges.

Table 2 Operating Characteristics of standard BLRM vs CRS BLRM in three scenarios: where the
prior beliefs about toxicity are correct, where the toxicity is higher than expected, and where the
toxicity is as expected for the first few doses, but then increases much more rapidly than predicted.

% Trials Declaring an MTD with
True DLT Rate in % Trials Stopped

Underdose Target Dose Overdose

Scenario BLRM CRS
BLRM BLRM CRS

BLRM BLRM CRS
BLRM BLRM CRS

BLRM

Priors Correct 36.8 15.5 55.5 73.5 2.2 9.9 2.6 1.1
High Toxicity 49.1 8.0 39.4 86.1 5.4 5.7 5.1 0.1
Low-High Toxicity 61.0 17.0 21.2 72.9 15.2 10.1 1.6 0.0

In all three scenarios, the modified BLRM correctly finds the target dose more
often than the standard BLRM - a predicted success rate of over 70% in each case.
The modified BLRM also declares an underdose as MTD less often than the standard
BLRM in each scenario.

However the modified BLRM declares an overly toxic dose MTD more often
than the standard BLRM both when the priors are correct and in the high toxicity
scenario. It is less easily tricked than the standard BLRM by the low-high scenario
however: the standard BLRM struggles in this setting as it tends to either declare
MTD in a toxic setting or de-escalate aggressively and declare MTD with true DLT
rate in the underdose range.
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Overall, these results show that the modified BLRM is better suited than the
standard BLRM to modelling the nuance of a setting where we have to escalate
between dose regimens.

4.1 Real World Use

In a real phase I trial, the BLRM will be used to inform the decisions of a dose-
escalation committee (DEC). This is a decision-making body which meets after each
dose regimen has been tested in a small cohort of subjects to determine whether the
dose regimen should be escalated, expanded, de-escalated, or whether the trial should
discontinued due to safety concerns.

Both the classic BLRM and our modified variant can be updated at each esca-
lation step of the trial, given the data observed, to provide a full posterior over the
dose-response relationship. This means that they can provide estimates of both the
probability of overdose at the next potential dose level, and any intermediate dose
level, allowing the DEC flexibility in its decisions.

One additional advantage of the modified BLRM is that it allows us to dig more
deeply into this posterior: we can split by CRS DLTs versus non-CRS DLTs, and
examine the effect of changing specific parts of the regime on the total posterior.

Fig. 2 Posterior densities (grey) contributing to overall posterior probability (green) of CRS for
DR3.
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Figure 2 shows the contribution to the total posterior for the third regimen from each
pre-steady state regimen stage, for CRS DLTs specifically.

This level of granularity grants the DEC the ability to interrogate alternative
regimens with relative ease. For example, DLTs may have occurred when a regimen
with a large increase in relative dose was introduced.

Consider DR5 in Table 1. This regimen includes a relative increase of 700𝜇g at
the start of stage 4 (Day 14) - if the cohort on DR4 experience 2 CRS DLTs at stage
4, and no other DLTs have been observed in the study, a reasonable question might
be: can we reduce the increase to 500𝜇g? Or, what is the maximum increase at stage
4 which would not lead to overdose?

The modified BLRM has great potential to support this sort of analysis. Given
phase I trials rely on well-informed decision making in the face of minimal data,
providing the kind of clarity demonstrated here can only be a good thing.

A main weakness of the modified BLRM is the substantial increase in parameters -
particularly in a setting where we have very minimal data. This makes prior elicitation
harder, and sparse data even sparser (by considering the stage in which a CRS DLT
occurs, we are arguably diluting the effect of the DLT on the whole model, compared
to a simple BLRM).

However, we think that current approaches are simply not well suited to the
problem of modelling a dose regimen in the context of dose-finding. In addition,
because the modified BLRM is used flexibly to support decision making, rather than
simply codifying a set of rules to follow (such as the 3+3 design, and similar), we
think that the advantage of capturing the relationship between dose, prior exposure,
and probability of CRS DLT outweighs the problems introduced by a more complex
model.

5 Conclusion

In conclusion we have presented a modification to the BLRM for use in phase I dose-
escalation trials for modern immunotherapies. This novel approach provides all of
the functionality of the classic model whilst providing a substantial improvement
in granularity, and hence improves the support the model can provide to a dose
escalation committee or similar body. Further work is underway to explore better
approaches to prior elicitation, and better ways to recommend the optimal next
regimen at any point in a trial.
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