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Abstract
After the rise of several different simulation tools that can simulate different aspects of an
epidemic, FAVITES provides a framework to simulate an end-to-end epidemic (from contact
network generation to infection transmission to viral phylogenies). To increase accessibility,
FAVITES-Lite was developed with the key functionalities of FAVITES with the sacrifice of some
flexibility. It remains that configuring and analyzing a complicated simulation like FAVITES or
FAVITES-Lite can be extremely daunting, so we created example configuration files to help
users learn the process behind parameter choice and a graph-visualization web application to
help users visualize the results of their simulations.

Introduction
Several tools have been developed to model different aspects of an epidemic, including contact
networks, infection transmission, viral evolution and more. Epidemiological parameters such as
transmission rate can be estimated using a maximum-likelihood model based on phylogenetic
trees, and transmission patterns can be described throughout the tree (Stadler & Bonhoeffer,
2013). Using pathogen DNA and collection dates, outbreaker can reconstruct transmission
trees and gain insight into super spreaders, undetected cases, and separate introductions
(Jombart et al., 2014). Prevention methods were also evaluated by simulating an HIV-1
epidemic based on demographics, sexual partnerships, viral introductions, HIV infection,
transmission, acquisition, Antiretroviral Therapy (ART) status, intervention, sequence sampling,
ancestral HIV relationships, and sequence evolution (Ratmann et al., 2016).

FAVITES was introduced in 2019, building off of previous models to provide a framework to
model epidemics fully end-to-end (social contact network, transmission history, incomplete
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sampling, viral phylogeny, error-free sequences and real world sequencing imperfections)
(Moshiri et al., 2019). Throughout each module in FAVITES, users can choose models and
parameters for those models while existing tools at the time simulated only a subset of each
step. FAVITES-Lite was introduced to simplify the process of setting up and running the
simulation. FAVITES-Lite incorporates the key functionalities of FAVITES, which comes at the
cost of some flexibility. It also contains scripts to visualize the simulated data that is output at
its completion, producing a graph image of the current number of individuals in each state over
the course of the simulation. In an attempt to make this specific script more user-friendly, we
created a more interactive experience through a web application that allows the user to see
exactly how many individuals are in each state at any time of the simulation.

For each of the modules, users must choose a model and model parameters. However, these
model and parameter selections must be structured as a “configuration file” in the JSON
format, which can be difficult for users to structure manually. In another attempt to increase
ease of useability, a configuration designer web application (https://niema.net/FAVITES-Lite)
was introduced to help users choose these models and parameters and automatically convert
them to a JSON file format, to be used when running the simulation. The web application offers
model descriptions and limited parameter descriptions (Fig. 1).

Figure 1: Screenshot of the FAVITES-Lite Config Designer web application.

While this web application makes inputting each simulation choice significantly easier and
more efficient, simply choosing models can be a complex task, and determining realistic values
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for each model parameter can be challenging. In this work, we aim to simplify the design and
analysis of epidemic simulations by providing simple, context-rooted example configuration
files, with each parameter choice explained (De Angelis et al., 2015). These example
configuration files will provide the user with a starting point from which to design their own
epidemic simulation experiment.

Methods

Epidemic-specific Example Configuration Files
Our goal was to create 2 example FAVITES-Lite configuration files: one modeling an HIV
epidemic, and one modeling a SARS-CoV-2 epidemic. We started with three papers with an
interest in their use of FAVITES. The first paper, Moshiri et al. (2019), used FAVITES to simulate
HIV epidemics in San Diego and Uganda, comparing simulated data to real data. Sensitivity to
parameters, parameter choices (such as time to stop ART), and clustering methods were also
tested. The next two papers Pekar et al. (2021) and Pekar et al. (2022) used FAVITES to look
at the timing and zoonotic origins of the SARS-CoV-2 epidemic, respectively. Beginning with a
target time, place, disease, and population, we examined these papers for their parameter
choice and reasoning. We also reviewed the papers for our chosen Transition Network models,
including Granich et al. (2008) and Hao et al. (2020) when further specificity was needed.
Finally, we used Zingoni et al. (2019) for information on HIV disease progression among
Antiretroviral Therapy (ART) patients.

HIV-1 epidemic among MSM in San Diego County, 2016 through 2025
This configuration file is meant to define a simulation of transmission among MSM in San
Diego, and includes modules for Contact Network, Transmission Network, Sampling, Viral
Phylogeny, Mutation Rates, Ancestral Sequence, and Sequence Evolution. Only susceptible
individuals were chosen to be modeled, so non-susceptible individuals were left out of this
simulation. Many of our models and parameters were taken from Moshiri et al. (2019), which
used FAVITES to compare simulated and real HIV datasets in San Diego and Uganda.

1. For the contact network, we chose the Barabasi-Albert (BA) network model, emulating
the simulation from Moshiri et al. (2019). Because BA networks have power-law
degree distributions, it is suitable for social and sexual contact networks, so we chose
to root our configuration file in the context of the MSM community.

2. For the transmission network, we used the transmission model proposed by Granich et
al. (2009), which has 11 states (Non-Susceptible, Susceptible, 4 HIV stages that can
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each be Treated vs. Untreated, and Deceased), and 46 parameters (Table 1). We chose
to include 10,000 individuals in our network in order to limit computing time. One
individual was initially infected with HIV stage one, and the rest started off susceptible.
For the transition rate from susceptible to infected stage 1, we calculated the expected
value of new HIV diagnoses out of a population of 10,000 susceptible individuals in the
San Diego MSM community, to be used as a fixed transition rate in our fixed
Transmission Network. We used an MSM population estimate of 80,968 in San Diego
2016 (Grey et al. 2016) and a count of 321 diagnoses in San Diego in 2016 with
reported MSM male-male sexual contact, or MMSC (County of San Diego HIV/AIDS
Epidemiology Report—2016). By dividing the number of diagnoses by the estimated
susceptible population (in our case, the MSM population in San Diego), and multiplying
by our desired number of individuals for our network, we estimated (321/80,968) *
10,000 = 39.645 diagnoses in San Diego in 2016 as a result of MMSC, in a pool of
10,000 susceptible individuals. Transition rates are the reciprocal of the expected time
to next arrival, which is equal to the expected value. Infectivity was pulled from the
supplementary material table S4 in the original FAVITES paper. Transition rates
between states and mortality and mortality rates on ART were motivated by Zingoni et
al. (2019), which studied HIV disease progression among Antiretroviral Therapy (ART)
patients in Zimbabwe estimated mean sojourn time and total length of stay in each
stage of HIV while adhering to ART. Note that, while we expect social dynamics of HIV
transmission to differ between Zimbabwe and San Diego County, the parameters that
were motivated by Zingoni et al. (2019) only pertain to progression of individuals
throughout the different stages of HIV, which is a biological/physiological phenomenon,
not parameters related to diagnosis rates or adherence to ART, which would be largely
impacted by social, behavioral, and economic factors.

3. Each individual was sampled when they first started ART (Moshiri et al., 2021).
4. A Non-Homogenous Yule tree with rate function exp(-t2) + 1 was chosen to describe

the topology and branch lengths of the viral phylogeny of the seed individuals, which
was pulled from the supplementary material in Moshiri et al. (2019). The
Non-Homogeneous Yule tree was chosen because with the rate function, it could model
the short internal branches close to the root of a real HIV tree. The tree was then scaled
so that the height matched the 1980 time-of-most-recent ancestor.

5. Mutation rates were sampled from a truncated normal distribution because other
distributions deviated significantly from real ones. Location and scale parameters for
the truncated normal distribution were pulled from the parameters used in the San
Diego simulations run in the original FAVITES paper.
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6. Ancestral base frequencies were based on exact base frequencies, which was chosen
as a simple option with the ability to specify the frequency of each base. The length of
the ancestral sequence is 9200, matching the length of the HIV genome. Frequencies of
each base were calculated from the NCBI HIV-1 reference sequence (NC_001802.1).

7. Sequences were evolved using the General Time-Reversible (GTR) + Gamma model,
which matches the model used in the original FAVITES paper. The base frequencies,
base transition rates, and Gamma shape parameter were pulled from the
Supplementary Material in the original FAVITES paper.

SARS-CoV-2 epidemic in Wuhan, late 2019 through early 2020
Most of our models and parameters were pulled from Pekar et al. (2021), which used FAVITES
to investigate the timing of the SARS-CoV-2 index case in Hubei province.

1. The BA model was chosen because its scale free properties “recapitulate infectious
disease spread” (Pekar et al. 2021). A quantity of 10,000 individuals were chosen for
ease in running the simulation. 8 edges were chosen to be attached from new to
existing individuals based on an average value of 16 contacts per day (Mossong et al.
2008). Note that the BA model produces networks with relatively wide tails, and
networks simulated with 10,000 individuals and an expected degree 16 will have a
handful of individuals with upwards of ~500 contacts (i.e., ~5% of the total population).

2. The SAPHIRE model was chosen to illustrate the dynamics of COVID-19 transmission
(Hao et al. 2019). Duration was chosen to be 100 days because the simulation is meant
to look at the start of the COVID-19 pandemic. 1 individual started as exposed and the
rest were susceptible. Transition rates between states were pulled from the
supplementary material in table S7 in the COVID paper.

3. The state entry (initial) model was chosen for sampling so that we could sample each
individual once they became ascertained-infected, reflecting the idea that individuals
would get sequenced once they officially tested positive.

4. A Transmission Tree model was chosen to describe the topology and branch lengths of
the viral phylogeny so that coalescent events occur as late in time as possible.

5. The Coalescent (neutral) model was chosen to model variation in DNA sequences due
to genetic drift and/or mutation.

6. Based on the results of an analysis using BEAST (Drummond & Rambaut, 2007) from
Pekar et al. (2021), mutation rates were constant at a rate of 0.00092, inferred from
BEAST.
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7. Exact base frequencies were used for Ancestral Sequences. The length of the genome
was chosen to be 29903, the length of the COVID-19 genome, and frequencies were
calculated from the NCBI reference sequence Wuhan-Hu-1 (NC_045512.2).

8. Like the HIV configuration file, the GTR + Gamma model was chosen. Parameters were
inferred by running IQ-TREE 2 v2.2.2.7 (Nguyen et al., 2015) under the GTR + I + G
mode on a dataset of 100 random SARS-CoV-2 whole genome sequences produced by
the Andersen Lab (https://github.com/andersen-lab/HCoV-19-Genomics).

States-over-Time Web Application
The web application requires the input of the TSV file, one of the output files from a
FAVITES-Lite simulation named “all_state_transitions.tsv” by default. The web application was
built using HTML, CSS, and JavaScript. The javascript library d3.js was used to visualize the
data. The web application is deployed using GitHub Pages.

Results

Epidemic-specific Example Configuration Files

Table 1: HIV-1 epidemic among MSM in San Diego County, 2016–2025

Parameter Name Value Reference

Contact Network

Model Barabasi-Albert (BA) Moshiri et al. 2019

Number of nodes (individuals) 10000

Number of edges attached from new to existing
nodes (m)

2 Wertheim et al. (2017) and Rosenberg
et al. (2011) estimated 3-4 sexual
partners over 10 years.

Transmission Network

Model Granich Granich et al. (2008)

Duration of simulation 10 years Start with 1 infected, in a network of
susceptible individuals.

# susceptible nodes (individuals) at start 9999

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2024.06.10.24308702doi: medRxiv preprint 

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2?report=genbank
https://doi.org/10.1093/molbev/msu300
https://github.com/andersen-lab/HCoV-19-Genomics
https://doi.org/10.1093/bioinformatics/bty921
https://doi.org/10.1371/journal.ppat.1006000
https://doi.org/10.1186/1471-2458-11-189
https://doi.org/10.1186/1471-2458-11-189
https://doi.org/10.1016/S0140-6736(08)61697-9
https://doi.org/10.1101/2024.06.10.24308702
http://creativecommons.org/licenses/by-nc-nd/4.0/


# infected stage 1 nodes (individuals) at start 1

# nodes (individuals) at any other stage at start 0

Not susceptible→ D (R_NS-D)
Not susceptible→ Susceptible (R_NS-S)
Susceptible→ D (R_S-D)

0 There are no non-susceptible individuals
in this configuration, and for an
individual to transition into state D they
must be in an end-state.

Susceptible→ Infected stage 1 (R_S-I1) 40 MSM population estimation (Grey et al.,
2016)
San Diego County diagnoses in 2016 via
MMSC (County of San Diego HIV/AIDS
Epidemiology Report—2016)

Susceptible→ Infected stage 1 given infected
stage 1 neighbors (R_S-I1_I1)

0.1125 Moshiri et al. (2019) supplementary
material

Susceptible→ Infected stage 1 given infected
stage 2 neighbors (R_S-I1_I2)

0.0225 Infectivity of chronic HIV was used as a
baseline (Moshiri et al., 2019)

Susceptible→ Infected stage 1 given infected
stage 3 neighbors (R_S-I1_I3)

0.0225

Susceptible→ Infected stage 1 given infected
stage 4 neighbors (R_S-I1_I4)

0.0225

Susceptible→ Infected stage 1 given neighbors
on ART, stage 1 (R_S-I1_A1)

0.005625 Acute treated stage was found to have
1/20 of the infectiousness compared to
chronic untreated (Cohen et al., 2011)

Susceptible→ Infected given neighbors on ART,
stage 2, 3, 4 (R_S-I1_A2, A3, A4)

0 Individuals on ART stage 2 and beyond
have extremely low infectivity (Albert et
al., 2014)

Infected stage 1→ Death
Infected stage 2→ Death
Infected stage 3→ Death
ART stage 1→ Death
ART stage 2→ Death
ART stage 3→ Death

0 In this configuration, death is only a
possible transition in either I4 or A4.

Infected stage 1→ Infected stage 2 (R_I1-I2) 6 Expected 2 months in acute state
(Granich et al., 2009)

Infected stage 1→ ART stage 1 (R_I1-A1)
Infected stage 2→ ART stage 2 (R_I2-A2)
Infected stage 3→ ART stage 3 (R_I3-A3)
Infected stage 4→ ART stage 4 (R_I4-A4)

1 Expected 1 year to start ART (McCreesh
et al., 2017)

ART stage 1→ ART stage 2 (R_A1-A2) 0.0883 Length of stay in A1 expected to be
11.33 years (Zingoni et al., 2019)

ART stage 1→ Infected stage 1 (R_A1-I1)
ART stage 2→ Infected stage 2 (R_A2-I2)
ART stage 3→ Infected stage 3 (R_A3-I3)
ART stage 4→ Infected stage 4 (R_A4-I4)

0.481 Expected time to stop ART is 25 months
(McCreesh et al., 2017)
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Infected stage 2→ Infected stage 3 (R_I2-I3) 0.125 Expected time in chronic state is 8 years
(Granich et al., 2008)

ART stage 2→ ART stage 3 (R_A2-A3) 0.181 Length of stay in A2 is estimated to be
5.51 years (Zingoni et al., 2019)

ART stage 3→ ART stage 4 0.139 Length of stay in A3 is estimated to be
7.17 years (Zingoni et al., 2019)

Infected stage 3→ Infected stage 4 (R_I3-I4) 0.5 Expected time in stage 3 is 2 years
without ART (Granich et al., 2008)

Infected stage 4→ Death 1.82 Expected time in stage 4 is 5% of
survival time without ART (Granich et
al., 2008)

ART stage 4→ Death 0.146 Length of stay in A4 is expected to be
6.86 years (Zingoni et al., 2019)

Sample Times

Model State Entry (Initial) Individuals were sampled when they
started ART (Moshiri et al., 2021)

Sampled states A1,A2,A3,A4

Viral Phylogeny (Transmissions)

Model Transmission Tree Moshiri et al. (2019)

Viral Phylogeny (Seeds)

Model Non-Homogeneous Yule Moshiri et al. (2019)

Rate function e-t^2 + 1

Height 36

Mutation Rates

Model Truncated Normal Moshiri et al. (2019)

Location parameter 0.0008

Scale parameter 0.0005

Minimum of Truncated Normal distribution 0

Maximum of Truncated Normal distribution infinity

Ancestral Sequence

Model Exact Base Frequencies A simple option with the ability to
define the frequency of each base.

Length of ancestral sequence 9200 NCBI HIV-1 reference sequence
(NC_001802.1)

Proportion base A 0.3564
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Proportion base C 0.1788

Proportion base G 0.2424

Proportion base T 0.2224

Sequence Evolution

Model General Time-Reversible
(GTR) + Gamma

Moshiri et al. (2019)

Proportion base A 0.3564

Proportion base C 0.1788

Proportion base G 0.2424

Proportion base T 0.2224

A→ C 1.812

A→ G 9.934

A→ T 0.718

C→ G 0.971

C→ T 9.934

G→ T 1.000

Shape parameter of Gamma distribution 0.405

Number of categories in discrete Gamma model 0

Proportion of invariable sites 0

Table 2: SARS-CoV-2 epidemic in Wuhan, late 2019 – early 2020

Contact Network

Model Barabasi-Albert (BA) Pekar et al. (2021)

# of nodes (individuals) 10000

# edges attached from new to existing
nodes

8 Mossong et al. (2008)

Transmission Network

Model SAPHIRE Hao et al. (2020)

Duration of simulation 100 days, 0.274 years Pekar et al. (2021)
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# susceptible at start 9999 Start with one exposed, in a network of
susceptible individuals.

# exposed at start 1

# nodes (individuals) at any other
stage at start

0

Susceptible→ exposed (R_S-E) 0 Pekar et al. (2021) Supplementary Table
S7

Susceptible→ exposed induced by
exposed neighbors (R_S-E_E)

0

Susceptible→ exposed induced by
presymptomatic neighbors (R_S-E_P)

4.83

Susceptible→ exposed induced by
ascertained infectious neighbors
(R_S-E_I)

8.78

Susceptible→ exposed induced by
unascertained neighbors (R_S-E_A)

4.83

Exposed→ presymptomatic (R_E-P) 125.86

Presymptomatic→ unascertained
(R_P-A)

134.89

Presymptomatic→ ascertained
infectious (R_P-I)

23.89

Unascertained→ removed (R_A-R) 125.86

Ascertained infectious→ hospitalized 17.38

Ascertained infectious→ removed 125.86

Hospitalized→ removed 12.17

Sample Times

Model State Entry (Initial) We want to sample each infected
individual as they enter the infected
state (to somewhat mirror the idea of
sequencing once having tested positive).

Sampled_states I We want to sample individuals after
they are ascertained and infectious,
since it's not practical to expect to
consistently sequence those whose
states have not yet been ascertained.

Viral Phylogeny (Transmissions)

Model Transmission Tree

Viral Phylogeny (Seeds)
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Model Coalescent (Neutral) Pekar et al. (2021)

Height 0.0833

Mutation Rates

Model Constant Pekar et al. (2021)

Rate 0.00092

Ancestral Sequence

Model Exact base frequencies

Length of ancestral sequence 29903 NCBI reference sequence Wuhan-Hu-1
(NC_045512.2)

Proportion base A 0.299

Proportion base C 0.184

Proportion base G 0.196

Proportion base T 0.321

Sequence Evolution

Model General Time-Reversible (GTR) +
Gamma

Proportion base A 0.299 Inferred using IQ-TREE 2 v2.2.2.7
(Nguyen et al., 2015) under the GTR + I
+ G mode on a dataset of 100 random
SARS-CoV-2 whole genome sequences

Proportion base C 0.184

Proportion base G 0.196

Proportion base T 0.321

A→ C 0.52308

A→ G 2.65466

A→ T 0.42982

C→ G 0.38506

C→ T 7.58369

G→ T 1.0000

Shape parameter of the Gamma
distribution (alpha)

1.039

Number of categories in discrete
Gamma distribution (num_cats)

0

Proportion of invariable sites
(prop_invariable)

0.521
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States-over-Time Web Application

The web application aims to help intuitively and interactively visualize the number of
individuals in each transmission state over time, processing raw epidemic simulation data that
are otherwise difficult to comprehend. The web application accepts a tab-delimited (TSV) file
containing all state transitions generated by running a FAVITES-Lite simulation. The web
application requires no prerequisite setup or installation: users can simply navigate to the web
application using any modern web browser on any modern operating system.

The web application then generates a lineplot visualizing the number of individuals in each
state (vertical axis) over time (horizontal axis). The bounds of the axes are automatically scaled
to the input dataset’s bounds, and the vertical axis can be toggled between linear and
logarithmic scale with the click of a button. Colors for the curves of each state are
automatically generated to be maximally separated for ease of interpretation of the plot. A
legend is automatically produced to the right of the graphs, corresponding the colors of the
curves on the graph to the states they represent.

To enable closer inspection of the epidemic states over time, the graph also has an interactive
vertical bar that displays the exact number of individuals in each state at any given time of the
simulation. The number of individuals for each state at the specified time are shown in the
legend, to the right of the colors and states. These values automatically update whenever the
specified time is changed. To choose a time, the user can either type a specific time into the
input box at the bottom of the legend, or the user can hover over the graph at the desired time.
To fix the vertical bar’s position (i.e., the time for which the states’ counts are displayed), the
user can simply click on the graph, which will prevent mouse interactions from changing the
selected time. To resume mouse interaction, the user can click the graph again to unfix the
vertical bar's position and allow the selected time to move freely again.
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(a)

(b)
Figure 2: Screenshot of the States Over Time web application visualizing data produced by (a)
a simulation modeling the HIV epidemic in San Diego County using the models and parameters
described in Table 1, and (b) a simulation modeling the early SARS-CoV-2 epidemic in Wuhan

using the models and parameters described in Table 2.
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Discussion
The parameters and explanations in these files were meant to help a first-time user start with
ballpark figures that can help them learn about the process of choosing these parameters.
There are several limitations to these files, but these shortcomings can actually be helpful in
designing future simulations or adjusting current ones.

First, the context of these files is very specific: the parameters chosen for a San Diego HIV
simulation in 2018 would be far different from a San Diego HIV simulation in 1990 or a Miami
HIV simulation in 2018. Difference in demographics would change the contact network and/or
transmission network setup. Users should not necessarily use these files as dictionaries for
their own simulations—they should use them as a practical way to get an example of how
their parameters might be chosen. The references included can also be a resource for much
more information.

But even with the freedom to choose 40+ parameters, flexibility and nuance are balanced
against complication and useability, as is the nature of parameterization. FAVITES-Lite
currently offers eight choices of static networks, each of which may suit a different context
well. For example, we chose the Barabasi-Albert (BA) model for both of our configuration files
because we wanted a power-law degree distribution, and beyond the number of nodes, the BA
model requires just one free parameter which controls the degree distribution. However, this
model produces networks with relatively wide tails, leading to a handful of individuals with
upwards of ~500 contacts in our 10,000 individual simulation (m = 8→ expected degree = 16).
A more complex model that can better control the degree distribution may be more
appropriate to accurately model contact networks, but it would consequently be more difficult
to parameterize. While we aim to capture reality as much as possible, we only aim to provide
new users a starting point with reasonable models and model parameters in order to strike a
balance between realism and simplicity, and we leave further efforts to calibrate simulations to
better fit specific real-world scenarios of interest to users as they design their simulation
experiments.

PATH 4.0 (Singh et al., 2021) was developed as an agent-based evolving network, with
infected persons and their immediate contacts as agents. When new people become infected,
the challenge is to decide which individual (degree, risk group, age, location) should be added
to the network. PATH 4.0 uses a changing probability of transmission per act, modeled as a
function of disease, care stage, risk group, number of partners, and age. Changes in sexual
behavior are also updated for each time step. Even the connections between individuals have
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attributes: partnerships have features initiation age, initiation time, termination age, and
termination time. This model is able to capture many of the specific features that make up a
contact network—with the contact networks offered in FAVITES-Lite, individuals have no
attributes other than state, and edges don’t have features that would model some type of
partnership. PATH 4.0 is also dynamic, allowing for changes in the size of the network and the
risk of transmission over time. PATH 4.0 models total prevalence, diagnosed prevalence,
annual incidence, and annual diagnoses, distributed by risk group and age. It can also generate
clusters, meant to be similar to those detected by nucleotide sequence data, through its
transmission network. While PATH 4.0 offers an extremely detailed and dynamic transmission
network and contact network model, it does not simulate viral phylogeny or sequence
evolution, which FAVITES-Lite can do. This is another example of the tradeoff between the
ability to model an aspect of an epidemic, introducing complexity to increase the accuracy of
the model, and the ability to model an end-to-end epidemic, introducing complexity to model
many dependent phases of a simulation.

Though it is unable to capture many details than other, more niche simulations, FAVITES-Lite is
unique in that it aims to simulate the full end-to-end epidemic. In and of itself, it is a way to
increase usability by simplifying different aspects of a pandemic into palatable modules.
Within its framework, new models could be added to increase flexibility, but as always this
would widen the scope of possible parameters even more. While the configuration files
created gave some good example configurations for COVID and HIV, there are many more
parameters and models that were not covered. Future developments could include a guide to
all the models in the framework and their parameters, or more configuration files for different
contexts.

While the configuration files provide the foundation for setting up the simulation's parameters
and models, the web application offers a user-friendly interface for visualizing and interacting
with the simulation results. The web application is designed to provide more precise
information about the number of individuals in each state at all times of the simulation.
However, there are additional features that could be added that would make the user
experience more interactive. The user is able to input a time from the simulation, and the hover
bar will snap to that location on the graph as the legend displays the number of individuals in
each state at that time. To improve the web application, providing the user with more statistics
about the data, such as the rates of change for each state or a derivative graph of the data,
would be beneficial. These statistics could be used to analyze and predict trends in
disease/mortality rates (Fay et al., 2006).
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