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Abstract 

Deep learning has emerged as a powerful tool for phylodynamic analysis, addressing 

common computational limitations affecting existing methods. However, notable disparities 

exist between simulated phylogenetic trees used for training existing deep learning models 

and those derived from real-world sequence data, necessitating a thorough examination of 

their practicality. We conducted a comprehensive evaluation of model performance by 

assessing an existing deep learning inference tool for phylodynamics, PhyloDeep, against 

realistic phylogenetic trees characterized from SARS-CoV-2. Our study reveals the poor 

predictive accuracy of PhyloDeep models trained on simulated trees when applied to realistic 

data. Conversely, models trained on realistic trees demonstrate improved predictions, 

despite not being infallible, especially in scenarios where superspreading dynamics are 

challenging to capture accurately. Consequently, we find markedly improved performance 

through the integration of minimal contact tracing data. Applying this approach to a sample 

of SARS-CoV-2 sequences partially matched to contact tracing from Hong Kong yields 

informative estimates of SARS-CoV-2 superspreading potential beyond the scope of contact 

tracing data alone. Our findings demonstrate the potential for enhancing deep learning 

phylodynamic models processing low resolution trees through complementary data 

integration, ultimately increasing the precision of epidemiological predictions crucial for 

public health decision making and outbreak control. 
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Introduction 

Phylogenetic analysis of genomic sequence data offers a powerful toolkit for understanding 

the emergence, spread, and evolution of infectious diseases. As an interdisciplinary field, 

phylodynamics aims to integrate genomic and epidemiological data in a unified framework 

to extract detailed insights into epidemic history (Drummond et al., 2005; Stadler et al., 2013; 

Volz et al., 2009), population dynamics (Stadler & Bonhoeffer, 2013; Volz et al., 2009), and 

disease emergence (Pekar et al., 2022; Worobey et al., 2014). Its key advantage lies in 

providing independent information regarding epidemic history, complementing traditional 

epidemiological surveillance data (Vaughan et al., 2024; Voznica et al., 2022). This makes it 

invaluable for validating and substantiating findings from epidemiological modelling, 

particularly in contexts where conventional surveillance data are scarce and genomic 

sampling is randomized.  

However, many conventional phylodynamic models based on likelihood approaches (e.g. 

maximum likelihood estimation and Bayesian approaches) are computationally intensive and  

can become practically unfeasible as the number of taxa increases (Hohna & Drummond, 

2012). Addressing this issue sometimes involves likelihood-free methods such as 

approximate Bayesian computation (ABC) (Saulnier et al., 2017), which sidestep the need for 

direct likelihood calculations. More recently, deep learning methods such as PhyloDeep 

(Voznica et al., 2022) have emerged as another potential solution, enabling rapid estimation 

of epidemiological parameters from large phylogenetic trees in a matter of seconds. To 

achieve this, PhyloDeep utilizes deep neural network models trained against phylogenies 

simulated under well-established birth-death models: the basic birth-death model (BD) 

(Leventhal et al., 2014; Stadler et al., 2012), the birth-death model with exposed and 

infectious classes (BDEI) (Kuhnert et al., 2016; Stadler et al., 2013), and the birth-death model 

with superspreading (BDSS) (Stadler et al., 2013). PhyloDeep has also been validated for 

diversification analyses (Lambert et al., 2023) and viral phylogeography (Thompson et al., 

2024). 

Despite these methodological advancements, there are often discrepancies between the 

idealised phylogenetic trees, simulated from birth-death models, and real-world trees 

constructed from samples of empirical sequence data. This challenge is particularly 
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pronounced for viral sequences arising from epidemics or outbreaks, which frequently yield 

many identical sequences, resulting in low resolution phylogenies with numerous polytomies. 

Examples include SARS-CoV-2, Mpox (monkeypox) virus (Paredes et al., 2024), and 

Respiratory syncytial virus (RSV) (Eden et al., 2022). As such, the implications of employing 

realistic phylogenetic trees for predictions using neural network models, trained on simulated 

or "ideal" trees, remain uncertain. 

In this study, we utilize the PhyloDeep framework, employing the SARS-CoV-2 as a virus 

outbreak characterized by the BDSS model. Our analysis reveals that neural network models 

trained on “ideal” trees struggle to precisely predict epidemiological parameters, particularly 

those associated with superspreading events, when applied to realistic phylogenetic trees. 

Furthermore, we observe a notable enhancement in predictive accuracy upon integrating 

contact tracing data into realistic phylogenetic trees, thereby aligning them more closely with 

the “ideal” trees. We illustrate these findings using real SARS-CoV-2 data collected during 

the third and fourth waves of the epidemic in Hong Kong. 

 

Results 

Simulations of phylogenetic trees  

Initially, we simulated 200,000 time-scaled trees using the BDSS model (Fig. 1, baseline tree). 

These trees serve as our reference “ideal” trees and capture transmission events at internal 

nodes consistent with the PhyloDeep framework. To emulate realistic SARS-CoV-2 

phylogenetic trees, all baseline trees were transformed into genetic distance trees (Fig. 1, 

genetic baseline tree).This transformation relied on a binomial distribution of mutation 

counts given a mean substitution rate of 8×10-4 per site per year (see methods for details). 

Branches with lengths representing zero mutation were collapsed, resulting in trees with 

polytomies (Fig. 1, genetic polytomous tree), which were then randomly resolved using a 

coalescent approach, yielding binary trees (Fig. 1, genetic resolved tree). The number and 

size of polytomies in our simulated trees varied from 1 to 170 and 3 to 934, respectively, with 

a total tip range of 200 to 1000, encompassing those observed in SARS-CoV-2 trees in Hong 

Kong (Supplementary Figure S2). Lastly, each of the three transformed genetic distance trees 
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were dated using LSD2 (To et al., 2016) (Fig. 1, dated baseline tree, dated polytomous tree, 

dated resolved tree). The latter four types of trees, including Genetic Polytomous Trees, 

Genetic Resolved Trees, Dated Polytomous, and Dated Resolved Trees, represent entirely 

altered topologies and are deemed realistic trees, as they can be generated from sequencing 

data using established software such as RAxML-NG (Kozlov et al., 2019), IQ-TREE (Nguyen 

et al., 2015), FastTree (Price et al., 2010) or TreeTime (Sagulenko et al., 2018). In contrast, the 

remaining three types, including Baseline Trees, Genetic Baseline Trees, and Dated Baseline 

Trees, retain a known correct topology that cannot be derived from sequence data alone 

(Fig. 1). 

 

Fig. 1. Examples of seven types of phylogenetic trees used in simulations. Internal nodes are marked 

as black dots, while tips are denoted by numerical labels. Among these, four trees represent realistic 

phylogenetic structures that can be derived from sequence data and are highlighted with a grey 
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background. To effectively highlight the differences between realistic trees, which can be constructed 

from sequence data, and unrealistic trees, which cannot, tips have been color-coded into three distinct 

clusters. 

 

Performance comparison of neural network models for each type of phylogenetic tree 

We utilized a dataset totalling 199,000 trees to train the neural network models, reserving 

1,000 trees for validation purposes. Ensuring consistency across the models, we utilized 

identical summary statistics (SSs) representation and feed-forward neural networks (FFNNs) 

for each tree type, as used in PhyloDeep (Fig. 2). Specifically, for the three types of genetic 

distance trees, including Genetic Baseline Trees, Genetic Polytomous Trees and Genetic 

Resolved Trees, we adapted the 99 SSs designed for time-scaled trees to 90 SSs for genetic 

distance trees (refer to the Methods section). Consequently, we developed seven neural 

network models: Baseline-Model, Dated Baseline-Model, Dated Resolved-Model, Dated 

Polytomous-Model, Genetic Baseline-Model, Genetic Resolved-Model, and Genetic 

Polytomous-Model. 

Our results show that models trained and tested on trees with unchanged topologies (i.e. 

Baseline-Model, Dated Baseline-Model, and Genetic Baseline-Model) did well in predicting 

all parameters. Estimates for R0 and infectious period tended to exhibit greater accuracy 

compared to superspreading parameters (Xss and fss) (Fig. 3A and Supplementary Table S1), 

which is consistent with the findings from PhyloDeep (Voznica et al., 2022). The Baseline-

Model demonstrated superior performance with mean relative errors of 0.095 for R0, 0.092 in 

infectious period, 0.215 for Xss and 0.167 for fss. Conversely, models trained and tested on 

trees with altered topologies (Dated Resolved-Model, Dated Polytomous-Model, Genetic 

Polytomous-Model and Genetic Resolved-Model) encountered challenges in accurately 

predicting superspreading parameters. This suggests that phylogenetic trees with polytomies 

lack sufficient phylogenetic resolution to accurately recover parameters related to 

superspreading. Models trained and tested on dated trees generally outperformed those 

trained and tested on the equivalent genetic distance trees in most scenarios, demonstrating 

the value of tip dates for informing model learning and estimating parameters. 
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Fig. 2. An overview of training neural network models based on simulated phylogenetic trees. 

 

Impact of realistic phylogenetic trees on models trained with “ideal” trees  

To evaluate the influence of using realistic phylogenetic trees as input on neural network 

models trained with “ideal” trees, we tested the Baseline-Model and Dated Baseline-Model 

with 1,000 Dated Resolved Trees and the Genetic Baseline-Model with 1,000 Genetic 

Resolved Trees (Fig.3 and Supplementary Table S1). The results revealed that the relative 

error for each parameter was approximately twice as high or more compared to when using 

“ideal” test trees. Notably, the relative errors for the superspreading parameters (Xss and fss) 

were around or exceeded 0.5, and were worse than for models trained using realistic 

phylogenetic trees (such as Genetic Polytomous, Genetic Resolved, Dated Polytomous, and 

Dated Resolved) for both training and testing phases (Fig.3B). These findings suggest that 

PhyloDeep models trained on “ideal” trees struggle to predict accurately epidemiological 

parameters from realistic phylogenetic trees, but the accuracy of predictions can be improved 

when using models alternatively trained on more realistic trees. However, the higher 
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predictive errors specific to superspreading parameters relative to other epidemiological 

parameters seemed to persist (Fig.3), highlighting the inherent challenge of estimating 

superspreading potential from phylogenetic trees. Additionally, despite repeatedly 

generating different Genetic Resolved and Dated Resolved trees from the polytomous trees 

as input, the predicted parameters tended to converge towards similar estimates, which 

differed substantially from the actual parameters originally input, thus indicating a form of 

bias in the estimations. 

 

Fig. 3. Performance comparison of models. A) Performance comparison of models trained on seven 

types of phylogenetic trees. Each bar depicts the relative error observed when testing trees of the 

same type as those used in training. The red marked lines denote the median relative error when 

testing the Baseline-Model and Dated Baseline-Model with Dated Resolved trees, as well as the 

Genetic Baseline-Model with Genetic Resolved trees. Models trained using realistic phylogenetic trees 

(i.e., Dated Resolved, Dated Polytomous, Genetic Resolved and Genetic Polytomous) are highlighted 

in bold. B) Performance comparison of models using realistic phylogenetic trees. "Baseline-Real" 

represents the evaluation of the Baseline-Model using Dated Resolved Trees. "Dated Baseline-Real" 
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indicates the assessment of the Dated Baseline-Model with Dated Resolved Trees, while "Genetic 

Baseline-Real" reflects the performance of the Genetic Baseline-Model when utilizing Genetic 

Resolved trees. 

 

Improving predictions by integrating contact tracing data  

To improve model accuracy, a reasonable approach involves correcting the observed 

topology of input trees so that they closely resemble the equivalent "ideal" trees. With this 

context, we investigated the potential of leveraging contact tracing data to aid in refining the 

topology of Genetic Polytomous trees, for example, to match Baseline or Dated Baseline 

trees to varying extents (Supplementary Figure S4). We derived contact tracing information 

from the simulated Baseline trees, treating all descendants of each internal node as a cluster, 

with the dates of internal nodes considered as infection times of each cluster’s index case 

(Supplementary Figure S3). With this addition of cluster information and assuming perfect 

observation, the topology of Genetic Polytomous trees can be fully corrected (matching the 

genetic baseline trees), with external nodes subsequently dated to produce Dated Baseline 

trees (Supplementary Figure S4). Furthermore, if the infection times of clusters are known, 

time constraints can also be applied to internal nodes, effectively recovering equivalent 

Baseline trees from the Genetic Polytomous trees.  In real-world scenarios, however, the 

extent of case observation is often limited and imperfect, and the accuracy of any available 

contact tracing data is uncertain and subject to additional biases. 

Therefore, to assess how the quantity of contact tracing data influences our predictions within 

the context of phylogenetic trees, we simulated scenarios where 0, 25%, 50%, 75%, and 100% 

of internal nodes were randomly selected to provide cluster information and infection times. 

We then evaluated the performance of the Baseline-Model and Dated Baseline-Model (Fig. 

4 and Supplementary Table S2). The former requires cluster information to resolve polytomies 

and infection times to estimate the lengths of newly created internal branches, while the latter 

relies solely on cluster information. For any remaining nodes lacking contact tracing data, we 

resolved them randomly as before. Our results indicated that even with just 25% of contact 

tracing data incorporated, the mean relative errors for R0 and infectious time could be 

reduced to below 0.2, representing an improvement of 48% to 66% (Supplementary Table 

S2). As the availability of contact tracing data increased, model performance consistently 
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improved, particularly in predicting superspreading parameters as could be expected. 

Incorporating 50% or more of contact tracing data yielded estimates of superspreading 

parameters, with mean relative errors around or below 30%, achieving an improvement of at 

least 22% (Supplementary Table S2). Notably, the Dated Baseline-Model generally 

outperformed the Baseline-Model except when contact tracing was 100% complete and a 

harsh time constraint margin of 0.1 day (Supplementary Table S2). Furthermore, the Dated 

Baseline-Model only required cluster information to refine the input trees, suggesting its 

greater relevance to real-world scenarios. 

 

Fig. 4. Performance comparison by incorporating varying levels of contact tracing data based on 

Baseline-Model and Dated Baseline-Model. The models are represented by grey (Baseline-Model) 

and red (Dated Baseline-Model) bars, with the color intensity within each bar signaling the degree of 

contact tracing data integrated into the input trees. Darker shades denote a higher percentage of data 

incorporation. The term "Baseline_50" refers to the performance of the Baseline-Model with Genetic 

Polytomous trees refined using 50% contact tracing data, encompassing cluster information and 

infection times. "Dated Baseline_50" indicates the performance of the Dated Baseline-Model with 

Genetic Polytomous trees refined using 50% contact tracing data, including cluster information. 

 

Case study of SARS-CoV-2 waves in Hong Kong 

To demonstrate our method of integrating contact tracing data to improve model prediction, 

we used real-world SARS-CoV-2 data collected during the third and fourth waves of the 

epidemic in Hong Kong. By 2022, Hong Kong had effectively controlled the local spread of 

SARS-CoV-2, experiencing four significant waves during which extensive sequence sampling 

and epidemiological surveillance were conducted. Utilizing all available SARS-CoV-2 
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sequences from the third and fourth waves in Hong Kong, along with partial contact tracing 

data, we evaluate the differences in prediction outcomes when using the Dated Baseline-

Model, with input trees refined by contact tracing data (Dated Resolved-Cluster) and without 

it (Dated Resolved). 

Initially, we verified the suitability of the input trees through principal component analysis 

(PCA) and by comparing the range of each simulated SS to ensure the models and scenarios 

were predictive. All trees from Hong Kong passed this PCA check, but seven SSs related to 

superspreading features for the Dated Resolved tree of wave 4 were outside the [min, max] 

range of the simulated values (Supplementary Figure S1 and Table S3). After integrating the 

available contact tracing data (9.50%, as detailed in the Methods), only one SS remained 

outside the simulated range, albeit very close to the lower boundary (Supplementary Table 

S3). 

The prediction results indicated a notable change when contact tracing data was used to 

refine tree topology, especially for wave 4 (Table 1). With the Dated Resolved-Cluster tree, 

we estimated an R0 of 1.6 and 1.5, infectious periods of 4.6 and 8.6 days, XSS of 8.1 and 16.4, 

fss of 0.09 and 0.08 for waves 3 and 4, respectively. Given XSS and fss, we can calculate the 

dispersion value k (see Methods), which is commonly used as a measure of superspreading 

potential. For waves 3 and 4 we calculated k = 0.47 and 0.25 respectively, where lower values 

of k represent increasing superspreading potential. Conversely, using the Dated Resolved 

tree, we estimated an R0 of 1.699 and 2.062, infectious periods of 5.720 and 20.071 days, Xss 

of 7.608 and 7.232, fss of 0.090 and 0.076, and k of 0.488 and 0.658 for waves 3 and 4, 

respectively. Further, based solely on epidemiological records, we estimated an R0 of 1.3 and 

1.2, and k of 0.45 and 0.26 for waves 3 and 4, separately (Table 1). The observed 

discrepancies highlight the critical need for integrating diverse data sources and analytical 

methods in estimating epidemiological parameters, thereby enabling a more comprehensive 

and systematic understanding of epidemic dynamics. 

Additionally, we conducted 200 random resolutions of polytomies for these SARS-CoV-2 

trees to measure the robustness of the predictions. The resulting standard deviation were 

notably small (Table 1), indicating that the predictions were not significantly affected by the 

random resolution of polytomies, suggesting our models could efficiently extract essential 
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cluster information and guide robust predictions. The 95% confidence intervals (CIs) were 

generated by parametric bootstrap as per the methodology of PhyloDeep. The substantial 

width of CIs for superspreading parameters again highlight the inherent difficulty in 

predicting these metrics.
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Table 1. Comparison of inference of epidemiological parameters based on waves 3 and 4 of SARS-CoV-2 in Hong Kong. 

Waves Input tree R0  Infectious 

period (day) 

Xss  fss  Dispersion 

k  

3 Dated Resolved 1.699±0.096 

(1.460, 2.172) 

5.720±1.018 

 (4.427, 10.804) 

7.608±1.496 

 (4.141, 18.696) 

0.090±0.022 

(0.057, 0.163) 

0.488 

(0.441, 0.543) 

 Dated Resolved-Cluster 1.588±0.077 

(1.330, 1.993) 

4.636±0.635  

(3.373, 8.238) 

8.078±1.709 

(3.911, 17.733) 

0.091±0.021 

(0.054, 0.167) 

0.467 

(0.418, 0.517) 

 Epidemiological 

inference 

1.305 

(1.146, 1.481) 
NA NA NA 

0.451 

(0.421, 0.481) 

4 Dated Resolved 2.062±0.072 

(1.628, 3.220) 

20.071±1.663 

 (14.235, 32.668) 

 7.232±1.423 

(2.197, 23.198) 

0.076±0.009 

(0.050, 0.154) 

0.658 

(0.596, 0.737) 

 Dated Resolved-Cluster 1.518±0.091 

(1.284, 2.055) 

8.629±0.881 

 (6.548, 14.929) 

16.388±2.692 

 (5.895, 33.409) 

0.078±0.007 

(0.050, 0.161) 

0.250 

(0.227, 0.278) 

 Epidemiological 

inference 

1.212 

(1.042, 1.406) 
NA NA NA 

0.264 

(0.248, 0.279) 

Note: Values predicted by neural network models are expressed as mean ± standard deviation generated by randomly resolving poytomies n 
= 200 times. Values in parentheses are the 95% CI.
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Discussion  

In this study, we assessed the performance of established neural network models (PhyloDeep) 

in predicting epidemiological parameters and the applicability of these models to real-world 

scenarios using SARS-CoV-2 as a case study for both simulation and empirical analyses. Our 

findings demonstrate the relative performance limitations of utilizing neural network models 

trained on simulated phylogenetic trees (“ideal” trees) when predicting parameters from real-

world trees featuring polytomies, and show that models alternatively trained on more realistic 

trees can improve the accuracy of predictions. Beyond upstream improvements to model 

training, we show that by using contact tracing data to partially adjust the topology of input 

trees downstream, additional performance enhancements can be achieved. We apply this 

approach to SARS-CoV-2 genome sequences from Hong Kong matched to minimal contact 

tracing data, producing new phylodynamic estimates of both R and k.   

Without the incorporation of contact tracing data, we found that even our improved models 

trained on more realistic trees struggled to accurately estimate parameters related to 

superspreading. This issue is particularly pronounced when sequences are nearly identical, 

like for SARS-CoV-2, which results in potentially biased clustering likely to misinform public 

health decision makers. Traditional phylodynamic models (e.g. maximum likelihood 

estimation and Bayesian approaches), which assume ideal binary trees and not representing 

sequence evolution, also struggle in parameter estimation under these conditions. Together 

this emphasizes the importance of incorporating even minimal contact tracing data as we 

have done in our study, but also utilizing more comprehensive summary statistics focused on 

clusters or polytomies that can effectively capture the complexity of the underlying 

transmission dynamic. One previous study (Tran-Kiem & Bedford, 2024) has demonstrated a 

connection between the size distribution of identical sequence clusters and transmission 

dynamics, however, our attempts to incorporate similar information into our neural network 

models, trained on genetic distance trees, yielded limited improvements. As an ongoing area 

of research interest, future study could evaluate the relative predictive performance of 

models that expand the potential range of features related to clusters or polytomies. 

Besides superspreading, the incubation period is another significant aspect of pathogen 

transmission dynamics. For example, estimates of the SARS-CoV-2 incubation period were 
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used to justify the World Health Organization’s (WHO) recommendation of a 14-day 

quarantine period for contacts of infected cases (Wells et al., 2021). In our approach, we 

utilized a BDSS model, which does not account for the incubation period, but defines the 

infectious period as the interval from infection time to sampling date otherwise known as the 

delay interval. Employing the Dated Baseline-Model with the Dated Resolved-Cluster tree, 

we determined that the infectious period/delay interval of waves 3 and 4 to be approximately 

one week, however the delay for wave 4 was longer than that for wave 3, suggesting case 

detection speed was somewhat challenged. The longer delay in wave 4 could be explained 

by the sudden rise in cases associated with the largest single SARS-CoV-2 superspreading 

event detected in Hong Kong prior to widespread vaccination, which also triggered the start 

of wave 4. The clear bimodal epidemic observed in wave 4, compared to the classic unimodal 

pattern observed in wave 3, also affirms that case detection speed may have suffered at that 

time, in line with our estimates (Adam et al., 2022).   

Remarkably, the estimation of R0 exhibited robust performance across our neural network 

models, with models trained on dated trees outperforming those based on genetic distance 

trees. This underscores the value of tip dates for R0 estimation, particularly as sequence 

variability decreases. This is in line with recent studies that highlight the increasing 

importance of sampling dates for phylodynamic inference when sequence variability is low 

(Featherstone et al., 2023). When realistic trees were used as input, models like the Dated 

Resolved-Model and Dated Polytomous-Model showed excellent performance, suggesting 

their potential for effective and accurate R0 and infectious period predictions from sequence 

data. This offers a promising avenue for tracking epidemic dynamics using sequence data, 

which, when compared with epidemiological records, can provide deeper insights and 

mitigate potential sampling biases. Future investigations are needed to ascertain the extent 

to which sequence data can facilitate robust predictions and to evaluate the effects of 

progressively incorporating new sequence samples.  

Our study acknowledges certain limitations. Notably, the BDSS model does not account for 

the incubation period of the disease, introducing a significant source of uncertainty. The 

omission of the incubation period from our transmission models necessitates further 

exploration in future studies to mitigate these uncertainties. Additionally, real-world contact 
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tracing data may contain inherent biases or inaccuracies. In applying our model to the SARS-

CoV-2 dataset from Hong Kong, we presumed the accuracy of the contact tracing data. This 

assumption allowed us to collapse all associated children (see Methods), including those are 

not recorded within the cluster, potentially leading to an inaccurate refinement of the tree 

topology and biased predictions. 

Importantly, making trees realistic hinges on the specific sequence length and evolution rate 

of SARS-CoV-2, rendering these models in this study inapplicable to other viruses. To extend 

their use to other pathogens, modifications are required to accommodate variations in 

sequence length and evolution rate, building pathogen-specific models as we show for SARS-

CoV-2. This contrasts with PhyloDeep, which is adaptable for studying a diverse array of 

pathogens. Correspondingly, the choice of a specific birth-death model emerges as another 

crucial factor that must be carefully considered. 

Overall, this study highlights the challenges of relying solely on viral phylogenetic trees 

generated from sequences for estimating superspreading events. The integration of even 

minimal contact tracing data can significantly enhance model predictions, emphasizing the 

importance of such data in surveillance efforts for emerging infectious diseases, particularly 

when viral sequences lack variability. We hope our comprehensive evaluation will inform 

future developments in deep learning applications within phylogenetics and phylodynamics. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 11, 2024. ; https://doi.org/10.1101/2024.06.10.24308687doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.10.24308687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Simulations 

In this study, SARS-CoV-2 served as the reference pathogen for evaluating the performance 

of the existing deep learning model PhyloDeep. Given the marked overdispersion in SARS-

CoV-2 transmission dynamics, characterized by superspreading (Adam et al., 2020; Du et al., 

2022; Guo et al., 2022) we used treesimulator (v0.1.7: 

https://github.com/evolbioinfo/treesimulator/releases/tag/0.1.7) to generate time-scaled 

phylogenetic trees. These trees were generated with a BDSS model, distinguishing cases into 

superspreaders (S) and normal spreaders (N), in addition to the conventional 

parameterisation of the Birth-Death model, i.e. R0 and the infectious period. Superspreaders 

constitute a small fraction of the total simulated population (denoted by 𝑓!! =

	𝛽!! (𝛽!! + 𝛽!")⁄ ) but can transmit the virus at rates significantly higher than normal spreaders, 

where superspreading transmission rates are denoted as 𝑋!! =	𝛽!! 𝛽"! =⁄ 	𝛽!" 𝛽""⁄ ) ). Upon 

reviewing the 98 summary statistics (SS) (see details in Feature representation and neural 

network models section), it was noted that certain metrics associated with branch lengths and 

superspreading events based on the SARS-CoV-2 dataset from Hong Kong fell outside the 

[min, max] range of simulated values in PhyloDeep, characterized by a lower median/mean 

SS and increased variance SS (detailed in Supplementary Table S4). Consequently, to better 

capture the complexities of SARS-CoV-2 transmission dynamics, we expanded the range of 

epidemiological parameters for tree simulation in PhyloDeep, summarized in Supplementary 

Table S5. 

Simulated time-scaled trees are transformed into Genetic Baseline trees, with branch lengths 

determined by a binomial process, B (n=sequence length, p=evolutionary rate × branch 

length of time-scaled trees). For SARS-CoV-2, the sequence length is 29,903, and the 

evolutionary rate has a mean of 8×10-4 and a standard deviation of 4×10-4  substitutions per 

site per year, with a lognormal distribution (Hadfield et al., 2018; Jolly & Scaria, 2021). In 

Genetic Baseline trees, branches representing zero mutation are collapsed to form Genetic 

Polytomous Trees. Within these trees, polytomies are resolved by randomly coalescing two 

offspring until binary trees, termed Genetic Resolved Trees, are obtained. These genetic 

distances are then re-dated using LSD2 (To et al., 2016), assigning dates to the tips by adding 
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the lengths from the tips to the root within the time-scaled trees to a dummy date designated 

as the root date. Additionally, a temporal constraint for the root is established by setting a 

range (dummy date - 1 day, dummy date + 1 day), ensuring the root's time is not excessively 

early. The clock rate used is the same as mentioned above, with a mean of 8×10-4 and a 

standard deviation of 4×10-4 substitutions per site per year. 

An additional 100,000 trees were simulated, and the PhyloDeep methodology was applied 

to establish the 95% CIs. 

 

Feature representation and neural network models 

We represent time-scaled phylogenetic trees using sampling probability and 98 SS, as 

employed in PhyloDeep (Saulnier et al., 2017; Voznica et al., 2022). However, for genetic 

distance trees, certain concepts like transmission chains (14 SS) associated with 

superspreading and lineage through time (LTT) (49 SS) are not directly applicable. To address 

this, we designed 62 SS focused on the distribution of internal (31 SS) and external (31 SS)  

nodes by counting the nodes that are n (0-30) mutations away from the tree root. Additionally, 

the size distribution of clusters of identical sequences, which is indicative of transmission 

dynamics and heterogeneity (Tran-Kiem & Bedford, 2024), led us to include 10 SS related to 

the distribution of identical sequence clusters, with sizes ranging from 1 to 10. Consequently, 

90 SS are utilized to characterize the genetic distance tree. While time-scaled trees are 

rescaled so the average branch length equals 1 prior to representation (Voznica et al., 2022), 

genetic distance trees do not require this adjustment. 

Following the PhyloDeep methodology, we developed our neural network model using 

Python 3.6, with the Tensorflow 1.5.0, Keras 2.2.4, and scikit-learn 0.19.1 libraries. The model 

comprises an input layer with 99 or 90 nodes, four sequential hidden layers arranged in a 

funnel shape with 64, 32, 16, and 8 neurons, respectively, and an output layer that predicts 

four parameters: R0, infectious period, Xss, and fss. The neurons in the last hidden layer utilize 

linear activation, whereas the others employ exponential linear (ELU) activation. The 

performance of our neural network models is assessed as the mean relative error (MRE) of 

the estimator: 
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where n is the number of simulated trees used in the test set. 

To draw a parallel with epidemiological inference, Xss and fss can be transformed into the 

dispersion k. Utilizing the multi-type birth-death model process (Stadler & Bonhoeffer, 2013), 

it becomes possible to estimate the probability of an individual infecting “n” others over its 

lifespan, aligning with a geometric distribution. By synthesizing the probability with the 

cumulative number of infections, the offspring distribution was ascertained. The approach 

outlined in “Estimating R0 and k from epidemiological data only” section was employed to 

derive k from this offspring distribution. 

 

Integration of contact tracing data into phylogenetic trees 

In our simulations, we utilize time-scaled trees to derive contact tracing data, treating all 

descendants of each internal node as a single cluster, with the node's age representing the 

infection time (Supplementary Figure S3). Using such contact tracing data, we refine the 

phylogenetic trees by identifying the most recent common ancestor (MRCA) for each cluster. 

We then iterate through children of the MRCA and coalesce all associated children, 

encompassing both leaves and children of internal nodes within the cluster. This process 

enables us to resolve polytomies in Genetic Polytomous trees, facilitating their transformation 

back into Genetic Baseline trees (Supplementary Figure S4). 

Additionally, by applying the infection times as time constraints on the internal nodes, we 

can revert Genetic Baseline trees to their Baseline counterparts using LSD2 (To et al., 2016). 

We achieve this by setting a specific time range for the internal nodes, using a margin of 

(infection time - 1 day, infection time + 1 day). Narrowing this margin to 0.1 day brings the 

converted trees even closer to the Baseline trees, thereby yielding performance on the 

Baseline-Model that is nearly identical to that obtained when directly using Baseline trees for 

testing, as detailed in Supplementary Tables S1 and S2. 

 

SARS-CoV-2 dataset in Hong Kong 
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We used sequences and epidemiological data from the third and fourth waves of SARS-CoV-

2 in Hong Kong, as detailed in our prior study (Gu et al., 2022). These waves were 

characterized by single introduction events that sparked local transmissions, and they were 

notable for their relatively consistent sequence sampling and comprehensive surveillance 

data. In this study, we focused on the exponential stages of waves 3 and 4, which spanned 

from May 13 to August 1, 2020, with 460 sequences and 1,930 local cases, and from 

September 30 to December 8, 2020, with 243 sequences and 1,577 local cases, respectively. 

The sampling rates for waves 3 and 4 were 23.8% and 15.4%, respectively. During wave 3, 

84.35% (388 out of 460) of sequences were linked to cluster information involving 191 clusters, 

among which 76 clusters comprised more than one sequence. This indicates that 16.56% (76 

out of 459) of the data were supported by contact tracing. In wave 4, 90.53% (220 out of 243) 

of sequences were associated with 35 clusters, with 23 clusters containing multiple sequences, 

amounting to 9.50% (23 out of 242) contact tracing data availability. 

For waves 3 and 4, we reconstructed Maximum Likelihood (ML) phylogenies using RAxML-

NG (Kozlov et al., 2019) with the GTR+G4+FO substitution model. We maintained 

consistency with simulated trees in terms of collapsing internal nodes and the random 

resolution of polytomies. Our findings revealed that the distribution of the number of 

offspring from collapsed internal nodes falls within the range observed in our simulations 

(Supplementary Figure S2). Subsequently, these trees were dated using LSD2 (To et al., 2016), 

following a strict molecular clock assumption of 8×10-4 substitutions per site per year 

(Hadfield et al., 2018; Jolly & Scaria, 2021), and applying time constraints for the root as 

inferred by (Gu et al., 2022). 

 
Estimating R0 and k from epidemiological data only 

We compared the results for R0 and k estimated using PhyloDeep to those estimated with 

the same epidemiological data on SARS-CoV-2 available during the exponential periods of 

waves 3 and 4 in Hong Kong. Epidemiological estimates of R0 were generated using EpiNow2  

(Sam Abbott, 2020) and case reports, where R0 was calculated as the mean and 95% quantiles 

of Rt estimated during waves 3 (May 13 to August 1, 2020) and wave 4 (September 30 to 

December 8, 2020). Rt was estimated using an empirical delay distribution of symptomatic 
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SARS-CoV-2 cases in Hong Kong, calculated as the difference in days between symptom 

onset and report dates, excluding negative delays where cases were reported prior to the 

recorded symptom onset date. Additionally, we used an uncertain gamma distribution for 

the incubation period (Lauer et al., 2020) (mean =  3.6, mean SD = 0.71, and SD = 3.1, SD 

SD = 0.77) and uncertain lognormal distribution for the generation time (Ganyani et al., 2020) 

(logmean = 1.6, logmean SD = 0.064, and logSD = 0.42, logSD SD = 0.069) to estimate Rt at 

the time of infection.  

Epidemiological estimates of k estimate were generated from empirical offspring 

distributions for SARS-CoV-2 available from previous studies in Hong Kong (Adam et al., 

2022). These distributions were generated from infector-infectee pairs, where the number of 

secondary cases is counted for each unique infector and includes chain-terminating infectees 

as zero. We subsetted the empirical offspring distributions to the same exponential periods 

for wave 3 and wave 4 as before, given the estimated infection date of each paired case as a 

deconvolution of the generation time, incubation period, and delay distributions given the 

onset date or report dates if asymptomatic between infector-infectee pairs. Importantly, 

offspring counts were not artificially right-censored, meaning the observed count of each 

infector case was included even if the estimated infection date of paired infectee(s) fell after 

the exponential periods of each wave. Following the approach of Llyod-Smith et al (Lloyd-

Smith et al., 2005), we directly estimate k from the finalised offspring distributions by 

maximum likelihood estimation, assuming a negative binomial model jointly parameterised 

by the mean and dispersion parameter k, with 95% intervals generated by non-parametric 

bootstrap estimation sampling 1000 replicates with replacement. 
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