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Abstract 

 

Aim: To investigate neural oscillatory networks in major depressive disorder (MDD), effects 

of home-based transcranial direct current stimulation (tDCS) treatment, and potential 

predictors of treatment remission.  

 

Methods: In a randomised controlled trial (RCT) of home-based tDCS treatment, EEG data 

were acquired a subset: 21 MDD participants (16 women) (mean age 36.63 ± 9.71 years) in 

current depressive episode of moderate to severe severity (mean Hamilton Depression 

Rating Scale (HAMD) score 18.42 ± 1.80). Participants were randomised to either active 

(n=11) or sham tDCS (n=8). Treatment was home-based tDCS treatment for 10 weeks in a 

bifrontal montage (anode over left dorsolateral prefrontal cortex) consisting of 5 sessions per 

week for 3 weeks and 3 sessions per week for 7 weeks. Active tDCS was 2mA and sham 

tDCS 0mA with brief ramp up and ramp down period to mimic active stimulation. Each 

session was 30 minutes. Clinical remission was defined as HAMD score ≤ 7. Resting-state 

EEG data were acquired at baseline, prior to the start of treatment, and at 10-week end of 

treatment. EEG data were acquired using portable 4-channel EEG device (electrode 

positions: AF7, AF8, TP9, TP10). EEG band power was extracted for each electrode and 

functional connectivity phase synchronization by phase locking value (PLV). Deep learning 

was applied to baseline PLV features to identify predictors of treatment remission.  

 

Results: Main effect of group was observed in gamma PLV in frontal and temporal regions, 

in which active tDCS treatment group showed higher connectivity as compared to sham 

group. In active treatment group, significant positive correlations between changes in delta, 

theta, alpha, and beta PLV and improvement in depression severity were observed. The 

highest treatment remission prediction was achieved by combining PLV features from theta, 

alpha, and beta: accuracy 71.94% (sensitivity 52.88%, specificity 83.06%).  

 

Conclusions:  Synchronized brain activity across large-scale networks as reflected in gamma 

PLV is a potential mechanism of active tDCS as compared to placebo-sham tDCS. Baseline 

resting-state EEG is a potential predictor of treatment remission. Home-based EEG 

measures are feasible and potentially useful predictors of clinical outcome. 

 

Keywords: 

transcranial direct current stimulation; brain connectivity; EEG; phase locking value; unipolar 

depression; major depression disorder; prediction treatment response  
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1.Introduction 

 

Major depressive disorder (MDD) is a common and debilitating mental health disorder, 

characterized by persistent feelings of a low mood or inability to experience pleasure that is 

associated with a diminished interest in daily activities and changes in neurovegetative 

symptoms (American Psychiatric Association & Association, 2013). MDD is a heterogenous 

disorder, in which the remission rate is around 30-40% following the initial medication trial 

and about 55-55% after a subsequent trial, and there can be a lengthy process of trial and 

error to identify the optimal treatment (Trivedi et al., 2006; Fu et al., 2019). 

 

The non-invasive brain stimulation, transcranial direct current stimulation (tDCS), is 

emerging as a potential treatment option in MDD (Mutz et al., 2018, 2019; Woodham et al., 

2021). tDCS involves the application of a low-level electric current to the scalp, typically 

between 0.5-2.0 mA, with the anode most commonly placed over the left dorsolateral 

prefrontal cortex (DLPFC) in MDD treatment studies (Mutz et al., 2018, 2019, Moffa et al., 

2020). The current modulates neuronal activity and neural regions more widely involved in 

mood regulation beyond the directly targeted areas (Polania et al., 2011).  

 

As tDCS is portable and has a strong safety profile, we developed a home-based protocol 

which has demonstrated significant efficacy in a multi-site randomised controlled trial 

(Woodham et al., 2022, 2023). To investigate the neurophysiological effects and potential 

predictors of treatment response, electroencephalography (EEG) data were acquired in a 

subset of participants. EEG is a promising method for identifying neurobiological predictors 

of treatment response. Measures of connectivity, asymmetry across hemispheres, and 

power in frontal and temporal electrodes are predictive of treatment response to 

antidepressant medication as well as to repetitive transcranial magnetic stimulation (rTMS) 

(Watts et al., 2022). Applying deep learning, treatment response to rTMS was predicted with 

accuracies over 90% (Adamson et al., 2022).  

 

In the present study, we sought to investigate the effects of a home-based tDCS treatment in 

MDD and to identify potential predictors of clinical response. We employed a portable 

wireless EEG device equipped with 4 dry electrodes, known for its robust signal properties 

(Cannard et al., 2021; Krigolson et al., 2021). Participants underwent EEG recording in their 

own homes under real-time supervision via video conference. We analysed EEG metrics, 

including power and phase locking value (PLV). PLV evaluates the consistency of phase 

differences over time, making it useful for detecting phase synchronization even in low-

amplitude signals. This offers a complementary perspective to power measurements, which 
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quantify signal strength. We employed deep learning methods to explore whether baseline 

EEG measures could predict treatment remission. 

 

2. Method 

 

2.1 Participants  

 

Ethical approval was obtained from South Central-Hampshire B Research Ethics Committee. 

All participants provided written informed consent electronically. The study was a double-

blind, placebo-controlled, randomized, superiority, trial of home-based tDCS in MDD 

(Woodham et al., 2023). Participants were 18 years or above, having a MDD diagnosis and 

currently experiencing a major depressive episode without psychotic features, based on 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (American 

Psychiatric Association & Association, 2013) criteria and determined by a structured 

assessment using Mini-International Neuropsychiatric Interview (MINI; Version 7.0.2) 

(Sheehan, 1998). All participants had at least a moderate severity of depressive symptoms, 

as measured by 17-item Hamilton Depression Rating Score (HAMD) of ≥ 16 (Hamilton, 

1960).   

 

In inclusion criteria, participants were medication-free, or were taking antidepressant 

medication for at least 6 weeks, or were in psychotherapy for at least 6 weeks prior to 

enrolment. Exclusion criteria included having a history of mania or psychosis, having a 

neurological disorder or a medical disorder that may mimic mood disorders, significant 

suicide risk, or any exclusion criteria for receiving tDCS. Participants were randomly 

assigned to receive either active tDCS treatment (n=11; 8 women; mean age 38.45 years, 

SD 9.67 years) or sham tDCS treatment (n=8; 8 women; mean age 34.16 years, SD 9.99 

years) (Table 1). Further information regarding demographic and clinical differences 

between the treatment groups is available in the Supplementary Materials. 

 

2.2 tDCS treatment protocol 

 

Protocol consisted of a 10-week course of active or sham tDCS, which was self-

administered by participants in their homes 5 times a week for 3 weeks and then 3 times a 

week for 7 weeks, for a total of 36 sessions. A member of the research team was present for 

the first session by Microsoft Teams video call. Bifrontal montage was applied with the 

anode positioned over left DLPFC (F3 position according to international 10/20 EEG system) 

and cathode over right DLPFC (F4 position). Each electrode was a 23cm2 conductive rubber 
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electrode covered by saline soaked sponges. Active simulation was 2 mA for a duration of 

30 minutes with a gradual ramp up over 120 seconds at the start and ramp down over 15 

seconds at the end of each session. Sham stimulation had an initial ramp up from 0 to 1 mA 

over 30 seconds then ramp down to 0 mA over 15 seconds, which was repeated at end of 

the session to provide a tingling sensation that mimics active stimulation. Flow Neuroscience 

tDCS device was used for all participants. Clinical remission was defined as HAMD score of 

< 7 at the 10-week end of the treatment. 

 

2.3 Remote EEG acquisition and preprocessing 

 

EEG data were collected at two time points: at baseline, prior to the start of treatment 

(baseline), and at the 10-week end of treatment (post-treatment). EEG data had been 

acquired in sub-sample of 21 MDD participants (18 women; mean age 37.10 years, SD 9.71 

years) at baseline. However, post-treatment data were not available for one participant and 

was of consistently poor quality for another participant and was not included. Thus, data 

were available in 19 MDD participants (16 women; mean age 36.63 years, SD 9.71 years) at 

both timepoints (Table 1). 

 

At each EEG acquisition session, a trained research team member provided real-time 

guidance via videoconference. Four 5-minute EEG recordings were conducted at each 

timepoint, with participants instructed to maintain a relaxed posture without movements. 

Resting state recordings were conducted in the following sequence: eyes closed, eyes open, 

eyes closed, and eyes open. In the present analysis, the two 5-minute resting state eyes-

closed recordings at both timepoints were utilized. 

 

EEG recordings were acquired using a portable, wireless MUSE device with 4 dry electrodes 

and sampling frequency of 256 Hz. Electrodes were positioned at AF7, AF8 (frontal sites), 

TP9, and TP10 (temporoparietal sites), with reference to the FPz electrode. The recorded 

EEG signals, saved in CSV format, included timestamps for each EEG sample, raw EEG 

signals from each electrode, and Horse Shoe Indicator (HSI) values for each electrode, 

indicating electrode connectivity quality.  EEG signals were windowed into 10-seconds long 

windows without overlap. HSI values, ranges from 1 (excellent connectivity), 2 (medium 

connectivity), and 4 (poor connectivity), were available for each EEG sample for quality 

assessment. These values were averaged across samples within each window, and 

windows with an average HSI value of 2 or less were selected for further analysis.  EEG 

signals from each electrode were filtered across six frequency bands: the full band (1-60 

Hz), delta δ (1-4 Hz), theta θ (4-8 Hz), alpha α (8-12 Hz), beta � (12-30 Hz), and gamma � 
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(30-60 Hz). Butterworth Infinite Impulse Response (IIR) band-pass filters of 5th order were 

utilized for filtering of the EEG signals.  

 

2.4 Aggregation of rs-EEG measures 

 

Resting state EEG metrics, including EEG band power atable nd phase locking value (PLV), 

were extracted. EEG band power was calculated for all four electrodes (AF7, AF8, TP9, 

TP10). PLV was computed for all possible electrode pairs (AF7-AF8, AF7-TP9, AF7-TP10, 

AF8-TP9, AF8-TP10, TP9-TP10). PLV evaluates the phase synchrony between two time-

series signals (Hoke et al., 1989; Lachaux et al., 1999) and is commonly used to assess 

functional connectivity between EEG signals from different electrodes, revealing temporal 

relationships of neural signals irrespective of their amplitude. PLV is a statistical metric 

constrained within the range of 0 to 1. PLV value approaching 1 indicates high phase 

synchronization with minimum variation in phase difference across the EEG signals, while a 

value close to 0 suggests no phase synchronization. A total of 24 band power values and 36 

PLVs were computed using two sets of 60 EEG measurements each at pre- and post-

treatment, available for statistical analysis. Additional details are provided in the 

Supplementary Materials. 

 

2.5 Statistical analyses 

 

Statistical analyses were conducted on band power and PLV to explore potential 

associations between changes in EEG metrics and the severity of depression, as well as to 

evaluate the effects of active and sham tDCS treatment. 

 

Pearson's correlation was conducted to examine the relationship between changes in EEG 

measures and proportional change in HAMD scores over the 10-week treatment period 

across all participants. The proportional change in HAMD scores was determined by 

subtracting baseline score from post-treatment score and then dividing absolute difference 

by baseline score. Factorial analyses with and without proportional change in MADRS as 

covariate were used for between-group comparisons. To test whether EEG measures 

changed in response to treatment, a two-way ANOVA was performed for each EEG variable. 

The factors were: remission group (remission, non-remission) and time (baseline, post-

treatment). 60 statistical tests were performed in total. Additional details are provided in the 

Supplementary Materials. 
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Coefficients were estimated in the R statistical environment (R Core Team, R. (2013)) using 

linear regression (lm built-in function).  Post hoc tests (Tukey honestly significant difference 

(HSD)) were performed to assess significant effects. The statistical threshold was set at p < 

0.05, with correction for multiple comparisons by controlling False Discovery Rate (FDR). A 

full description is in the supplementary materials. 

 

2.6 Deep learning analysis 

 

Participants were categorized into two groups based on their remission status following 

treatment. In the deep learning-based classification analysis, participants achieved remission 

were labelled as the positive class and non-remission as the negative class, with sensitivity 

representing remission and specificity representing non-remission. For predicting treatment 

response, PLV values were used and were extracted from different frequency bands of pre-

treatment EEG. From each EEG frequency band, PLV feature vector with a dimension 6 

were generated, representing each of the six electrode pairs. These six-dimensional feature 

vectors, both individually and through the concatenation of multiple EEG bands, were 

employed as inputs for deep learning models with varying parameters. This concatenation 

process at the feature level led to a linear increase in the feature dimension. To assess the 

effectiveness of different combinations of PLV features from individual bands and 

combinations of multiple bands, two distinct deep learning architectures were investigated. 

The first architecture was a fully connected perceptron deep learning structure, and the 

second employed a one-dimensional convolutional neural network (1DCNN) architecture. 

Considering combination of features from multiple EEG bands, the dimensionality varied as 

follows: 6 (single band), 12 (two-band combination), 18 (three-band combination), 24 (four-

band combination), and 30 (combination of all bands).  

  

For the fully connected perceptron deep learning network, a four-layer architecture was 

implemented, comprising layers with 32, 32, 16, and 1 perceptrons (output layer) for all input 

combinations, except in the case of the all-band combination where the feature size was 30. 

In this scenario, 64 perceptrons were employed in the first layer. The all-band combination 

encompassed all PLV features extracted from the delta to gamma bands. In the 1DCNN-

based architecture, the initial fully connected layer of the perceptron network was replaced 

with a convolutional layer. This convolutional layer employed a kernel size of 3. To ensure 

kernel overlap, the number of filters used was determined by multiplying the input dimension 

by a multiplication factor 2/3. Following the convolutional layer, a MaxPooling1D layer with a 

pool size of 2 was integrated to downsample the feature maps, aiming to extract the most 

relevant features while reducing computational complexity. For single-band PLV features 
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with an input dimension of 6, 4 filters with a kernel size of 3 were used. Similarly, for 

dimensions 12, 18, 24, and 30, 8, 12, 16, and 20 filters were employed respectively. The 

activation function 'relu' was applied to all layers except the output layer, where 'sigmoid' 

was utilized. To minimize the 'binary cross-entropy' loss function, the 'adam' optimizer was 

employed.   

  

Due to the constrained size of the dataset and our emphasis on accurately evaluating model 

performance over computational efficiency, we opted for the Leave-One-Subject-Out 

(LOSO) methodology to assess the deep learning model's average classification accuracy. 

Employing this approach, we conducted 20 iterations of training and testing for each input 

combination. During each iteration, one participant out of the 20 was reserved for testing, 

while the PLV features from the remaining 19 participants were utilized for model training. 

Following 50 epochs of model training, we identified the most effective model based on its 

classification accuracy on a validation set. This validation set, comprising 240 randomly 

selected vectors, equally distributed between remission and non-remission groups, was 

drawn from the training data. The model exhibiting the highest classification accuracy on the 

validation set underwent further testing. 

 

3. Results 

 

3.1 Clinical outcome 

  

In the active tDCS treatment arm, 6 participants attained clinical remission (mean HAMD 

score: 2.83, SD 2.32) and 5 participants did not achieve clinical remission (mean HAMD 

score: 13.80, SD 3.83). In the sham treatment arm, 1 participant achieved clinical remission 

(HAMD score: 7) and 7 participants did not achieve clinical remission (mean HAMD score: 

11.9, SD 2.54).  

 

3.2 Effects of Treatment in EEG PLV connectivity 

 

A significant main effect of treatment group was observed in full PLV between AF8-TP9 (F = 

4.83, FDR-adjusted p = 0.03) and AF8-TP10 (F = 4.69, FDR-adjusted p = 0.04). Post-hoc 

tests revealed that the active treatment group showed increased PLV as compared to the 

sham treatment group at the end of treatment between AF8-TP9 (t = 2.31, FDR-adjusted p = 

0.04) and AF8-TP10 (t = 2.68, FDR-adjusted p = 0.02), while there were no differences 

between groups at baseline between AF8-TP9 (t = 1.44, FDR-adjusted p = 0.17) and AF8-

TP10 (t = 1.32, FDR-adjusted p = 0.21)(Figure 3, Supplementary Table 2). 
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In specific frequency bands, a significant main effect of group was found in beta band PLV 

between TP9-TP10 (F = 6.05, FDR-adjusted p = 0.02). Post-hoc tests revealed that at pre-

treatment, the active treatment group showed a lower beta band PLV as compared to the 

sham group (t = -2.39, FDR-adjusted p = 0.03), while there was no significant difference at 

post-treatment (t = -1.11, FDR-adjusted p = 0.28). 

 

Significant main effects of group were also observed in gamma band PLV between AF7-AF8 

(F = 4.19, FDR-adjusted p = 0.05), AF7-TP9 (F = 6.80, FDR-adjusted p = 0.01), AF8-TP9 (F 

= 9.81, FDR-adjusted p = 0.00), AF8-TP10 (F = 7.78, FDR-adjusted p = 0.01) and TP9-TP10 

(F = 5.12, FDR-adjusted p = 0.03) (Figure 3, Supplementary Table 1).  

 

Post-hoc tests showed increased gamma PLV between AF7-AF8 in the active group as 

compared to the sham group which approached significance at post-treatment (t = 2.07, 

FDR-adjusted p = 0.06), while there were no significant differences at baseline (t = 1.32, 

FDR-adjusted p = 0.21). Similarly, post-hoc tests showed increased PLV post-treatment in 

the active group as compared to the sham group at AF8-TP9 (t = 3.03, FDR-adjusted p = 

0.008) and AF8-TP10 (t = 3.00, FDR-adjusted p = 0.008), while there were no significant 

differences between groups at baseline at AF8-TP9 (t = 1.86, FDR-adjusted p = 0.08) and 

AF8-TP10 (t = 1.54, FDR-adjusted p = 0.14). 

 

Post-hoc tests showed increased gamma PLV between AF7-TP9 at baseline in the active 

group (t = 2.40, FDR-adjusted p = 0.03) as compared to the sham group, while there were 

no significant differences between groups at post-treatment (t = 1.76, FDR-adjusted p = 

0.10). Similarly, between TP9-TP10, post-hoc tests showed increased gamma PLV at 

baseline in the active group as compared to the sham groups which approached significance 

(t = 2.08, FDR-adjusted p = 0.06), but no differences between groups post-treatment (t = 

0.69, FDR-adjusted p = 0.50).   

 

There were no significant main effects of time or interaction effects (Supplementary Table 1). 

 

3.3 Effects of Treatment in EEG power  

  

There were no significant main effects of group or time or any interaction effects 

(Supplementary Table 1). 

 

3.4 Relationship between changes in depression severity and EEG PLV connectivity 
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In the active treatment group, positive correlations with improvements in depressive 

symptoms following tDCS treatment were observed in full band PLV across several 

electrode pairs: AF7-AF8 (R² =0.73, FDR-adjusted p = 0.04), AF8-TP9 (R² = 0.74, FDR-

adjusted p = 0.04), AF8-TP10 (R² = 0.82, FDR-adjusted p = 0.02), and TP9-TP10 (R² = 0.81, 

FDR-adjusted p = 0.01). Positive correlations were also observed in delta band PLV in the 

electrode pairs: AF8-TP10 (R² = 0.79, FDR-adjusted p = 0.02) and TP9-TP10 (R² = 0.72, 

FDR-adjusted p = 0.02). In the theta band PLV, positive correlations were found in the 

electrode pairs: AF7-AF8 (R² = 0.79, FDR-adjusted p = 0.02), AF7-TP9 (R² = 0.85, FDR-

adjusted p = 0.01), AF7-TP10 (R² = 0.86, FDR-adjusted p = 0.01) and AF8-TP9 (R² = 0.88, 

FDR-adjusted p = 0.00). In alpha band PLV, a positive correlation was observed in the 

electrode pair AF8-TP9 (R² = 0.81, FDR-adjusted p = 0.01), and in beta band PLV, a positive 

correlation was found in electrode pair AF7-TP9 (R² = 0.88, FDR-adjusted p = 0.00). No 

regions showed a negative correlation with improvement in depressive symptoms. No 

significant correlations were found in the sham treatment group (Supplementary Table 4). 

 

3.5 Relationship between changes in depression severity and EEG power 

 

No significant correlation was found between change in EEG power and proportional change 

in HAMD scores from baseline to post-treatment across all participants (Supplementary 

Table 4). 

 

3.6 Within group effects over time in active and sham groups 

 

In the sham treatment group, significant reductions in alpha band PLV between AF7-AF8 (t = 

2.51, FDR-adjusted p = 0.04), AF7-TP9 (t = 3.28, FDR-adjusted p = 0.01) and AF7-TP10 (t = 

2.33, FDR-adjusted p = 0.05) and gamma PLV of AF7-AF8 (t = 3.17, FDR-adjusted p = 0.02) 

were found from baseline to post-treatment (Figure 1,Supplementary Table 3). In the active 

group, there were no significant differences from baseline to post-treatment. 

 

3.7 Deep learning-based prediction 

 

From EEG frequency bands, the prediction of treatment remission achieved the highest 

accuracies of: 60.04% (delta band), 67.46% (theta band), 68.42% (alpha band), 68.21% 

(beta band), 65.8% (gamma band), 46.48% (full band) with a 1DCNN model, except for the 

beta band in which the fully connected perceptron model achieved an accuracy of 71.19% 

(Supplementary Table 5).  
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Based on single EEG band PLV, prediction of treatment remission was the highest in alpha 

band PLV: 68.42% (sensitivity 14.29%, specificity of 100%). In all single band PLV 

classifications, specificity was significantly higher than sensitivity. PLV value matrix figure 

(Figure 2) shows connectivity patterns across EEG frequency bands. 

 

To enhance feature dimension and thereby provide more information for the deep learning 

models, we systematically combined the PLV features from multiple EEG bands. These high 

dimensional inputs were then utilized for predicting treatment outcomes. In combinations of 

two band PLV features, combination of theta and beta bands yielded the highest treatment 

remission prediction: 71.45% (sensitivity 53.29%, specificity 82.05%). In three EEG band 

PLV combinations, the highest treatment remission prediction accuracy was based on theta, 

alpha, and beta bands: 71.94% (sensitivity 52.88%, specificity of 83.06%). In four EEG band 

combinations, the combination of delta, theta, alpha, and beta bands yielded the highest 

treatment remission prediction accuracy: 66.32% (sensitivity 43.90%, specificity 79.40%). In 

the full five EEG bands delta, theta, alpha, beta, and gamma combination, treatment 

remission prediction accuracy was: 62.25% (sensitivity 54.48%, specificity 66.78%). The 

1DCNN model consistently achieved the highest classification accuracy compared to the 

fully connected perceptron network in all the high performing band combinations, except the 

combination of the four EEG bands: delta, theta, alpha, beta, where the fully connected 

perceptron network achieved the highest classification accuracy of 66.32% (sensitivity 

43.90%, specificity 79.40%) (Supplementary Table 6). 

 

4. Discussion 

 

We sought to examine the neurophysiology of MDD and effects of active and sham home-

based tDCS treatment as measured by resting-state EEG. We applied deep learning to 

investigate whether baseline EEG measures could predict clinical remission from tDCS 

treatment. We observed a main effect of group in gamma PLV in frontal and temporal 

channel pairs in which the active tDCS treatment group showed higher connectivity as 

compared to the sham group. Post-hoc analyses revealed that this was evident at the end of 

treatment, while there were no differences between groups at baseline. Similarly, following 

rTMS treatment, increased gamma phase-based connectivity has been associated with 

clinical response, in which MDD participants who achieved a clinical response to rTMS 

treatment showed an increase in gamma phase-based connectivity, which was positively 

associated with improvements in mood and cognitive function (Bailey et al., 2018; Zuchowicz 

et al., 2019). 
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Gamma connectivity, reflecting synchronized brain activity across large-scale networks, is 

likely to be related to default mode network function (Buzsaki & Draguhn, 2004; Danilova, 

2008; Fries et al., 2008; Arikan et al., 2019; Krukow & Jonak, 2022). Altered gamma 

connectivity has been observed in MDD, with hypoconnectivity within the frontoparietal 

network and hyperconnectivity within the default network, potentially reflect pathogenic 

mechanisms (Kaiser et al., 2015; Fitzgerald & Watson, 2018). In MDD, resting-state gamma 

oscillations showed a negative correlation with depressive symptoms, in particular with sleep 

and cognitive impairments (Liu et al., 2022). In contrast, increased gamma activity in the left 

prefrontal region in rTMS-responsive MDD patients has been linked to clinical improvements 

(Noda et al. 2017). In healthy individuals, enhanced gamma connectivity has been observed 

following mindfulness training, purported to reflect emotion regulation (Ng et al., 2023). The 

increased gamma connectivity observed in the active treatment as compared to the sham 

treatment group could reflect a mechanism of tDCS effects.  

 

Within the active tDCS treatment group, we found significant positive correlations between 

changes in delta, theta, alpha, and beta PLV and improvement in depression severity. In 

support, clinical remission following rTMS treatment is associated increased delta, theta, 

alpha, and gamma PLV in multiple channel pairs (Zuchowicz et al., 2019), suggesting that 

these bands might distinguish the mechanisms between active and sham tDCS treatment.  

 

To predict treatment remission, we applied deep learning networks to the PLV features 

extracted from the baseline EEG signals. Deep learning models are capable of handling 

high-dimensional data, such as EEG signals, which are often complex and non-linear. These 

models can automatically learn and extract useful features from raw EEG data without the 

need for manual feature extraction, which is a significant advantage over traditional machine 

learning methods. Scalogram images generated from EEGs have been used to train 

convolutional neural networks to classify MDD responders and non-responders to SSRI 

antidepressant treatment (Shahabi et al., 2021). In the present study, the highest prediction 

accuracy was achieved by combining PLV features from multiple EEG bands: theta, alpha, 

and beta. Notably, theta PLV exhibited the highest sensitivity, indicating that the classifier 

could predict treatment remission. Theta PLV also showed the strongest positive correlation 

between with an improvement in depressive symptoms. The significant individual-level 

associations between theta PLV changes and depression symptoms suggest that theta PLV 

could serve as a valuable predictor of tDCS treatment remission at an individual level.  
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Increased resting theta activity at baseline in the anterior cingulate cortex (ACC) is a 

potential predictor of treatment responses to antidepressant medication (Pizzagalli et al., 

2018) as well as to rTMS treatment (Narushima et al., 2010). Theta activity reflects neural 

processes related to cognitive control and emotional regulation (Cavanagh et al., 2015), 

which are typically impaired in MDD (Grin-Yatsenko et al., 2010) and decreased resting-

state theta connectivity has been observed MDD which was negatively correlated with 

depressive severity (Saletu et al., 2010; McVoy et al. 2019). Beta band power at baseline 

predicted rTMS treatment response in MDD, achieving 91% classification accuracy 

(Hasanzadeh et al., 2019), and baseline alpha power was predictive of treatment response 

to pharmacotherapy (Jaworska et al., 2019; Zhdanov et al., 2020). 

 

As potential predictors of treatment response, power features have been utilised (Al-Kaysi et 

al., 2017; Hasanzadeh et al., 2019; Jaworska et al., 2019; Zhdanov et al., 2020), while 

connectivity features have been relatively underexamined. Alpha spectral correlation-based 

connectivity was used to predict rTMS treatment response, achieving 69.30% accuracy 

(Corlier et al., 2019), and directed transfer function (Korzeniewska et al., 2003) connectivity 

matrices of EEG bands has been applied to predict treatment remission to selective 

serotonin reuptake inhibitors (SSRIs) (Mirjebreili et al., 2024). In the present study, the 

predictive accuracy achieved from EEG band connectivity indicates its feasibility. Our 

findings complement previous studies of baseline resting-state EEG predicting treatment 

response to rTMS (Wozniak-Kwasniewska et al., 2015) and tDCS (Al-Kaysi et al., 2017). 

Together, the promising results suggest that baseline resting-state EEG may hold predictive 

value for treatment outcomes of non-invasive brain stimulation in MDD. 

 

Limitations of the present study include the small sample size which limited investigation of 

neural markers that can distinguish response to active and placebo-sham treatment (Fu et 

al., 2024). The EEG data were acquired during a a resting state rather than during cognitive 

tasks, which prevents linking the activity to specific cognitive process. In the deep learning 

analysis, we applied leave-one-subject-out testing to mitigate overfitting, however, a more 

robust approach would be to test in a wholly independent sample. The specificity of the 

predictive models was often higher than the sensitivity, indicating that they were better at 

identifying participants who were more likely to have persistent depressive symptoms 

following treatment. This is consistent with EEG predictive models to rTMS and 

antidepressant treatments (Watts et al., 2022), suggesting a potential biomarker for non-

response or treatment resistant depression and pointing towards the need for alternative or 

combination of treatments earlier in the course of treatment trials to prevent a series of 

treatment failures (Fu et al, 2024). 
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In summary, we examined the neurophysiological effects of a 10-week home-based tDCS 

treatment as measured by resting-state EEG-based functional connectivity and power 

measures. We found that the active tDCS group exhibited heightened gamma connectivity in 

frontal and temporal regions compared to the placebo-sham group, suggesting a 

neurophysiological mechanism of active tDCS that modulating neural network dynamics. 

Theta PLV demonstrated the strongest positive correlation with symptom severity 

improvement, suggesting a potential to predict individual-level treatment outcomes with 

tDCS. While integrating PLV features from various EEG frequency bands in the deep 

learning model generated the highest accuracy for predicting treatment remission, indicating 

that prediction response is distributed across multiple EEG bands.  
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Table 1.   

Demographic characteristics of participants   

Demographic feature Active   Sham 

Total number (women)  11 (8)  8 (8)  

Age   38.45 ± 9.67 34.16 ± 9.88  

Education level    

High School 1 (9.1%) 0 (0%) 

College/Diploma 1 (9.1%) 2 (25.0%) 

Bachelor's or Professional Degree 6 (54.5%) 5 (62.5%) 

Master's or Doctoral Degree  3 (27.3%)  1 (12.5%) 

HAMD score at baseline  19.00 ± 1.90  17.63 ± 1.41 

HAMD score at end of treatment  7.82 ± 6.43 11.25 ± 2.92 

Treatments during trial        

Taking antidepressant medication   7 (63.6%)  5 (62.5%) 

Taking no antidepressant medication   4 (36.4%)  3 (37.5%) 

Engaged in psychotherapy   0 (0%)  0 (0%) 

  

Mean values are presented with '±' standard deviation values. Age is in years. HAMD, 

Hamilton Depression Rating Scale. There was no significant difference between active and 

sham groups in age (t = 0.954, p = 0.356), gender (�� = 0.946, p = 0.331), baseline HAMD 

score (t = 1.813, p = 0.088) and post-treatment HAMD score (t = -1.563, p = 0.139). 
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Figure Legends 

 

Figure 1. 

Image representing averaged PLV values across different group (active and sham group) 
and time (pre- and post-treatment). Rows depict EEG bands: full band, delta, theta, alpha, 
beta and gamma, and columns represent participant categories: pre-treatment active, pre-
treatment sham, post-treatment active, and post-treatment sham groups. 

 

Figure 2. 

Image representing averaged PLV values across different group (remission and non-
remission group) and time (pre- and post-treatment). Rows depict EEG bands: full band, 
delta, theta, alpha, beta and gamma, and columns represent participant categories: pre-
treatment remission, pre-treatment non-remission, post-treatment remission, and post-
treatment non-remission groups. 

 

Figure 3.  

Boxplots presenting the PLV significant changes at different electrode pairs and frequency 
bands before and after treatment. The graphs show comparisons between the active 
treatment group (purple) and the sham treatment group (orange) at baseline and post-
treatment time points. Significance between groups is denoted by *. 
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