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ABSTRACT

The presence of missing values in Electronic Health Records (EHRs) is a widespread and inescapable
issue. Publicly available data sets mirror the incompleteness found in EHRs. Although the existing
literature largely approaches missing data as a random phenomenon, the mechanisms behind these
missing values are often not random with respect to important characteristics of the patients. Similarly,
the sampling frequency of clinical or biological parameters is likely informative. The possible
informative nature of patterns in missing data is often overlooked. For both missingness and sampling
frequency, we hypothesize that the underlying mechanism may be at least consistent with implicit
bias.
To investigate this important issue, we introduce a novel analytical framework designed to rigorously
examine missing data and sampling frequency in EHRs. We utilize the MIMIC-III dataset as a
case study, given its frequent use in training machine learning models for healthcare applications.
Our approach incorporates Targeted Machine Learning (TML) to study the impact of a series of
demographic variables, including protected attributes such as age, sex, race, and ethnicity on the
rate of missing data and sampling frequency for key clinical and biological variables in critical care
settings. Our results expose underlying differences in the sampling frequency and missing data
patterns of vital sign measurements and laboratory tests between different demographic groups. In
addition, we find that these measurement patterns can provide significant predictive insights into
patient outcomes. Consequently, we urge a reevaluation of the conventional understanding of missing
data and sampling frequencies in EHRs. Acknowledging and addressing these biases is essential for
advancing equitable and accurate healthcare through machine learning applications.

Keywords Missing Data · Electronic Health Records (EHRs) Interventions · Bias · Targted Machine Learning

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308661doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://orcid.org/0000-0002-1520-8387
https://orcid.org/0000-0002-3769-0127
https://orcid.org/0000-0002-3412-0735
https://orcid.org/0000-0002-7007-4908
https://doi.org/10.1101/2024.06.09.24308661
http://creativecommons.org/licenses/by/4.0/


Sampling frequencies and missingness patterns of clinical and biological variables in ICU A PREPRINT

1 Introduction

The digitization of health records through Electronic Health Records (EHRs) has supplanted traditional paper-based
systems, thereby centralizing patient-specific information in an electronic medium. Over the past decade, several
deidentified EHR datasets were made available to the public, mainly for research purposes. Notable examples include
the MIMIC Database (Johnson et al. [2016]), PCORnet(Fleurence et al. [2014]), I2B2 Data (Uzuner et al. [2011]), and
the COVID-19 Research Database. The composition of data in publicly accessible datasets is indicative of what is
available in EHRs. These empirical data from the real world not only mirror the way care is provided but also inherently
incorporate potential biases in how variables are measured. These biases, if not rigorously identified and accounted for,
can propagate through analyses.

The advent of large-scale, accessible EHR databases has led to a surge in studies to improve healthcare delivery by
identifying patient phenotypic cohorts (Shivade et al. [2014]), developing risk prediction models (Goldstein et al.
[2017]), and enriching our understanding of risk factors in relation to health outcomes (Adler and Stead [2015]).
However, a significant obstacle in this endeavor is the widespread occurrence of missing values within EHRs. Previous
research by Kharrazi et al. [2014], Wells et al. [2013], Botsis et al. [2010], Beaulieu-Jones et al. [2018, 2017] has
emphasized the necessity of addressing the issue of missing values and has recognized that incomplete data is often
related to clinical practice, rather than being distributed randomly. Missing values may occur for some of the following
reasons: data was measured but not recorded, the patient’s condition made measurement impossible, or healthcare
professionals had no intention of taking the measurement.

Existing methodologies to mitigate the impact of missing values predominantly include imputation techniques (Sharafod-
dini et al. [2019]), Inverse Probability Weighting (IPW) (Seaman and White [2013]), ignoring observation with missing
data in complete case analysis (CCA) and available case analysis (ACA). Specifically, CCA involves the exclusion of any
data rows containing missing values or outliers, thus limiting the analysis to only fully observed cases. ACA, conversely,
utilizes all available data specific to each analytic question and is also known as pairwise deletion. Imputation methods
substitute missing values and outliers based on the observed data. Despite their widespread adoption, these methods
are not without drawbacks, notably the risk of compromised generalizability and the potential for increased bias, due
to their respective modeling assumptions. Although these methods exist to ameliorate, they neglect the informative
potential of missing data, particularly in critical settings like the Intensive Care Unit (ICU).

Similarly, the concept of sampling frequency is often overlooked in statistical analyses or predictive models, despite
its critical importance, especially in the ICU. Sampling frequency refers to how often data points, such as vital signs
or laboratory values, are collected. As noted by Zhang et al. [2021], the frequency of vitals collected can vary, and
incorporating this variability can improve the performance of outcome prediction models. However, this sampling
frequency is rarely explicitly considered. For example, studies such as those by Zhang et al. [2020] and another by
Khope and Elias [2023] developed predictive models using the MIMIC-III dataset without incorporating sampling
frequencies, instead focusing on static and aggregated temporal data. Ignoring informative sampling frequencies can
significantly affect the quality and reliability of predictive models and statistical inferences.

Certain demographic groups may receive more frequent and thorough documentation due to various factors such
as socioeconomic status, healthcare access, or underlying health disparities. These disparities in data capture can
inadvertently introduce or amplify implicit biases in healthcare research, potentially leading to inequitable healthcare
outcomes. Therefore, it becomes important to understand how demographic variables such as age, gender, and
race/ethnicity might independently influence the presence of missing data and the sampling frequency of variables
collected in EHRs.

This study introduces an analytical framework designed to measure the occurrences of missing data and the frequency of
sampling in Electronic Health Records (EHRs). We apply this framework to the MIMIC-III dataset, the most frequently
used EHR dataset in machine learning research and one of the very few publicly available datasets where protected
attributes, such as demographic variables, are collected and documented (Fong et al. [2023]). Specifically, we propose
to investigate the potential association between missing data and variability sampling frequencies and demographic
variables, including age, gender, and race/ethnicity. We focus on sampling frequency and missing rate for key clinical
and biological parameters in critical care patients. As a secondary goal, we demonstrate that variations in sampling
frequency and missingness rates are predictive of in-hospital mortality.
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2 Methods

2.1 Data Source

The data used in this study were sourced from the Medical Information Mart for Intensive Care III (MIMIC-III) Johnson
et al. [2016]. This electronic repository contains patient-specific healthcare information and encompasses a variety of
variables, including patient demographics, hospital mortality rates, diagnostic data, laboratory test results, prescription
records, and medical procedures. The MIMIC-III database represents a cohort of more than 40,000 deidentified patients
who were admitted to intensive care units (ICU) at Beth Israel Deaconess Medical Center in Boston, Massachusetts,
from 2001 to 2012, and is publicly accessible through PhysioNet, subject to a data use agreement (Goldberger et al.
[2000]).

For the purpose of this study, we included the first admission records of patients meeting the following eligibility
criteria: (1) adult age, defined as 18 years or older; (2) absence of ICU admission related to pregnancy, childbirth, or the
postpartum period; (3) no live discharge within the initial 24-hour period following admission; and (4) the presence of
at least one arterial line, commonly used in ICUs for continuous blood pressure monitoring and arterial blood sampling,
during the ICU stay (Shiver et al. [2006]).

2.2 Variables and Data Structure

In the ICU, the monitoring of acutely ill patients is conducted through a multiplicity of methods, including both
laboratory tests (LTs) and vital sign measurements (VSs). Within the first 24 hours after admission to the ICU, it
is standard practice to perform a range of laboratory tests (Ezzie et al. [2007]). In addition, the healthcare team
continuously monitors and records vital signs. The frequency of these assessments and their entry into the EHR can
vary according to the specific clinical requirements of each patient.

We extracted data pertaining to 11 distinct vital signs and 35 different laboratory tests, which were selected based on a
list comprising the top 80% of commonly performed tests Frassica [2005] (see Appendix A, Table ??). This data set
also includes baseline characteristics for each patient and severity scores for each ICU stay(Johnson et al. [2018]).

To assess the influence of demographic variables on measurements and patterns of data missing, we extracted patient
data from the initial 24-hour period of admissions to the ICU. Furthermore, to evaluate their dynamic changes and
correlation with patient outcomes, we extended our data extraction to include information from the first five days of
ICU stays, segmented into consecutive 12-hour intervals. Detailed information regarding the structure of the data is
provided in Appendix B.

2.3 Statistical Analysis

2.3.1 Measurement frequencies and missingness patterns

Two distinct types of measurement rate variables were used. The first type quantifies the total number of measurements
per variable during the initial 24 hours or during subsequent 12-hour blocks. The second type, termed the missingness
rate, quantifies the frequency of missing observations for each variable, calculated as the number of hours without any
observation. For the first 24-hour block, this rate can range from 0 to 24, and for the 12-hour blocks, from 0 to 12. A
detailed description of how these measurement rate variables were computed is provided in Appendix C.

Since some vital signs are often monitored together, we grouped them and consolidated their missingness and mea-
surement rates into average rates. Similarly, for laboratory tests that are often ordered together, we grouped them and
consolidated their measurement rates into single variables that reflect group averages, as detailed in Appendix C, Table
??.

2.3.2 Association of demographic variables and measurement rates

To estimate the association between demographic variables and measurement rate variables, we used the double robust
Targeted Maximum Likelihood Estimator (TMLE) (Van der Laan and Rose [2018]). The TMLE framework is a
versatile method for deriving efficient estimators of estimands in nonparametric models, suitable for applications such
as measuring intervention impacts or deriving nonparametric variable importance measures using machine learning.
Additionally, TMLE allows for robust (model-free) statistical inference.

We defined the observed data as Oi = (Wi, Ai, Yi), i = 1, ..., n, where i indexes the individual, Wi are adjustment
variables including health status and demographic factors, Ai is the demographic variable of interest, and Yi is
the measurement patterns outcome. Our parameter of interest can be thought of as the marginally adjusted mean:
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θ(a) = EE[Y |A = a,W ], for each level a of the current demographic variable of interest. For example, comparisons
such as θ(Hispanic) vs. θ(White) adjust for variables including health status variables such as the Sequential Organ
Failure Assessment (SOFA) score and the other demographic variables. If A is defined as age, then W will contain both
health status and additional demographic variables such as race.

TMLE provides an unbiased estimator of the target estimand if one consistently estimates the outcome regression
Q(A,W ) = E[Y |A,W ] or the propensity score g(a|W ) = P (A = a|W ). Due to the lack of knowledge of the
underlying models in observational studies, data-adaptive estimation methods are essential. We used a Super Learning
(SL) ensemble machine learning algorithm with a library of both simple and highly adaptive (machine) learning to
estimate both Q and g. The goal of using the combination of the parameter (estimand) and estimating method is to
provide non-parametric, apples-to-apples comparisons of the mean measurement rates per demographic group, which
aggressively adjust for clinical and other variables, and also provides robust statistical inference in the context of using
highly adaptive machine learning algorithms. We conducted the analyses using the sl3 (SuperLearner) and tmle3
(TMLE) packages in the R language. [Coyle [2021]].

In addition to the primary analysis, we performed sensitivity analyzes using more traditional regression approaches
(generalized linear models or GLMs). These analyses served to examine the coefficients of the demographic variables
under different model specifications for predicted outcomes including missingness patterns and sampling frequencies.
Initially, we excluded severity scores and other demographic variables to understand the unadjusted relationships,
and subsequently included only severity scores as confounding factors. This multifaceted approach provided a
comprehensive understanding of how demographic variables influence both measurement patterns and data completeness
in critical care environments.

2.3.3 Predictive power analysis

To explore the relationship between measurement pattern variables and patient outcome, we evaluated the predictive
capacity of measurement-related variables alongside recorded clinical values to forecast ICU mortality in the next 12
hours. This evaluation employed the Super Learner (SL) algorithm, renowned for its ensemble method that enhances
prediction accuracy through V-fold cross-validation and integrates a diverse range of predictive models, from simple
linear regressions to complex machine learning techniques (Van der Laan et al. [2007]). We implemented discrete
SL using 10-fold cross-validation stratified by patient ID, which was crucial for managing the repeated measures
characteristic of our dataset and ensuring distinct separation between training and validation sets. The candidate models
included Generalized Linear Model (GLM), Bayesian GLM, Generalized Additive Model (GAM), Ridge Regression,
Elastic-net Penalized Regression (ElasticNet), Lasso Regression, Random Forests, Gradient Boosting Machine, and
Bayesian Additive Regression Trees.

We trained a predictive model of future (in the next 12 hours) ICU mortality using ’values variables’, which comprised
baseline characteristics (W ), vital sign measurements (V S), and laboratory test values (LT ). Then we trained another
predictive model of future (in the next 12 hours) ICU mortality using ’counting variables’, including counts of baseline
information (n_W ), vital sign sampling frequencies (n_V S), vital sign missingness rates (h_m_V S), and laboratory
test frequencies (n_LT ). Then we trained another one using a combined set of both ’values’ and ’counting’ variables.
Then we evaluate and compare the predictive performances from the three models trained with different set of variables
to see the variable importance of the set.

We developed three predictive models to forecast ICU mortality within the next 12 hours. The first model used ’values
variables’ as predictors, which included baseline characteristics (W ), vital sign measurements (V S), and laboratory
test values (LT ). The second model employed ’counting variables’ as predictors, consisting of counts of baseline
information (n_W ), vital sign sampling frequencies (n_V S), vital sign missingness rates (h_m_V S), and laboratory
test frequencies (n_LT ). The third model used the combination of both ’values’ and ’counting’ variables. We evaluated
and compared the predictive performances of these three models using cross-validated measures of fit to determine the
importance of each set of variables.

All analyses were performed using the R software, version 4.3.1 (2023-06-16).

Results

Patient Demographics

In the MIMIC-III database, comprising 46,520 patients, 23,426 met our inclusion criteria for the study. Of these, a low
ICU mortality rate was observed, with only 464 patients (2.02%) experiencing mortality within the first 5 days of their
ICU stay during their initial admissions. The demographic composition of the cohort is summarized in Table 1. 58.4%

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308661doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.09.24308661
http://creativecommons.org/licenses/by/4.0/


Sampling frequencies and missingness patterns of clinical and biological variables in ICU A PREPRINT

of the patients were male, and 50.7% identified as Christian. The majority (51.2%) were English speakers, and 70.9%
were white.

Table 1: Patient demographics summary table
No ICU Mortality (N= 22962) ICU Mortality (N=464) Overall (N= 23426)

Age
Mean (SD) 64.8 (17.2) 67.0 (18.2) 64.8 (17.2)
Median (IQR) 66.0 (23.0) 69.0 (25.0) 66.0 (23.0)

Gender
Female 9531 (41.5%) 210 (45.3%) 9741 (41.6%)
Male 13431 (58.5%) 254 (54.7%) 13685 (58.4%)

Religion
Christian 11671 (50.8%) 198 (42.7%) 11869 (50.7%)
Not Christian 3509 (15.3%) 56 (12.1%) 3565 (15.2%)
Missing 7782 (33.9%) 210 (45.3%) 7992 (34.1%)

Partner
Partner 11576 (50.4%) 208 (44.8%) 11784 (50.3%)
No Partner 9869 (43.0%) 180 (38.8%) 10049 (42.9%)
Missing 1517 (6.6%) 76 (16.4%) 1593 (6.8%)

Language
English 11798 (51.4%) 206 (44.4%) 12004 (51.2%)
Not English 1879 (8.2%) 46 (9.9%) 1925 (8.2%)
Missing 9285 (40.4%) 212 (45.7%) 9497 (40.5%)

Ethnicity
White 16300 (71.0%) 306 (65.9%) 16606 (70.9%)
Black 1487 (6.5%) 25 (5.4%) 1512 (6.5%)
Hispanic 674 (2.9%) 17 (3.7%) 691 (2.9%)
Asian 497 (2.2%) 14 (3.0%) 511 (2.2%)
Other 653 (2.8%) 13 (2.8%) 666 (2.8%)
Missing 3351 (14.6%) 89 (19.2%) 3440 (14.7%)

Insurance
Yes 22716 (98.9%) 449 (96.8%) 23165 (98.9%)
No 246 (1.1%) 15 (3.2%) 261 (1.1%)

Differential Monitoring Patterns

Our analysis first focused on the initial 24 hours of ICU data, comprising 24,517 ICU stays. We observed an expected
positive correlation between the severity of the patient’s condition, as indicated by the SOFA score, and the frequency
of monitoring. The complete correlation plots of all demographic variables and measurement rates are available in
Appendix D.

We observed significant differences in our analysis of monitoring patterns across different age groups, adjusting for
health severity scores and other demographic variables. Elderly patients, particularly those in the 46-65 and above
65 age brackets, were more frequently monitored for vital signs than younger patients (Figure 1). For example, the
adjusted average number of temperature measurements within the first 24 hours was 11.9 (95% CI: 11.7 to 12.1) for the
46-65 age group and 12.2 (95% CI: 12.0 to 12.4) for those over 65. In stark contrast, the 18-30 age group had a lower
adjusted average count of 9.7 measurements (95% CI: 9.4 to 10.1), and the 31-45 age group had an average of 10.25
(95% CI: 9.9 to 10.6). Interestingly, the Glasgow Coma Scale (GCS) measurements did not follow this trend and were
consistently collected across all age groups. In contrast with vital signs, a monotonic pattern was noted in laboratory
tests, where the frequency decreased linearly with increasing age, consistent across all lab tests even after adjusting for
SOFA scores and other covariates. Complete results, consistent across all sensitivity analyses, are provided in Appendix
E.

Regarding gender, no significant differences were found across all vital signs (Figure 1), though males received
marginally one more temperature checks in the first 24 hours: 12.22 (95% CI: 12.03 to 12.40) vs. 11.26 (95% CI: 11.05
to 11.50) temperature measurements.

Ethnicity was associated with monitoring patterns. We noted minor yet statistically significant disparities in the
frequency of vital sign measurements between Black, Hispanic, and White groups, with the Black and Hispanic groups
having fewer vital signs recorded. The adjusted average number of Blood Pressure measuring/recording in the first
24 hours, along with their 95% confidence intervals, were as follows: 34.22 (34.00, 34.44) for White, 34.45 (33.68,
35.22) for Asian, 32.79 (32.11, 33.46) for Black, 32.39 (31.82, 32.98) for Hispanic, and 33.74 (32.88, 34.59) for other
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Figure 1: TMLE Estimated Monitoring Patterns by Age Groups

Note: This figure illustrates TMLE-estimated mean monitoring rates across four age groups, considering baseline
characteristics and SOFA scores. It includes three vital signs and three laboratory tests, showcasing implicit biases in

monitoring. Full details and additional plots are available in the Appendix E.

Figure 2: TMLE Estimated Monitoring Patterns by Gender

Note: This figure displays TMLE-estimated monitoring patterns for female and male patients, incorporating baseline
characteristics and SOFA scores. It focuses on three vital signs, highlighting gender-based differences in patient

monitoring.

race/ethnicities. The p-values for comparisons between White and Black, and White and Hispanic were 7.77e-05 and
8.09e-09, respectively.

For heart rate measurements, the adjusted averages were 31.09 (30.90, 31.24) for White, 31.15 (30.56, 31.75) for
Asian, 30.11 (29.61, 30.60) for Black, 29.63 (29.19, 30.06) for Hispanic, and 30.79 (30.80, 30.15) for other ethnicities.
Additional data on respiratory rate, oxygen saturation, and temperature measurements are detailed in Figure 3.

In contrast, laboratory tests did not show a consistent pattern of disparities, although some differences were observed in
specific tests such as hematocrit levels. The adjusted average numbers with 95% confidence intervals for hematocrit
were 2.49 (2.40, 2.57) for Black, 2.48 (2.40, 2.56) for Hispanic, and 2.75 (2.73, 2.78) for White.

Other demographic variables, including insurance status, language, marital status, and religion, showed no significant
patterns in monitoring frequency. These findings are included in Appendix E.

Measurement patterns predictive of mortality

Tables 4 and 2 report the fit metrics for different combinations of predictors, which include the measured and corre-
sponding measurement rate and missingness variables. The model with the best fit was trained on the combination of the
generated counting variables and the original variables. The performance of this fit was closely followed by the model
trained solely on the original variables. The model exclusively trained on generated measurement rate/missingness
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Figure 3: TMLE-Estimated Monitoring Patterns by Race/Ethnicity

Note: Displaying TMLE-based monitoring patterns for different racial and ethnic groups. The top plot shows three
vital signs and the bottom plot laboratory tests, revealing racial and ethnic disparities in monitoring within healthcare

settings.

variables, although slightly worse performing, still achieved impressive predictive accuracy. These results suggest that
measurement rate variables alone can accurately predict mortality.

The performance of included candidate learners in the SuperLearner library are presented in Table ?? in Appendix F.
Figure 4 and Table 2 detail the performance metrics with 95% confidence intervals of Random Forest models, which
demonstrated the best performance among the candidate learners through the ID-stratified 10 fold cross-validation
process, where each RF models was trained using one of the three distinct sets of variables.

Table 2: Performance Metrics of Random Forest Models Across Different Variable Combinations
NLL AUC AUCPR

W, VS, LT 0.17 (0.16, 0.19) 0.85 (0.83, 0.87) 0.18 (0.16, 0.20)
n_W, n_VS, h_m_VS, n_LT 0.21 (0.18, 0.23) 0.76 (0.74, 0.77) 0.10 (0.09, 0.11)
W, VS, LT, n_W, n_VS, h_m_VS, n_LT 0.17 (0.15, 0.19) 0.86 (0.84, 0.87) 0.19 (0.17, 0.22)

Note: This table summarizes the average Negative Log-Likelihood (NLL), Area Under the ROC Curve (AUC), and
Area Under the Precision-Recall Curve (AUCPR) for Random Forest models trained with different variable sets, based

on 10-fold cross-validation.

3 Discussion

3.1 Summary of Findings

We proposed a novel perspective on missing data and measurement frequencies within Electronic Health Records
(EHR). Our analysis revealed statistically significant disparities in the sampling frequencies and missing data patterns
in vital sign measurements and laboratory tests across different demographic groups in the first 24 hours. The older
groups received more frequent monitoring with fewer data gaps compared to the younger groups, except in the Glasgow
Coma Scale (GCS) measurements. Males received slightly more temperature checks in the first 24 hours. Notable
disparities were found in the frequency of vital sign measurements between Black, Hispanic, and White groups, with
the former groups contributing significantly fewer measurements. The frequency of laboratory test sampling decreased
linearly with age, and while no consistent patterns of disparities were observed between other demographic groups,
some differences were noted in specific tests such as hematocrit. We also examined the effects of insurance, language,
marital status, religion, and care unit on data collection practices, but no strong patterns emerged.
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Figure 4: AUC Metrics in Random Forest Models Trained with Different Variable Combinations

Note: This figure compares AUC scores for three Random Forest models, each trained with a distinct set of variables:
(1) ’values variables’ (W,V S,LT ), including baseline characteristics (W ), vital sign measurements (V S), and

laboratory test values (LT ); (2) ’counting variables’ (n_W,n_V S, h_m_V S, n_LT ), covering counts of baseline
information (n_W ), vital sign sampling frequencies (n_V S), missingness rates for vital signs (h_m_V S), and

laboratory test frequencies (nLT ); and (3) a combined set of both ’values’ and ’counting’ variables
(W,V S,LT, n_W,n_V S, h_m_V S, n_LT ). The comparison illustrates the effectiveness of each model in predicting
ICU mortality risk within a 12-hour period, highlighting the impact of variable selection and missing data management

on model performance.

Our analysis also demonstrated the strong predictive power of missing data patterns and measurement frequencies to
patient outcomes in ICU settings. These variations in data collection practices can significantly affect the predictive
accuracy of models that assess in-hospital mortality risks.

3.2 Discussion and Comparison with Previously Published Literature

We contribute to the growing body of literature highlighting biases in healthcare data analytics. Landmark studies,
such as Obermeyer et al. [2019] and Suresh and Guttag [2019], showed significant biases in medical algorithms and
healthcare data, emphasizing the need for equitable data representation. Our findings align with previous research
indicating the presence of systemic biases in EHR data collection (Verheij et al. [2018] and Pivovarov et al. [2014]).
Our focus on patterns of missing data and measurement frequencies, their associations with demographics, and their
predictive power provide more insight into the consequence of this systematic measurement variability.

Previous studies (Rusanov et al. [2014] and Goldstein et al. [2017]) have explored the implications of missing data
and sampling biases in predictive modeling, highlighting the potential for these factors to skew results and perpetuate
inequalities. Our research builds on these findings by specifically analyzing the demographic disparities in missing
data patterns and measurement frequencies. We found statistically significant disparities in these patterns between
demographic groups and demonstrated the potential to improve the accuracy of the predictive model by including these
disparities in the training data.

The discrepancy in data collection among different demographic groups, as evidenced in our study, underscores a
larger issue of inequality in the representation of healthcare data. To address the disparities in the collection of EHR
data, we recommend incorporating not just advanced imputation techniques, but also a more in-depth analysis of
sampling patterns into statistical models. Implement advanced imputation techniques such as multiple imputation
by chain equations (MICE) and deep learning-based methods that can be tailored to account for the demographic
characteristics of the data to ensure fairness (Samad et al. [2022]; Sun et al. [2023]). Second, and more importantly,
including sampling patterns in statistical models and machine learning can mediate the impact brought by different
sampling intentions. This can be achieved by weighting the samplings and observations according to their measurement
frequencies, modeling the data generation process as a multilevel model where the sampling pattern is treated as a latent
variable influencing the observed data, or as a Bayesian model estimating the impact of different sampling frequencies
on model outcomes, providing a probabilistic framework to handle uncertainty (Little and Rubin [2019]; Gelman and
Hill [2006]; Gelman et al. [1995]; Rusanov et al. [2014]).
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Finally, promoting transparency in data collection processes and conducting regular audits of EHR systems to detect
bias can help create a more equitable healthcare data landscape. Our comparison with previously published studies
underscores the continued need for methodological advancements to tackle these complex challenges and ensure that
healthcare analytics are fair and accurate (Obermeyer et al. [2019]; Suresh and Guttag [2019]).

3.3 Strengths and Limitations of Our Study

One of the primary strengths of our study is its innovative approach to analyzing EHR data, particularly in identifying
and interpreting biases in missing data and measurement frequencies. Our methodology provides a framework for
future research in this area. However, limitations include the potential generalizability of our findings, as our study
was confined to the MIMI-III database. Additionally, the retrospective nature of the study may limit the ability to infer
causality between data collection practices and patient outcomes.

3.4 Conclusion

In conclusion, our study highlights the critical need for a sophisticated and equitable approach to handling missing
data and measurement frequencies when using EHR data, especially in the EHR settings. By analyzing patterns of
missing data and measurement frequencies, we can gain insights into patient monitoring practices and healthcare
equality. Incorporating these insights can enhance predictive models in terms of both accuracy and inclusiveness. This
advancement not only propels the field of healthcare data analytics forward but also contributes to the development of a
more equitable healthcare system. Future research should assess the bias introduced by measurement patterns in the
predictive algorithms and develop a general method to incorporate these patterns in the training data, thereby improving
the reliability and inclusiveness of healthcare data analytics and algorithms.
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