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II. Abstract 

Brain MRI scans and chest X-ray imaging are pivotal in diagnosing and managing neurological 

and respiratory diseases, respectively. Given their importance in diagnosis, the datasets to train 

the artificial intelligence (AI) models for automated diagnosis remain scarce. As an example, 

annotated chest X-ray datasets, especially those containing rare or abnormal cases like bacterial 

pneumonia, are scarce. Conventional dataset collection methods are labor-intensive and costly, 

exacerbating the data scarcity issue. To overcome these challenges, we propose a specialized 

Generative Adversarial Network (GAN) architecture for generating synthetic chest X-ray data 

representing healthy lungs and various pneumonia conditions, including viral and bacterial 

pneumonia. Additionally, we extended our experiments to brain MRI scans by simply swapping 

the training dataset and demonstrating the power of our GAN approach across different medical 

imaging contexts. Our method aims to streamline data collection and labeling processes while 

addressing privacy concerns associated with patient data. We demonstrate the effectiveness of 

synthetic data in facilitating the development and evaluation of machine learning algorithms, 

particularly leveraging an EfficientNet v2 model. Through comprehensive experimentation, we 

evaluate our approach on both real and synthetic datasets, showcasing the potential of synthetic 

data augmentation in improving disease classification accuracy across diverse pathological 

conditions. Indeed, the classifier performance when trained with fake + real data on brain MRI 

classification task shows highest accuracy at 85.9%. Our findings underscore the promising role 

of synthetic data in advancing automated diagnosis and treatment planning for pneumonia, other 

respiratory conditions, and brain pathologies. 

 

 

Keywords: Cross-modality data augmentation; Testing data for predictive models; Image 

generation from small datasets; Generative Adversarial Networks (GANs); Convolutional Neural 

Network (CNN) models for medical imaging; Deep Learning.  
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III. Introduction  

 

Chest X-ray imaging stands as a cornerstone in the diagnosis and management of respiratory 

diseases, with pneumonia representing a prevalent yet challenging condition. The accurate 

interpretation of chest X-ray images is vital for timely diagnosis and treatment planning. 

However, the availability of annotated chest X-ray datasets, particularly encompassing rare or 

abnormal cases such as bacterial pneumonia, remains scarce [1]. This scarcity poses significant 

challenges to the development and evaluation of machine learning algorithms for automated 

diagnosis, hindering progress in this critical healthcare domain [5]. 

 

Moreover, conventional approaches to dataset collection and labeling are often labor-intensive, 

time-consuming, and expensive. The process involves expert radiologists manually annotating 

large volumes of images, leading to high labor costs and potential privacy concerns due to the 

need to access patient data. Additionally, obtaining labeled data for rare or abnormal cases like 

bacterial pneumonia can be particularly challenging, further exacerbating the data scarcity issue 

[2]. 

 

To address these challenges, the utilization of Generative Adversarial Networks (GANs) [3] has 

emerged as a promising solution. GANs enable the generation of synthetic medical images that 

closely resemble real patient data, thereby augmenting existing datasets and mitigating the 

limitations imposed by data scarcity [3]. By leveraging GANs, researchers can create diverse and 

realistic synthetic chest X-ray images representing both healthy lungs and various pathological 

conditions, including pneumonia. 

 

In this paper, we propose a GAN architecture tailored specifically for the generation of synthetic 

chest X-ray data, representing both healthy lungs and various pneumonia conditions (viral and 

bacterial). Our approach aims to address the scarcity of labeled data and alleviate the burden of 

data collection and labeling, while also addressing privacy concerns associated with accessing 

patient data. 

 

Furthermore, we demonstrate how synthetic data generation can facilitate the development and 
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evaluation of machine learning algorithms for chest X-ray classification [4]. We highlight the 

role of artificial intelligence (AI) in automating the diagnosis of pneumonia by training an 

EfficientNet v2 [6] model on a mix of real and synthetic data, emphasizing the potential benefits 

of utilizing synthetic data to train and validate these deep learning models. Additionally, we 

conduct a thorough evaluation of model performance on both real and synthetic datasets, 

demonstrating the potential of synthetic data augmentation in improving disease classification 

accuracy. We evaluate our approach on both viral and bacterial pneumonia cases, where viral 

pneumonia is common and bacterial pneumonia is rare, showcasing the effectiveness of synthetic 

data in enhancing classification accuracy across diverse pathological conditions. 

 

Moreover, we extend our experiments to include brain MRI scans by simply swapping the 

training dataset, achieving similar positive trends. This extension demonstrates the robustness of 

our proposed GAN approach in different medical imaging contexts, further highlighting the 

power of synthetic data generation in advancing machine learning applications across healthcare. 

 

IV. Brief literature review 
 

GANs are increasingly being used to aid in creating and assembling training data to provide the 

annotated datasets to help in development of medical diagnosis models using convolutional 

neural networks (CNN). [1] describes how the medical datasets are often limited in size due to 

data annotation and privacy concerns, thus calling for the need to increase the dataset size 

without collecting or annotating more real data.  

 

The recent applications of CNNs in radiology have led to advancements and use case across each 

of the four categories: classification, segmentation, detection, and others [6]. In medical image 

analysis, classification with deep learning utilizes target lesions depicted in medical images, and 

these lesions are classified into two or more classes, for example, benign or malignant. For 

segmentation, one of the common ways is to use a CNN classifier for calculating the probability 

of the image being an organ or anatomical structure. In this approach, the segmentation process 

is divided into two steps; the first step is the construction of the probability map of the organ or 

anatomical structure using CNN and image patches, and the second is a refinement step where 

the database of images and the probability map are utilized.  
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On the other hand, the basic Generative Adversarial Networks (GAN) model is made up of the 

generator and discriminator networks, in addition to the input vector [13]. This way, GAN is 

known to be able to “learn” the generative model of a given data distribution with excellent 

performance. This overcomes the issue of less labelled and unbalanced classification data being 

available, which doesn’t lend itself to medical diagnosis. In digital image processing, GAN can 

help with high-resolution image generation from low-resolution images.  

 

Even using small datasets [14], different state-of-the-art GANs have shown the capability of 

generating usable image dataset for training CNNs, which while using these synthetic datasets 

outperform the baseline CNN model using only real data for training by up to 15.3% with respect 

to the F1 score, especially for datasets containing less than 100 images. The success of GANs 

also emanates from their sensitivity to tweaking the hyperparameters while the image synthesis 

is happening [2] to provide usable images for diagnosis.  

 

[15] conducted a multi-GAN and multi-application study to assess the benefits of GANs in 

medical imaging. They did this by testing various GAN architectures (ranging from the basic 

DCGAN to more advanced style-based GANs) and established that the top-performing GANs 

can generate realistic-looking medical images by FID standards, though the capability to 

reproduce the full richness of medical datasets is still evolving. They further describe how style 

based GANs introduce multiple innovations to gradually train the GAN with different 

resolutions. These come with more developed generator, which includes adaptive instance 

normalization blocks (AdaIN) that enables the noise to be injected at every level of the network 

and use an 8-layer MLP mapping function. Literature also describes these GAN training 

innovations or “tricks”, such as label smoothing, feature matching, and differentiable 

augmentation of the images. 

 

 

V.  Methodology 

 

The proposed research automatically learns the underlying structure and distribution of real-

world data, chest X-ray images in our case, and generates new, synthetic images with similar 

characteristics and abnormalities. This task is performed by employing a Generative Adversarial 
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Network (GAN) which utilizes two separate neural network modules, termed as generator (G) 

and discriminator (D). G and D compete with each to generate synthetic instances of data which 

can be perceived as real ones [3]. The workflow is showcased in figure 1. From a given dataset 

containing real chest X-ray scans of various patients, we first form various pre-processing steps 

to ensure the images are in a suitable state for training the GAN. We apply normalization by 

thresholding and dilating each image to remove excess noise, and then crop each instance with 

dynamic coordinates to further denoise the image. Finally, we reshape each image to fit the 

dimensions 112 x 112 as a standard across the entire dataset.  

 

 
 

Figure 1. Workflow of the proposed Algorithm 

 

 

After pre-processing, we apply a latent vector z containing random noise to each image sample 

across each class label c (healthy, viral pneumonia, bacterial pneumonia) . Next, we train the 

proposed GAN model based on AC-GAN [9] to generate chest X-ray images across 3 classes 

defined above, along with their respective class labels c_fake. Usage of AC-GAN based 

architecture stabilizes the training process and facilitates generation of high-quality images while 

learning a representation which is independent of the class label.  
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Figure 2. Real image samples of chest X-ray across 3 classes: normal, bacteria and virus 

 

For the modality of brain MRI scans, we use the exact same workflow and swap chest X-ray 

images with brain MRI images. 

 

V.1. Dataset 

 

We use a dataset titled ‘Chest X-Ray Images (Pneumonia) [7], available on Kaggle as an open 

source database of 5,863 X-Ray images in JPEG format across two categories, normal lungs and 

pneumonia-ridden lungs. The diseased lungs contain two types of abnormalities, namely, 

bacterial pneumonia and viral pneumonia (samples shown in figure 2.). Existing statistics [8] 

reveal that viral pneumonia is more prevalent among patients, while bacterial pneumonia 

accounts for a smaller percentage of the total pool.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308649doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.09.24308649


 

7 
 

 

Figure 3. Real image samples of brain MRI across 2 classes: positive and negative 

For the task of generating synthetic brain MRI images, we use another dataset titled ‘Brain 

Tumor Dataset’ [12], available on Kaggle. It is also an open source collection of medical 

imaging data, originally designed for the purpose of brain tumor detection and classification. The 

dataset contains 5,266 MRI scans of the human brain across two categories: positive (containing 

tumors) and negative (healthy brain without tumors). Some samples are illustrated in figure 3. 

V.2. Data Pre-processing 

 

Chest X-ray scans can induce intensity averages falsely due to various distortions introduced to 

the system while scanning the subject. This condition may lead to the algorithm falsely 

identifying a healthy X-ray as diseased, therefore, pre-processing stage is extremely important. 

We perform normalization of the entire image which basically acts as a function to reduce the 

intensity values within a range suitable for the GAN to learn the spatial characteristics of the X-

ray. This step sets the mean intensity close to 0 and standard deviation close to 1. Image is also 

denoised using several image processing techniques like erosions, averaging and dilations. 

Further, we remove the black portions of the image background by performing crop operation, 

whose coordinates are derived by capturing the largest contour of torso cross-section in the 

scans. Since our network takes an input of shape 112 x 112, we re-shape each image to this 
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dimension before feeding it to our GAN for training and generation. We apply the same pre-

processing pipeline to the brain MRI scans.  

V.3. AC-GAN Architecture 

 

The Auxiliary Classifier Generative Adversarial Network (AC-GAN) [10] framework, proposed 

by [11], extends the traditional GAN architecture to integrate class information into the training 

process. This augmentation enables the generation of samples conditioned on specific class 

labels, thereby enhancing the controllability and diversity of the generated data distribution. 

 

In the AC-GAN framework, the generator network is augmented to accept both random noise 

vectors sampled from a standard Gaussian distribution and class labels as input. By conditioning 

the generation process on class labels, the generator learns to produce class-specific features in 

the synthesized samples. This conditioning mechanism facilitates the generation of diverse 

samples corresponding to different classes. Similarly, the discriminator network in AC-GAN is 

modified to predict both the authenticity of the samples (real or synthetic) and their 

corresponding class labels. By jointly optimizing the discriminator for both tasks, distinguishing 

real from synthetic samples and correctly classifying the samples into their respective classes, the 

AC-GAN framework encourages the discriminator to learn discriminative features for each class. 

Its ability to generate class-conditioned samples makes it particularly suitable for tasks where 

controlling specific attributes of the generated samples is essential, such as generating synthetic 

medical images representing different pathological conditions. 

 

In our proposed GAN architecture shown in figure 4, we draw inspiration from the AC-GAN 

framework to incorporate class conditioning into both the generator and discriminator networks. 

This enables us to generate synthetic chest X-ray images representing both healthy lungs and 

various pneumonia conditions (viral and bacterial), thereby enhancing the diversity and realism 

of the generated data. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308649doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.09.24308649


 

9 
 

 
 

Figure 4. AC-GAN Architecture [9] 

The generator G takes a latent vector of noise and class label as input, to output a single 112 x 

112 x 3 image. An embedding of dimension 50 is generated using the class label, which is 

further passed through a 7 x 7 dense layer with linear activation. The noise vector is passed 

through a 1024 x 7 x 7 dense layer to generate multiple copies of low-resolution fake images. 

These are then concatenated and passed through 4 transpose convolutional layers, upsampling 

them at each stage. We employ batch normalization after each of the first 3 transpose 

convolution layers along with ReLU activation. The discriminator D consists of multiple 

convolutional layers followed by batch normalization, Leaky ReLU activation and a dropout 

layer. The input is downsized at each stage. The output contains 2 layers, a sigmoid to predict 

real / fake images, and another softmax to output class prediction probabilities. 

 

V.4 Implementation Details 

 

Training an AC-GAN involves alternating between updating the parameters of the generator and 

discriminator networks through backpropagation. During each training iteration, the generator 

aims to produce realistic samples that can deceive the discriminator into classifying them as real, 

while the discriminator endeavors to accurately classify the samples into their corresponding 

classes and distinguish between real and synthetic samples. We split the dataset outlined above 

into 3 sets and use it for training, validation and testing. The model architecture is implemented 

in the TensorFlow library. The model is trained for a total of 32000 epochs with a batch size of 

32 images. We use Root Mean Square Propagation (RMSProp) as the optimizer function with a 
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learning rate of 1e-4. The end-to-end design and development was done in Jupyter Notebook 

hosted on Kaggle Cloud ML Engine. 

 

VI. Experimental results  
 

In this section, we visualize the synthetic data generated using AC-GAN in the form of chest X-

ray images across 3 classes: ‘Normal’, ‘Bacteria’, and ‘Virus’. Then, to quantitatively evaluate 

the effectiveness of using synthetic data to train an image classification model EfficientNet v2, 

we compute several metrics with the model trained on real data only, fake data only, and a mix 

of both real and fake data. To compare the efficacy of chest disease classification, we compute 

the classification accuracy. We also compute precision, which indicates the accuracy of the 

positive predictions made by the model. To evaluate the ability of the model to correctly identify 

positive instances, we also compute recall value. In the real world, the amount of images 

belonging to the normal class are more compared to diseased classes of bacteria and viruses. 

Therefore, this leads to an issue of class imbalance. We mitigate this issue by computing F1-

score which provides a balance between precision and recall and is particularly useful when the 

class distribution is imbalanced. 

 

 

Figure 5. Images of class ‘Normal’ generated by proposed AC-GAN 
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Figure 5 reports the visual results of images generated using our proposed AC-GAN belonging to 

‘Normal’ class, i.e., healthy lungs. Similarly, figure 6 and 7 showcase the images belonging to 

class ‘Bacteria’ and ‘Virus’ respectively. Visual inspection of the generated images reveals 

realistic representations of chest X-rays across different classes. For the class "Normal," the 

generated images exhibit characteristic features of healthy lungs, including clear lung fields and 

well-defined structures. These images closely resemble authentic chest X-rays, demonstrating the 

AC-GAN's ability to capture and reproduce normal anatomical structures faithfully. Similarly, 

for the classes "Bacteria" and "Virus," the generated images display distinct pathological features 

associated with bacterial and viral pneumonia, respectively. These features include infiltrates, 

consolidations, and opacities indicative of the respective pneumonia types. The generated images 

exhibit variations in lesion size, shape, and distribution, reflecting the diversity of pathological 

manifestations observed in clinical practice. 

 

 
Figure 6. Images of class ‘Bacteria’ generated by proposed AC-GAN 
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Figure 7. Images of class ‘Virus’ generated by proposed AC-GAN 

 

Overall, the quality of the generated chest X-ray images is impressive, showcasing the AC-

GAN's capability to generate diverse and realistic images representing both normal and 

pathological conditions. This qualitative assessment is complemented by quantitative evaluation 

metrics reported in table I. 

 

Table I. Classifier performance when trained with real, fake, and fake + real data on chest 

X-ray classification task 

Dataset Accuracy % 

↑ 

Precision ↑ Recall ↑ F1-score ↑ 

Real 70.66 % 0.67 0.63 0.57 

Fake 75.36 % 0.89 0.75 0.77 

Fake + real 79.83 % 0.84 0.77 0.93 

 

The findings reveal that training solely with limited real data resulted in the lowest performance 

across all evaluation metrics as it exhibited the least accuracy, precision, recall, and F1-score 

compared to the other training scenarios. In contrast, incorporating synthetic data alongside real 

data yielded notable improvements in performance metrics. The combined dataset achieved the 

highest accuracy of 79.83%, along with a peak recall score of 0.77 and an impressive F1-score of 
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0.93, showcasing its ability to effectively identify positive instances across all classes. While the 

precision metric peaked at 0.89 for the classifier trained solely on fake data, the combined 

dataset demonstrated competitive precision scores while achieving superior accuracy. These 

results highlight the importance of leveraging synthetic data augmentation techniques to augment 

limited real datasets, thereby enhancing the robustness and effectiveness of image classifiers in 

medical image analysis tasks such as chest X-ray classification. 

 

 

 

 
Figure 8. Training curves for Chest X-ray classification 
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We further analyze the training progress of the image classifier through loss versus epoch curves 

for the three training scenarios, as showcased in figure 8. In the case of training with real data 

only, the loss versus epoch curve reveals a typical pattern of overfitting, where the training loss 

significantly decreases while the validation loss remains higher. This discrepancy indicates that 

the model is excessively fitting to the training data, resulting in poor generalization performance 

on unseen validation data. Conversely, training solely on fake data exhibits a smoother training 

process, with both training and validation losses converging gradually without signs of 

overfitting. This phenomenon is expected, as the synthetic data augment the training set, 

providing a more diverse and representative sample for the model to learn from compared to the 

limited real data. For the combined dataset comprising both real and fake data, the training 

converges rapidly, reflecting the effectiveness of leveraging synthetic data to complement real 

data. However, after a certain number of epochs, the loss versus epoch curve shows signs of 

overfitting, where the training loss continues to decrease while the validation loss starts to 

increase. To mitigate overfitting, early stopping is employed, terminating the training process 

before the model's performance on the validation set deteriorates significantly. This ensures a fair 

evaluation of the model's performance and prevents it from being overly biased towards the 

training data. 

 

VII. Additional Experiments on brain MRI images 

 
We perform several additional experiments along a different modality of brain MRI images by 

visualizing the synthetic data generated using AC-GAN, trained on the brain tumor dataset 

(outlined in sec. V.1). We generate images across 2 classes: ‘Positive’, and ‘Negative’, denoting 

tumorous and healthy MRI scans, respectively. The quantitative analysis is similar to sec. VI., 

where we train image classification model EfficientNet v2 and compute the metrics with the 

model trained on real data only, fake data only, and a mix of both fake and real data. We use the 

same metrics: classification accuracy, precision, recall, and F1-score, to effectively evaluate the 

case of class imbalance. 
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Figure 6. Images of class ‘Negative’ generated by proposed AC-GAN 

Figure 6 reports the visual results of images generated using our proposed AC-GAN trained on 

brain MRI images, belonging to the ‘Negative’ class, i.e., a healthy brain without a tumor. The 

generated images showcase realistic representations of brain MRI scans and exhibit 

characteristic features of a healthy brain. This demonstrates the ability of AC-GAN to be 

extended to multiple modalities and input types, at the same time, reproducing complex 

anatomical structures without much distortion. Similarly, for the class of ‘Positive’ (containing 

tumors, figure 6), the generated images display faithful features associated with the presence of a 

tumor across the brain's cross-section, that too across multiple planes. There exists variation in 

tumor size, shape, and location, proving the effectiveness of GAN in learning diverse 

pathological characteristics associated with a disease. 

We also perform quantitative evaluation as reported in table II. We can draw similar insights to 

the experiments performed in sec. V. When trained solely on real data, the model exhibits the 

least accuracy, precision, recall and F1-score, compared to the other two training sets. When the 

fake data is combined with real data to train the classifier, the model achieved highest accuracy 

of 85.92%, with a peak recall of 0.82 and impressive F1-score of 0.84. 
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Figure 6. Images of class ‘Positive’ generated by proposed AC-GAN 

 

Thus, quantitative evaluation performed on the extended modality of brain MRI scans further 

strengthen our hypothesis of utilizing the power of generative networks like AC-GAN to perform 

synthetic data augmentation and boost the performance of medical image analysis tasks.  

 

Table II. Classifier performance when trained with real, fake, and fake + real data on 

brain MRI classification task 

Dataset Accuracy % 

↑ 

Precision ↑ Recall ↑ F1-score ↑ 

Real 83.0 0.84 0.84 0.83 

Fake 84.26% 0.88 0.74 0.86 

Fake + real 85.92% 0.86 0.82 0.84 

 

 

VII. Conclusion 
 

In conclusion, our work demonstrates the efficacy of using synthetic data augmentation, 

particularly through Generative Adversarial Networks (GANs), to enhance the performance of 

chest X-ray classification models. By generating synthetic data representing both healthy and 

pathological conditions, including bacterial and viral pneumonia, we overcome limitations 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308649doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.09.24308649


 

17 
 

associated with data scarcity and labor-intensive labeling processes. Results show significant 

improvements in classification accuracy, precision, recall, and F1-score metrics when 

incorporating synthetic data alongside real data. The Auxiliary Classifier GAN (AC-GAN) 

architecture proves effective in generating high-quality synthetic chest X-ray images, 

contributing to better model generalization and robustness. Furthermore, we extended our 

experiments by adding another modality of brain MRI scans by simply swapping the training 

dataset and achieved similar trends, showcasing the power of AC-GAN. This extension 

underscores the versatility and potential of AC-GAN in different medical imaging contexts. 

While promising, further validation on larger datasets and exploration of additional GAN 

architectures are needed. Additionally, ethical considerations regarding patient privacy and data 

security must be carefully addressed. Overall, synthetic data augmentation holds great potential 

for advancing medical image analysis, leading to improved healthcare outcomes. 
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