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ABSTRACT  47 

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. 48 

Traditional case-identification methods using claims data can be time-intensive and may 49 

miss important subgroups. We hypothesized that a deep learning model analyzing 50 

electronic health records (EHR) can more accurately identify AAV cases. 51 

Methods: We examined the Mass General Brigham (MGB) repository of clinical 52 

documentation from 12/1/1979 to 5/11/2021, using expert-curated keywords and ICD 53 

codes to identify a large cohort of potential AAV cases. Three labeled datasets (I, II, III) 54 

were created, each containing note sections. We trained and evaluated a range of 55 

machine learning and deep learning algorithms for note-level classification, using 56 

metrics like positive predictive value (PPV), sensitivity, F-score, area under the receiver 57 

operating characteristic curve (AUROC), and area under the precision and recall curve 58 

(AUPRC). The deep learning model was further evaluated for its ability to classify AAV 59 

cases at the patient-level, compared with rule-based algorithms in 2,000 randomly 60 

chosen samples.  61 

Results: Datasets I, II, and III comprised 6,000, 3,008, and 7,500 note sections, 62 

respectively. Deep learning achieved the highest AUROC in all three datasets, with 63 

scores of 0.983, 0.991, and 0.991. The deep learning approach also had among the 64 

highest PPVs across the three datasets (0.941, 0.954, and 0.800, respectively). In a test 65 

cohort of 2,000 cases, the deep learning model achieved a PPV of 0.262 and an 66 

estimated sensitivity of 0.975. Compared to the best rule-based algorithm, the deep 67 

learning model identified six additional AAV cases, representing 13% of the total.  68 
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Conclusion: The deep learning model effectively classifies clinical note sections for 69 

AAV diagnosis. Its application to EHR notes can potentially uncover additional cases 70 

missed by traditional rule-based methods.  71 

Keywords: ANCA-associated vasculitis; Case Identification; Deep Learning; Machine 72 

learning; Electronic Health Records; Clinical Notes 73 

 74 

SIGNIFICANCE AND INNOVATIONS: 75 

- Traditional approaches to identifying AAV cases for research have relied on 76 

registries assembled through clinical care and/or on billing codes which may miss 77 

important subgroups.  78 

- Unstructured data entered as free text by clinicians document a patient’s 79 

diagnosis, symptoms, manifestations, and other features of their condition which 80 

may be useful for identifying AAV cases 81 

- We found that a deep learning approach can classify notes as being indicative of 82 

AAV and, when applied at the case level, identifies more cases with AAV than 83 

rule-based algorithms.   84 
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INTRODUCTION 85 

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a rare 86 

immune-mediated inflammatory disease associated with substantial morbidity, mortality, 87 

and resource utilization.1, 2 The disease presents in patients with heterogeneous 88 

manifestations (e.g., glomerulonephritis, sinusitis, skin rash, pulmonary nodules) to 89 

clinicians from a variety of specialties (e.g., rheumatology, nephrology, otolaryngology, 90 

intensive care) across the care spectrum within healthcare systems (e.g., community 91 

hospital, tertiary care hospital, outpatient clinic, emergency departments). AAV case 92 

identification in electronic health records (EHR), an increasingly important source for 93 

epidemiologic research, is limited by a lack of well-performing methods to identify 94 

cases.  95 

 96 

To enable outcomes and comparative effectiveness studies using large, phenotypically 97 

diverse cohorts from big data, a novel AAV case-finding algorithm is needed. Previous 98 

studies have demonstrated that rule-based algorithms relying on ICD-9 codes for AAV 99 

case identification have poor performance, partly because there is no specific ICD-9 100 

code for microscopic polyangiitis (MPA), a subtype of AAV, and many MPA patients 101 

may be miscoded using less specific ICD-9 codes. Additionally, the previously 102 

developed algorithms, which require a positive ANCA test result or the use of multiple 103 

ICD codes, may exclude important and informative subgroups of patients, including 104 

ANCA-negative granulomatosis with polyangiitis (GPA) and those who die soon after 105 

diagnosis from severe disease or complications. The performance of algorithms that 106 

incorporate ICD-10 codes has not been previously assessed.  107 

 108 
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In addition to billing code data and test results, EHR data include unstructured data 109 

entered as free text by clinicians documenting a patient’s diagnosis, symptoms, 110 

manifestations, and other features of their condition. We have previously demonstrated 111 

that these notes can be leveraged to characterize the temporal course of AAV.3 Other 112 

studies have suggested that unstructured data can enhance the performance of case-113 

finding algorithms for other conditions, but this remains underexplored for prototypic 114 

rare conditions like AAV.4-7 Here, we hypothesized that machine learning methods could 115 

be utilized to develop case-finding algorithms that accurately identify AAV patients and 116 

that these algorithms would outperform or produce more phenotypically diverse cohorts 117 

than rule-based algorithms. 118 

 119 

MATERIALS AND METHODS 120 

Overview 121 

This study was conducted at Mass General Brigham (MGB), a large, integrated 122 

healthcare delivery system in the Greater Boston area, Massachusetts. We used data 123 

from MGB’s research patient data registry (RPDR). The study was approved by the 124 

MGB’s Institutional Review Board (IRB number: 2016P000633). Figure 1 illustrates the 125 

overall process for the development of the AAV case-finding algorithms. We first 126 

created a screening cohort of potential AAV cases. We then created three labeled 127 

datasets from three cohorts for the development and evaluation of multiple machine 128 

learning models for AAV case identification from unstructured clinical notes. The deep 129 

learning model was further deployed to identify AAV patients from a random sub-cohort 130 
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of patients. The performance of this model was compared against rule-based 131 

approaches.  132 

 133 

Study Cohorts 134 

The screening cohort was constructed using all data from RPDR, spanning its inception 135 

on December 1, 1979, through May 11, 2021. We identified potential AAV patients 136 

based on the presence of at least one AAV-related ICD code in a diagnosis field or the 137 

use of a keyword in clinical notes. Supplemental Table 1 lists keywords selected by the 138 

subject-matter experts (EM and ZSW). To develop and evaluate the performance of 139 

machine learning algorithms for AAV case identification, we used three distinct cohorts. 140 

Cohort A comprised 700 patients with confirmed AAV, as they were previously identified 141 

as part of the MGB AAV Cohort between January 01, 2002, and December 31, 2019.8 142 

Cohorts B and C were random samples of 1000 patients each from the screening 143 

cohort.   144 

 145 

Processing of Clinical Notes 146 

For each study cohort, we extracted all available clinical notes included in RPDR 147 

database any time before July 23, 2021. These notes encompassed visit notes, 148 

progress notes, ambulatory notes, history and physical exam notes, and discharge 149 

summaries. Clinical notes contain rich information, such as clinical manifestations, 150 

physical exams, and differential diagnoses, which are useful to determine whether 151 

patient does or does not have AAV. However, due to the voluminous number of notes 152 

that each patient accumulates over years of interaction with a healthcare system, the 153 
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model could miss true signals when handling large datasets. Thus, we processed each 154 

note into smaller sections and then applied the models being tested to evaluate their 155 

ability to predict whether or not the text refers to a diagnosis of AAV. To split the notes 156 

into sections, we used Medical Text Extraction, Reasoning, and Mapping System 157 

(MTERMS), an in-house developed natural language processing (NLP) system.9  158 

 159 

Definition of AAV Classification Task 160 

We approached the identification of AAV as a classification task, training models for 161 

binary classification of note sections as pertaining to AAV. Throughout model 162 

development, we assessed and compared the effectiveness of these models at the note 163 

section level. In practical applications for patient identification, a patient was classified 164 

as having AAV if any of their note sections were predicted positive, suggesting an AAV 165 

diagnosis. Conversely, a patient was deemed not to have AAV if all their note sections 166 

were predicted negative. 167 

 168 

Development of Labeled Datasets 169 

We developed three labeled datasets to train, test, and compare multiple machine 170 

learning algorithms. Datasets I and II contained note sections that were derived from the 171 

same population, i.e., patients with validated AAV (Cohort A) as well as patients with 172 

possible AAV (Cohort B). To increase the positive case density in Dataset I, we applied 173 

a list of expert-curated keywords to filter for sections that likely contain references to a 174 

diagnosis of AAV or the presence of AAV manifestations (Supplemental Table 2). To 175 

assess the generalizability of the trained models to note sections, regardless of keyword 176 
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presence, we established Dataset II by randomly selecting note sections from those not 177 

included in Dataset I. Specifically, Dataset I included 5,000 sections from cohort A and 178 

1,000 sections from cohort B, all mentioning specific keywords. Dataset II contains 179 

2,000 sections from cohort A and 1,000 sections from cohort B, selected randomly 180 

without considering keyword references. Dataset III consists of 7,500 note sections 181 

randomly selected from Cohort C, a subset of the screening cohort, to evaluate model 182 

performance in identifying potential AAV patients.   183 

 184 

Dataset Annotation 185 

Two subject matter experts (ZSW and CC) labeled each selected section from clinical 186 

notes for whether it indicated that the diagnosis of AAV was present. Cases were 187 

classified as AAV based on a prior algorithm for identifying AAV in epidemiologic 188 

studies.10 In cases where there was limited data available to apply this algorithm, we 189 

classified a case as AAV if the treating provider and both chart reviewers agreed on the 190 

classification of the case as AAV. Patients with eosinophilic granulomatosis with 191 

polyangiitis (EGPA) were classified as negative. Although EGPA is a specific type of 192 

AAV, it presents a different etiology, pathology, and clinical features compared to other 193 

AAV types, such as GPA and MPA.11 The annotators first individually labeled 100 194 

sections and any conflicts were resolved by consensus. Then in the second dataset of 195 

100 sections, two annotators achieved near-perfect agreement with a Cohen’s kappa of 196 

0.897. The remaining note sections were each annotated by one of the annotators. Any 197 

cases for which labeling was uncertain were resolved through consensus by ZSW and 198 

CC.  199 
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 200 

Model Development 201 

We first implemented four basic statistical machine learning algorithms, including 202 

logistic regression, random forest, support vector machine (SVM), and XGBoost.12 The 203 

note sections were processed into n-grams (where n=1). Each section was converted 204 

into term frequency-inverse document frequency vectors based on n-grams. The 205 

algorithms were trained and tested with 5-fold cross validation using the Dataset I.  206 

 207 

We also implemented a hierarchical attention-based deep neural network, which 208 

includes a convolutional neural network for handling word variations (e.g., plural, 209 

misspelling), a recurrent neural network for handling context (e.g., negation), and 210 

attention layers for interpreting predictions. We chose this algorithm as it was previously 211 

proved to be effective in allergic reaction detection from hospital safety reports5 and 212 

cognitive decline detection from clinical notes.4 When implementing this deep learning 213 

algorithm, each note section was treated as a sequence of tokens, and individual words 214 

were represented by word embedding. We used pre-trained word embedding, named 215 

BioWordVec, which is an open set of biomedical word vectors that integrated 216 

biomedical text with Medical Subject Headings (MeSH) using the fastText model.13  217 

 218 

Additionally, we implemented BioClinicalBERT, a domain-specific Bidirectional Encoder 219 

Representation from Transformers (BERT) model,14 on the labeled dataset. BERT is 220 

one of the most widely-used deep contextualized language models, achieving state-of-221 

the-art performance on various NLP tasks, including named entity recognition, 222 
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sentiment analysis, and question answering. We previously leveraged this algorithm to 223 

identify patient gender identity in the EHR.7  224 

 225 

Evaluation for Model Generalizability 226 

To evaluate the generalizability of the models to the dataset regardless of keywords, we 227 

applied the models trained in Dataset I to Dataset II. To evaluate the generalizability of 228 

the models to the screening cohort, we applied the models trained in Datasets I and II to 229 

Dataset III and reported the models’ performance.  230 

 231 

Comparison of machine learning-based models with rule-based approaches 232 

The assess the feasibility of applying the deep learning model to identify AAV cases, we 233 

compared its efficacy with that of two rule-based algorithms derived from administrative 234 

claims data. Specifically, Rule 1 identifies patients who have any ICD-9 or ICD-10 codes 235 

documented on at least two separated occasions. Rule 2 identifies patients with any 236 

ICD-9 or ICD-10 codes recorded on at least two separated dates, and who also 237 

received an AAV medication within a 6-month window (±6 months) of the first ICD code 238 

recorded. For the deep learning model, we used the optimal model to analyze the 239 

clinical notes of Cohort D. The highest section-level prediction probability was 240 

considered as the patient-level model prediction probability. Patients with a predicted 241 

probability of 1 were classified as positive for AAV. 242 

 243 

After identifying potential AAV cases using either the rule-based or the deep learning 244 

model, we conducted a manual review of the EHR for these cases to pinpoint true 245 
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positive cases. From the cases not deemed to be AAV (i.e., those not identified by the 246 

rules or the models), we randomly selected a subset (n=100) for manual chart review to 247 

assess the false negative rate.  248 

 249 

Statistical Analysis 250 

We evaluated four statistical machine learning models, one deep learning model, and a 251 

large language model for AAV case detection from clinical notes. Performance was 252 

assessed based on the area under the receiver operating characteristic curve (AUROC), 253 

the area under the precision-recall curve (AUPRC), positive predictive value (PPV), 254 

sensitivity, and F-1 score which accounts for both precision and recall by taking the 255 

harmonic mean. Both the AUROC and AUPRC were computed using the scikit-learn 256 

Python library (scikit-learn Developers). We estimated the 95% confidence intervals (CI) 257 

using 2,000 bootstrap iterations (Python, version 3.7; Python Software Foundation). To 258 

compare the rule-based approaches with the top-performing AAV case identification 259 

model, we computed the PPVs and sensitivities of all methods in Cohort D. Here the 260 

total number of true positive patients was determined by adding those identified by both 261 

the rule-based approaches and the top-performing AAV case identification model.   262 

 263 

RESULTS 264 

Cohort A, termed the 2002-2019 MGB AAV Cohort, included 700 PR3- or MPO-ANCA+ 265 

AAV patients. From these patients, 134,506 notes were extracted from the RPDR, 266 

which included progress notes, ambulatory notes, and discharge summaries. These 267 

notes were further split into 1,927,286 sections, of which 320,038 contained keywords. 268 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.09.24308603doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.09.24308603
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Dataset I comprised 6,000 note sections, representing 5,765 notes from 1,638 patients 269 

(968 [59.1%] female). Dataset II contained 3,008 sections from 2,970 notes, 270 

representing 1,501 patients (885 [60.0%] female). Dataset III included 7,500 sections, 271 

representing 5,429 notes from 1,000 patients (568 [56.8%] female) (Table 1). In Dataset 272 

I, evidence of AAV was present in 2,669 sections (44.5%). Dataset II had 206 (6.8%) 273 

sections positive for AAV. Out of the 3,008 sections in Dataset II, 457 contained at least 274 

one keyword, with 203 (44.4%) of these containing evidence of AAV. Dataset III had 50 275 

(0.67%) AAV-positive sections, and, of the 7,500 sections, 219 (2.92%) had one or 276 

more keywords. Of those with keywords, 45 (20.5%) contained evidence of AAV. 277 

 278 

The performance of the five models in each dataset is outlined in Table 2. The 279 

hierarchical attention-based deep learning model demonstrated the best performance 280 

on Dataset I during cross-validation, significantly outperforming other models, with an 281 

AUROC of 0.983 (95% CI, 0.980-0.986) and an AUPRC of 0.977 (95% CI, 0.972-282 

0.982). Compared to the deep learning model, Bio_ClinicalBERT had slightly worse 283 

performance in AUROC and AUPRC in Dataset I; however, it achieved better results in 284 

precision, recall, and F-1 score. 285 

 286 

Overall, all the models generalized well to Dataset II. The deep learning model exhibited 287 

an AUROC of 0.991 (95% CI, 0.981-0.997) and an AUPRC of 0.962 (95% CI, 0.941-288 

0.980), with a 0.015 drop in AUPRC compared to its performance in Dataset I. Notably, 289 

in Dataset II and among all the models, the XGBoost model achieved the best 290 
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performance in AUPRC, though the difference was not statistically significant, and 291 

Bio_ClinicalBERT achieved the best sensitivity and F-1 score.  292 

 293 

In Dataset III, the deep learning model outperformed other algorithms in all metrics. 294 

Compared to its performance in Datasets I and II, it maintained a high AUROC of 0.991 295 

(95% CI, 0.982-0.998); however, the AUPRC decreased to 0.760 (95% CI, 0.620-296 

0.885). Both Bio_ClinicalBERT and XGBoost saw greater decrease in performance from 297 

Datasets I and II to Dataset III.  298 

 299 

Among 2,000 patients from the screening cohort, Rule 1 identified 218 with two or more 300 

AAV-related ICD codes (Table 3). After excluding 12 patients due to insufficient 301 

information to ascertain AAV status, 40 (19.4%) were confirmed to have AAV. Rule 2 302 

identified 52 patients meeting Rule 1 criteria and receiving a medication prescription 303 

within 6 months of the first ICD code; 11 (21.2%) had confirmed AAV. Among the 2,000 304 

patients, 1,977 had clinical notes reviewed using the deep learning model, which 305 

predicted AAV in 177 patients with a probability of 1. After excluding 5 patients due to 306 

insufficient information, 45 (26.2%) patients were confirmed to have AAV.  307 

 308 

A review of 100 randomly selected cases, which were not predicted as AAV by either 309 

method, confirmed the absence of AAV cases. If both the rules and the deep learning 310 

algorithms identified all positive AAV cases among the 2000 cases reviewed, the total 311 

number of positive cases amounted to 46. The estimated sensitivities for the deep 312 

learning model, Rule 1, and Rule 2 were 97.5%, 87.0%, and 23.9%, respectively.  313 
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 314 

Significant differences were observed when comparing patients identified by the deep 315 

learning model versus rule-based algorithms (Table 3). The deep learning model 316 

identified a more ethnically diverse group (Hispanic: 24% vs 2.5% and 0%, respectively) 317 

and more ANCA-negative AAV cases. The deep learning model found six additional 318 

patients not identified by Rule 1, accounting for 13.0% of the positive cases, and Rule 1 319 

found one not identified by the deep learning model.  320 

 321 

Error Analysis 322 

We analyzed the sections of clinical notes which the deep learning model falsely 323 

predicted as consistent (false positive) with or not consistent (false negative) with AAV. 324 

Many of the false positive errors can be grouped into three categories.  325 

1. Ambiguous terms related to AAV. Some terms that appear in clinical notes 326 

occasionally correspond to unrelated concepts with identical spelling. For example, the 327 

abbreviation “MPA” might denote microscopic polyangiitis, which is pertinent to AAV, or 328 

it could represent unrelated concepts like a multipurpose angiographic catheter or a 329 

Master of Public Administration degree. Similarly, “GPA” can be used to abbreviate 330 

grade point average.   331 

2, Hypothetical scenarios in notes. Prediction errors also arose in note sections 332 

described conjectural situations, such as guidelines of diagnosing AAV or potential 333 

medication side effects (e.g., risks of anti-thyroid medications). 334 
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3. Notes detailing family history. The model made false positive predictions on notes 335 

that mentioned a patient’s family member being diagnosed with AAV, even though the 336 

patient in question was not diagnosed.  337 

 338 

False negative errors can be attributed to various representation of AAV-related 339 

keywords: 1. Dictation errors or misspellings. Some false negative cases contain typos 340 

of AAV-related terms or instances of terms transcribed incorrectly (e.g., “Wagner’s” 341 

instead of “Wegener’s”).  342 

2. Combined terms. Certain terms related to AAV were mentioned as part of large 343 

tokens, which might not be recognized by the deep learning model. For instance, 344 

“ANCA+MPO+vasculitis” or “GPA/Wegener’s” were treated as distinct or unrelated 345 

compared to simpler terms like “ANCA+” or “GPA” or “Wegener’s”.  346 

3. Rare variations of AAV-related terms, such as, “WEgeners”, "WEGENER'S" or 347 

"GRANULOMATOSIS", which might not be well recognized by the deep learning model.  348 

 349 

When assessing model performance in 2,000 random patients from our screening 350 

cohort, six patients were identified by the deep learning model but not by the rule-based 351 

algorithm. After reviewing their charts, there are two potential reasons for these patients 352 

were not captured by the rule-based algorithms. First, three patients were diagnosed 353 

with AAV at institutions external to MGB so ICD codes for AAV were not used in 354 

encounters in our healthcare system. Second, three patients had only one diagnosis 355 

code, which did not meet the criteria of our rule-based algorithm. One patient identified 356 

solely by the rule-based algorithm had positive ANCA pathology reports external to 357 
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MGB, which weren’t included in the note screening. Available clinical notes lacked other 358 

specific features of AAV in this case.  359 

 360 

DISCUSSION 361 

We found that a deep learning algorithm that integrated convolutional neural network, 362 

recurrent neural network, and an attention mechanism trained using a small set of 363 

keyword-identified, manually labeled note sections can be accurate and useful for 364 

identifying a rare disease like AAV in a large cohort. The model performance in dataset I 365 

showed its great capacity for detecting relevant signals from free-text narratives to make 366 

accurate predictions. The model was generalizable to notes, regardless of the presence 367 

of keywords. When applied to notes of patients from a large screening cohort for AAV 368 

case identification, the deep learning model out-performed the traditional rule-based 369 

algorithms which rely on ICD codes with or without medication prescriptions.  370 

 371 

In addition to assessing the performance of the deep learning model, we also evaluated 372 

the performance of rule-based algorithms using ICD codes and medication prescriptions 373 

in our healthcare system. This is the first study that incorporates ICD-10 codes into an 374 

assessment of performance of this rule-based algorithm. We found that these rule-375 

based algorithms had a PPV worse than that of the deep-learning model and that 376 

incorporating medication prescriptions into the rule only slightly improved the PPV by 377 

1.8%. In contrast, requiring a medication prescription significantly reduced sensitivity. 378 

These observations speak to the need for innovative approaches, such as deep 379 

learning, for developing new approaches for AAV case identification.  380 
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 381 

In comparing the deep learning approach with the ICD/medication-based rules, the 382 

former demonstrated higher sensitivity and PPV. Examining clinical notes proved 383 

beneficial in identifying additional cases, particularly those with a more remote history of 384 

AAV or those diagnosed with AAV outside the MGB system. It also addressed cases 385 

missed by the rule-based algorithm due to a limited number of ICD codes in the EHR. 386 

This will be helpful for identifying patients, for instance, who have severe disease and 387 

die during their initial admission for AAV. This is particularly crucial in rare diseases, 388 

where even a small increase in sample size and including patients with the most severe 389 

spectrum of disease can significantly impact studies. While clinical notes revealed only 390 

6 additional cases in a sample of 2,000, after extrapolating these observations to the 391 

entire screening cohort (n=88,902) we suspect that the deep learning model could 392 

identify approximately 7,868 patients, with an estimated 2,000 of them having AAV. 393 

Compared with a rule-based algorithm approach, the deep learning algorithms could 394 

identify an additional 267 patients while reducing the need for extensive chart reviews 395 

by more than 1,823 patients.  396 

 397 

Compared with rule-based algorithms, we found that the deep learning model more 398 

often identified patients of Hispanic background and those with ANCA-negative disease. 399 

Why the deep learning model may have yielded a cohort with greater ethnic diversity is 400 

unclear. One possibility has to do with differences in the way that ICD codes are used 401 

for billing between people of different racial or ethnic backgrounds or because of the 402 

way patients of different racial or ethnic backgrounds interact with the healthcare 403 
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system. The ability of the deep learning model to identify a greater proportion of cases 404 

with ANCA-negative granulomatosis with polyangiitis is another strength of this 405 

approach. This population is often excluded from observational studies of AAV as well 406 

as clinical trials and the ability to identify them easily will facilitate research of this 407 

subgroup.  408 

 409 

Our findings suggest that applying a deep learning model may have benefit regarding 410 

the efficiency of AAV cases identification. Rule-based approaches to AAV case finding 411 

which identify potential AAV cases through billing codes with or without medications 412 

typically necessitates a full chart review. In contrast, the deep learning model approach 413 

presents a significant advantage because once the model flags sections that are 414 

potentially related to AAV, only these specific sections typically require review, 415 

potentially reducing the need for comprehensive chart evaluation. 416 

 417 

Our study has several strengths. First, it was conducted in a large healthcare system 418 

that includes both quaternary academic medical centers in addition to community 419 

hospitals, primary care and specialty clinics, as well as specialty hospitals (e.g., ear, 420 

nose throat hospital). Second, we applied four statistical machine learning models and 421 

assessed their performance in comparison to commonly used rules-based algorithms. 422 

Third, we assessed model performance using training and multiple validation datasets. 423 

 424 

Despite these strengths, this study has certain limitations. First, we used data from a 425 

single healthcare system so the model was not evaluated for its generalizability using 426 
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data from other institutions. This is an important next step in the development of deep 427 

learning models to identify AAV cases. Second, the deep learning model was learned 428 

from a small dataset, of which the vocabulary size might be relatively small. This might 429 

affect the performance of the model when applied to a dataset with a larger vocabulary 430 

size. Third, the current approach leveraged only clinical notes to identify potential AAV 431 

cases. It is possible that including other data sources for model learning, such as lab 432 

results, may improve the performance of algorithms for identifying AAV cases. Fourth, 433 

we noted a large decline in the PPV when we applied the deep learning model, which 434 

was trained and assessed at the level of sections from notes, to classify at the patient 435 

level. This decrease can be attributed to the aggregation of errors from multiple note 436 

sections per patient, which, when accumulated at the patient level, magnify the error 437 

rate. 438 

 439 

Our findings highlight the potential role of deep learning models for identifying positive 440 

AAV cases from large screening cohorts. Moving forward, we intend to leverage our 441 

deep learning model to screen the entire cohort, anticipating the identification of over 442 

2,000 AAV cases. A cohort of this size would be substantially larger than the current 443 

cohort assembled during a similar timeframe which includes fewer than 1,000 cases. 444 

Thus, this represents a significant opportunity to expand the current MGB AAV cohort. 445 

Furthermore, in the wake of the rise of sophisticated large language models, such as 446 

GPT-4, an intriguing avenue of research would be to compare the performance of our 447 

deep learning model with these state-of-the-art language models. The evolution of 448 
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natural language processing tools offers promising opportunities to further enhance the 449 

accuracy and efficiency of clinical data mining and disease identification.   450 

CONCLUSION 451 

This study is the first to show that a deep learning algorithm can efficiently and 452 

accurately identify cases of AAV, a prototypic rare condition, in part by only using 453 

unstructured EHR data. This approach has the potential to identify cases that may be 454 

overlooked if only using structured EHR data. This approach to case identification may 455 

improve the spectrum of disease captured for observational studies and reduce the time 456 

and resources often needed to review electronic health records. Future work will involve 457 

deploying the model to screen a broader cohort for potential AAV patients and 458 

assessing performance in other healthcare systems. 459 
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Table 1. Characteristics of the datasets I, II and III for the development and validation of models 511 

for identifying evidence of ANCA vasculitis. 512 

Characteristic Dataset I Dataset II Dataset III 

Sections, n 6,000 3,008 7,500 

Notes, n 5,765 2,970 5,429 

Character length per section, 
mean (SD) 839 (793) 443 (566) 410 (551) 

Unique patients, n 1,638 1,501 1,000 

Female, n (%) 968 (59.1) 885 (60.0) 568 (56.8) 

Keyword present, n (%) 6,000 (100) 457 (15.2) 219 (2.9) 

Sections consistent with a 
diagnosis of AAV, n (%) 2,669 (44.5) 206 (6.8) 50 (0.67) 

Sections consistent with AAV 
diagnosis and containing a 
keyword of interest, n (%) 

2,669 (44.5) 203 (44.4) 45 (20.5) 

Abbreviations: AAV, ANCA-associated vasculitis; SD, standard deviation 513 
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Table 2. Performance of four machine learning models for detecting AAV from clinical notes 

Model AUROC (95% CI) AUPRC (95% CI) PPV Sensitivity F-1 Score 

Dataset I (6,000 Note Sections) 

Logistic 

Regression 

0.923 (0.916-0.930) 0.892 (0.879-0.904) 0.857 0.777 0.815 

Random Forest 0.929 (0.922-0.935) 0.888 (0.874-0.902) 0.808 0.886 0.845 

SVM 0.938 (0.932-0.944) 0.912 (0.901-0.923) 0.848 0.862 0.855 

XGBoost 0.957 (0.952-0.962) 0.939 (0.929-0.948) 0.916 0.896 0.906 

Bio_ClinicalBERT 0.957 (0.945-0.968) 0.962 (0.950- 0.972) 0.947 0.956 0.952 

Deep Learning 0.983 (0.980-0.986) 0.977 (0.972-0.982) 0.941 0.951 0.946 

Dataset II (3,008 Note Sections) 

Logistic 

Regression 

0.981 (0.969-0.991) 0.893 (0.858-0.925) 0.709 0.874 0.783 

Random Forest 0.983 (0.976-0.989) 0.871 (0.832-0.904) 0.528 0.922 0.671 

SVM 0.983 (0.971-0.991) 0.910 (0.880-0.939) 0.645 0.908 0.754 

XGBoost 0.990 (0.981-0.997) 0.963 (0.941-0.981) 0.886 0.947 0.915 

Bio_ClinicalBERT 0.981 (0.967-0.992) 0.954 (0.933-0.973) 0.939 0.966 0.952 

Deep Learning 0.991 (0.981-0.997) 0.962 (0.941-0.980) 0.954 0.898 0.925 

Dataset III (7,500 Note Sections) 
Logistic 

Regression 

0.940 (0.906-0.967) 0.390 (0.259-0.534) 

 

0.109 0.720 0.189 

Random Forest 0.975 (0.962-0.986) 0.392 (0.258-0.529) 0.064 0.900 0.120 

SVM 0.907 (0.861-0.948) 0.402 (0.264-0.538) 0.080 0.700 0.143 

XGBoost 0.982 (0.955-0.996) 0.490 (0.359-0.633) 0.320 0.800 0.457 

Bio_ClinicalBERT 0.857 (0.792-0.917) 0.570 (0.473-0.659) 0.419 0.720 0.529 

Deep Learning 0.991 (0.982-0.998) 0.760 (0.620-0.885) 0.800 0.800 0.800 

Abbreviations: SVM, support vector machine; AUROC, area under the receiver operating 515 

characteristic curve; AUPRC, the area under the precision-recall curve; PPV, positive predictive 516 

value. Bold highlights the best performing model according to each measure.  517 

 518 

 519 
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Table 3. Characteristics of patients identified identified by the deep learning model and two rule-521 

based algoirthms among 2,000 random sample of the screening cohort.  522 

 Deep Learning Rule 1 Rule 2 
N 177 218 52 
AAV 45 40 11 
Age at diagnosis, years 

Mean (SD) 
Median (IQR) 

N = 43 (2 unknown) 
54.79 (20.61) 
60 (37 – 72) 

N = 38 (2 unknown) 
55.97 (20.27) 

60 (37.25 – 73.75) 

N = 11 
56.64 (19.74) 

60 (44.5 – 70.5) 
Sex, female, n (%) 35 (77.78) 31 (77.50) 9 (81.82) 
Race, n (%) 
   White 
   Black 
   Asian 
   Other 
   Unavailable 
   Declined 

 
38 (84.4) 

1 (2.2) 
1 (2.2) 

1 (2.22%) 
3 (6.67%) 
1 (2.22%) 

 
33 (82.50) 

1 (2.50) 
1 (2.50) 
1 (2.50) 
3 (7.50) 
1 (2.50) 

 
10 (90.91) 

0 
0 
0 
0 

1 (9.09) 
Ethnicity, n (%) 
   Not Hispanic 
   Hispanic 
   Unavailable 

 
33 (73.33%) 
11 (24.44%) 

1 (2.22%) 

 
29 (72.5) 

1 (2.5) 
10 (25.00%) 

 
8 (72.73%) 

0 
3 (27.27%) 

ANCA Positive, n (%) 40 (88.89%) 
(1 unknown) 

37 (92.50%) 11 (100%) 

ANCA Type, n (%) 
   MPO 
   PR3 
   Neither 
   Unknown 

 
24 (53.33%) 
14 (31.11%) 

4 (8.89%) 
3 (6.67%) 

 
23 (57.50%) 
13 (32.50%) 

3 (7.50%) 
1 (2.50%) 

 
7 (63.64%) 
3 (27.27%) 

0 
1 (9.09%) 

Abbreviation: AAV, ANCA-associated vasculitis; SD, standard deviation; IQR, Interquartile 523 

range; MPO, Myeloperoxidase; PR3, proteinase 3. 524 

 525 
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Figure Legends  527 

Figure 1. Two-Phase Process for Identifying ANCA-Associated Vasculitis Cases. Phase 528 

1 entails dataset creation along with the training and evaluation of models. Phase 2 529 

compared the performance of the deep learning model with two rule-based algorithms.  530 

 531 

 532 

Figure 2. Performance of the Machine Learning and Deep Learning Algorithms on 533 

Datasets I, II, and III. A. Precision-recall curves for Dataset I. B. Receiver operating 534 

characteristic (ROC) curves for Dataset I. C. Precision-recall curves for Dataset II. D. 535 

ROC curves for Dataset II. E. Precision-recall curves for Dataset III. F. ROC curves for 536 

Dataset III. 537 

  538 

 539 
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