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Abstract (250-word limit) 28 

It has long been hypothesized that behavioral reactions to epidemic severity autoregulate infection 29 

dynamics, for example when susceptible individuals self-sequester based on perceived levels of 30 

circulating disease.  However, evidence for such ‘behavioral autorepression’ has remained elusive, 31 

and its presence could significantly affect epidemic forecasting and interventions.  Here, we 32 

analyzed early COVID-19 dynamics at 708 locations over three epidemiological scales (96 33 

countries, 50 US states, and 562 US counties).  Signatures of behavioral autorepression were 34 

identified through: (i) a counterintuitive mobility-death correlation, (ii) fluctuation-magnitude 35 

analysis, and (iii) dynamics of SARS-CoV-2 infection waves.  These data enabled calculation of 36 

the average behavioral-autorepression strength (i.e., negative feedback ‘gain’) across different 37 

populations.  Surprisingly, incorporating behavioral autorepression into conventional models was 38 

required to accurately forecast COVID-19 mortality.  Models also predicted that the strength of 39 

behavioral autorepression has the potential to alter the efficacy of non-pharmaceutical 40 

interventions.  Overall, these results provide evidence for the long-hypothesized existence of 41 

behavioral autorepression, which could improve epidemic forecasting and enable more effective 42 

application of non-pharmaceutical interventions during future epidemics. 43 

 44 

Significance (120-word limit) 45 

Challenges with epidemiological forecasting during the COVID-19 pandemic suggested gaps in 46 

underlying model architecture.  One long-held hypothesis, typically omitted from conventional 47 

models due to lack of empirical evidence, is that human behaviors lead to intrinsic negative 48 

autoregulation of epidemics (termed ‘behavioral autorepression’).  This omission substantially 49 

alters model forecasts.  Here, we provide independent lines of evidence for behavioral 50 

autorepression during the COVID-19 pandemic, demonstrate that it is sufficient to explain 51 

counterintuitive data on ‘shutdowns’, and provides a mechanistic explanation of why early 52 

shutdowns were more effective than delayed, high-intensity shutdowns.  We empirically measure 53 

autorepression strength, and show that incorporating autorepression dramatically improves 54 

epidemiological forecasting.  The autorepression phenomenon suggests that tailoring interventions 55 

to specific populations may be warranted. 56 

  57 
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INTRODUCTION 58 

The dynamics of communicable diseases have historically been analyzed using 59 

Susceptible-Infective-Removed (SIR) models (1), wherein the rate of infection spread is mediated 60 

by density-dependent contact between the susceptible and infective populations, generating an 61 

inherent positive-feedback or auto-stimulatory loop.  However, it has long been hypothesized that 62 

these infection rates can be buffered by human apprehension, thereby generating a form of negative 63 

feedback or autorepression.  This phenomenon of “behavioral autorepression” postulates that, 64 

based on the size of the infective population, susceptible individuals self-sequester during an 65 

epidemic to reduce the effective contact rate and interrupt the spread of disease.   66 

 67 

Behavioral autorepression was first proposed in mathematical models of a cholera outbreak 68 

in the summer of 1973 centered around the Italian town of Bari on the Mediterranean coast (2, 3). 69 

Epidemiological data showed that daily cholera infections plateaued, rather than continuing to 70 

exponentially grow, and models argued this was due to reductions in contact rates as a result of 71 

human apprehension.  The resulting behavioral autorepression models exhibited plateaus in daily 72 

infections through saturation of the contact rate, in contrast with canonical SIR models which 73 

predicted exponential rises and a peak in daily infections, followed by a steady drop (1).  74 

 75 

  Despite the long history of the behavioral autorepression hypothesis, other 76 

epidemiological mechanisms have been proposed as alternate explanations of infection-rate 77 

saturation.  For example, lockdown-limited transmission (4) can mimic the effects of 78 

autorepression, and depletion of high-risk individuals (5-7) can also generate comparable 79 

saturation of infection rates.  Consequently, the role of behavioral autorepression and its relative 80 

contribution to population-scale disease transmission remain unclear.   81 

 82 

The lack of clarity surrounding behavioral autorepression has significant implications for 83 

epidemiological forecasts.  In principle, behavioral autorepression would substantially reduce 84 

predicted infections and deaths in SIR-like models, potentially leading to improved forecasting of 85 

epidemic dynamics.  Additionally, theoretical models have shown behavioral autorepression to be 86 

capable of generating multiple waves of infection (8, 9).   87 

 88 
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This potential of behavioral autorepression to influence disease dynamics catalyzed 89 

substantial modeling efforts to explore its epidemiologic impacts.  Hypotheses suggested that 90 

autorepression may be a form of natural infection mitigation, since conventional policy 91 

interventions (a.k.a., non-pharmaceutical interventions) are notoriously challenging to maintain 92 

due to fatigue and poor adherence (10).  Simulation-based approaches were used to examine how 93 

changes in the mathematical formulation of behavioral autorepression affect the sensitivity of 94 

epidemic dynamics to parameter changes (11, 12).  Studies also modeled how changes in media 95 

coverage influenced changes in population-level psychology and fear to affect the propagation of 96 

cases numbers (9, 13, 14).   97 

 98 

Despite the potential importance of behavioral autorepression, previous disease outbreaks 99 

that may have manifested autorepression dynamics occurred during eras when consistent 100 

population-level behavioral metrics were largely unavailable (15).  In contrast, the level of data 101 

collection during the COVID-19 pandemic was unprecedented.  For example, modern 102 

improvements in epidemiological data recording practices were employed (16), and there was 103 

broad availability of mobile-phone geolocation data (17), which can quantify regional, population-104 

level behavior at multiple geographic scales (18, 19).   Thus, we hypothesized these datasets could 105 

enable a unique empirical analysis of an acute outbreak to quantify how human responses (e.g., 106 

behavioral autorepression) influence contact rates and disease transmission.     107 

 108 

Here, we examined various COVID-19 epidemiological data for signatures of 109 

autorepression (i.e., negative feedback) using population mobility data as a correlate of the contact 110 

rate.  Analysis of the early epidemic (i.e., spring 2020) showed a counterintuitive time-dependent 111 

inversion of the correlation between COVID-19 deaths and population mobility across different 112 

epidemiological scales (96 countries, 50 states, and 562 counties).  This inversion was consistent 113 

with autorepression but not with alternate epidemiological mechanisms.  Independent lines of 114 

evidence for behavioral autorepression were established by assaying for signatures of 115 

autorepression in the dynamics of COVID-19 infection. Fluctuation analysis of daily infection 116 

counts showed direct evidence of significantly altered epidemic feedback strength.  Analysis of 117 

the first wave of COVID-19 infections showed that the timing of waves was positively correlated 118 

with wave intensity, consistent with variation in autorepression delay.  Based on these data 119 
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indicating the existence of behavioral autorepression, we applied behavioral autorepression to SIR-120 

type models and found that autorepression dramatically improved the mortality forecasting of 121 

these models. 122 

 123 

 124 

RESULTS 125 

 126 

Epidemiological data show unexpected inversion of the mobility-death correlation 127 

To search for potential signatures of population-level behavioral autorepression, we 128 

examined temporal changes in population-level mobility (a correlate of contact rate) early in the 129 

pandemic on a region-by-region basis, relative to longitudinal COVID-19 mortality data.  To avoid 130 

infection underreporting, we focused on confirmed COVID-19 deaths as the measure for disease 131 

transmission (20), and to quantify changes in population-level behavior, we used mobile phone 132 

geolocation data from Google’s mobility dataset (21), where location data is broken down into 133 

occupancy of different location classes: (i) retail & recreation occupancy, (ii) grocery & pharmacy 134 

occupancy, (iii) park occupancy, (iv) transit occupancy, (v) workplace occupancy, and (vi) 135 

residential occupancy.  We hypothesized that residential occupancy likely represents the inverse 136 

aggregate of all the other mobility measures, so our initial analyses focused on residential 137 

occupancy as a surrogate for occupancy changes in multiple categories of public spaces (i–v), 138 

whereas subsequent analyses directly analyzed these other mobility measures. 139 

 140 

Using linear regression, we examined two aspects of occupancy: (i) the change in 141 

occupancy from baseline after a threshold of ten deaths had been crossed (termed “initial change 142 

in residential occupancy”); and (ii) the maximum change in residential occupancy during the first 143 

wave of COVID-19 infection (termed “maximum change in residential occupancy”), which 144 

typically occurred around thirty days after the ten-death threshold was crossed in a region.  To 145 

examine the relationship between mobility and mortality during the first wave of COVID-19, both 146 

occupancy metrics (i.e., initial and max changes) were compared to COVID-19 deaths during the 147 

first wave on a region-to-region basis (Fig. 1). Regression analysis was performed at three different 148 

geographic scales––from coarse-grained to finer-grained: (i) international (96 countries); (ii) 149 

provincial (50 US states); and (iii) regional (562 US counties).  As expected, regression analysis 150 
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of the coarse-grained data of 96 countries revealed that initial changes in residential occupancy 151 

were negatively correlated with deaths per capita (Fig. 1A, left).  However, the maximum change 152 

in residential occupancy appeared counterintuitively inverted, showing a positive correlation with 153 

regional mortality (Fig. 1A, right).  To ensure that this observed inversion of the correlation was 154 

not an artifact of coarse-grained geographical analysis, we repeated the analysis at the provincial 155 

and regional level.  These finer-grained analyses of states and counties in the United States showed 156 

very similar inversion of the mobility-death correlation (Fig. 1B–C).   157 
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Figure 1: Temporal inversion of the mobility-death correlation

A

B

C

D

Fig. 1: Temporal inversion of the mobility-death correlation early in the COVID-19 outbreak. COVID-19 
deaths per capita vs. population mobility (as measured by residential occupancy) from mobile-phone data. Initial 
and max D occupancy is defined as deviation from baseline occupancy at the start of the epidemic, defined as 
10 deaths (left, day 1) or the maximum deviation from baseline occupancy (right, day ~30), respectively; deaths 
per capita are totaled until May 24th, 2020. Solid lines are the linear regression, dashed lines are 95% confidence 
intervals. Red points represent regions that had higher death than predicted by the regression. Grey points 
represent regions that had lower death than predicted by the regression. (A) Data of international of COVID-19 
deaths vs. initial change in residential occupancy (Left; regression p-value=6.7x10-6) and max. increase in 
residential occupancy (Right; regression p-value= 3.2x10-2). (B) US-state COVID-19 deaths vs. initial change 
in residential occupancy (Left, regression p=2.7x10-5) and max. increase in residential occupancy (Right; 
regression p-value=1.9x10-7). (C) US county COVID-19 deaths versus initial change in residential occupancy 
(Left; regression p-value=8.2 x 10-19) and max. increase in residential occupancy (Right; regression p-
value=1.9x10-7). (D) Excess deaths (US state) vs. initial change in residential occupancy (Left; regression p-
value=1.7x10-3) and max. change in residential occupancy (Right; regression p-value=1.8x10-6). P-values 
indicate significance that the slope of the regression line is non-zero (null hypothesis slope=0). 
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To eliminate the possibility that incomplete death statistics (22) might generate a spurious 159 

mobility-death correlation, we repeated the regression analysis using excess deaths instead of 160 

confirmed COVID-19 deaths.  Estimates of excess deaths associated with COVID-19 from the 161 

CDC were calculated by comparing mortality rates during the COVID-19 pandemic to average 162 

mortality statistics from previous years (23-25). Despite using excess deaths, the inverted 163 

correlation between initial and maximum residential occupancy persisted (Fig. 1D).  Excess deaths 164 

also showed an inverted correlation between initial and maximum change in retail, transit, and 165 

workplace occupancy (Fig. S1).  These results suggest that the inversion of the mobility-death 166 

correlation is not caused by an incomplete characterization of COVID-19 mortality (Fig. 1D, Fig. 167 

S1). 168 

 169 

To verify that the observed inversion of the mobility-death correlation was not an artifact 170 

of the particular mobility metric used (i.e., residential occupancy), we analyzed mortality data 171 

versus the five other mobility categories.  These other metrics represent occupancy of public spaces 172 

which decreased during the first wave of COVID-19 (as opposed to residential occupancy, which 173 

increased during the first wave of COVID-19).  Retail & recreation, transit, and workplace 174 

occupancy all exhibited temporal inversion of the mortality-death correlation (Fig. S2-S6).  175 

Overall, alternate measures of mobility showed a similar temporal inversion of the mobility-death 176 

correlation.  177 

 178 

We additionally tested that the inversion of the mobility-death correlation was retained 179 

with alternative regression methods and alternative sources for mobility data (Supp Text-Section 180 

1). In all cases, the inversion of the mobility-death correlation was found to be a robust 181 

phenomenon that occurred across multiple geographic scales, irrespective of data source or 182 

underlying statistical assumptions (Fig. S7-S10). 183 

 184 

Minimal autorepression models explain inversion of the mobility-death correlation 185 

Building off the prior finding that population-level mobility affects contact rate (26), these 186 

empirical data (Fig. 1) showing inversion of the mobility-death correlation suggested that contact 187 

rate might be dynamically regulated.  To test this hypothesis, we developed a series of simplified 188 

Susceptible-Infective-Recovered-Deceased (SIRD) models to determine if instantaneous changes 189 
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in contact rate and/or a dynamically changing contact rate (e.g., behavioral autorepression) could 190 

account for the observed inversion of the mobility-death correlation. Specifically, we modeled 191 

reductions in contact rates between individuals due to residential sequestration. 192 

 193 

 194 
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Figure 2: Autorepression coupled with sequestration is sufficient to account for inversion of mobility-death correlation
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Fig. 2: Autorepression coupled with sequestration is sufficient to account for temporal inversion of mobility-
death correlation. (A) Schematic of the simple SIRD model [Eqs. 1-4] with extrinsic (e.g., policy based) 
sequestration (µ) [Eq. 5] where contact-reduction rate c = 1/µ. (B) Change in contact rate over time for simple 
SIRD (shown as % reduction). (C-D) Numerical simulations of mortality (calculated as 1% of R/N) as a function 
of initial and max changes in contact rate (% reduction) from simple SIRD model (regression p-values=1.6x10-32 
and 1.6x10-32). (E) SIRD model with autorepression (a) [Eq. 6] where contact-reduction rate is c = 1/(1+aI). (F) 
Change in contact rate over time (% reduction) for SIRD autorepression model. (G-H) Mortality as a function of 
initial and max changes in contact rate (% reduction) from SIRD autorepression model (p-values=3.7x10-2 & 9.6 
x 10-69, respectively).  (I) SIRD model with coupled sequestration and autorepression [Eq. 7] where contact-
reduction rate c = 1/µ(1+aI) (J). Change in contact rate over time for coupled SIRD extrinsic sequestration-
autorepression model. (K-L) Mortality as a function of initial and max changes in contact rate (% reduction) for 
SIRD sequestration-autorepression model (regression p-values = 3.8x10-20 and 7.0x10-20, respectively). P-values 
indicate significance that the slope of the regression line is non-zero (null hypothesis slope=0).  
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All SIRD models we utilize are based upon the same basic set of equations: 197 

 198 
!"
!#
=	− $%"&

'
      Eq. 1 199 

!&
!#
= $%"&

'
− 𝛾𝐼 − 	𝜀𝐼    Eq. 2 200 

!(
!#
= 𝛾𝐼      Eq. 3 201 

!)
!#
= 𝜀𝐼      Eq. 4 202 

 203 

where S, I, R, and D represent susceptible, infectious, recovered, and deceased individuals in a 204 

population of N total individuals; 𝛽 is the transmission rate constant (days-1), 𝛾 is the removal rate 205 

of infective individuals (days-1), 𝑐 is the effective contact rate used to calculate “contact-reduction” 206 

in our models, and e is the proportion of cases that result in death.  The Susceptible-Infective-207 

Recovered-Deceased (SIRD) model structure we chose was based on previous literature which 208 

expresses the death rate as a proportion of the number of infected individuals (27, 28).  The 209 

different models we considered (below) differ only in the functional form of their contact rate. 210 

 211 

The simplest SIRD model we considered (Fig. 2A) describes an extrinsically induced sequestration 212 

of individuals (e.g., government-mandated ‘lockdowns’) where the c is: 213 

 214 

𝑐 = *
+
       Eq. 5 215 

 216 

and 𝜇 is a constant that represents the efficacy of external forces (i.e., mandates) in facilitating the 217 

sequestration of healthy individuals (unitless).  This initial model describes arguably the simplest 218 

constant reduction in contact rate (Fig. 2B).  In this model, both initial and maximum reductions 219 

in contact rate reduced the number of calculated deaths (Fig. 2C,D), i.e., were negatively correlated 220 

with mortality, and could not reproduce the empirically observed inversion (Fig. 1).  221 

 222 

Since this simple model [Eqs. 1-5] uses a fixed change in contact rate, to more closely 223 

mimic real-world scenarios of increases in strength of public-health mandates over time (29, 30), 224 

we also tested a variant of this model where induced sequestration was delayed and implemented 225 
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at a time t partway through the epidemic (i.e., a step function where c=1 if time<t and c=1/µ if 226 

time³t).  However, systems where induced sequestration was delayed still produced contact rate 227 

reductions that were negatively correlated with death (Fig. S11).  Thus, a reduction in contact rate 228 

can only explain part of the correlation data (i.e., initial changes in residential occupancy and 229 

COVID-19 deaths), but not the temporal inversion of the correlation.   230 

 231 

The second SIRD model (Fig. 2E) implements behavioral autorepression (i.e., negative 232 

feedback) by modifying the contact rate such that it reduces proportionally to the number of 233 

infectious cases:   234 

 235 

𝑐 = *
*,	.&

      Eq. 6 236 

 237 

with 𝛼 (person-1) representing the strength of the contact-rate reduction based on the number of 238 

infective individuals (a.k.a., the negative-feedback ‘gain’). 239 

 240 

In this autorepression model [Eqs. 1-4,6], reductions in contact rate are solely driven by behavioral 241 

autorepression, such that residential occupancy increases in response to the number of infective 242 

individuals (Fig. 2F).  The autorepression model generated a weak positive correlation between 243 

death and initial contact-rate reductions (Fig. 2G), but a strong positive correlation between deaths 244 

and maximum contact rate reductions (Fig. 2H).  Thus, behavioral autorepression can also only 245 

explain a portion of the data—the correlation between deaths and maximum changes in residential 246 

occupancy—but not the negative correlation between death and initial increases in residential 247 

occupancy (Fig. 2G,H). 248 

 249 

Based on these two sets of results each explaining a portion of the data, we constructed a 250 

third SIRD model combining both extrinsic sequestration and behavioral autorepression (Fig. 2I) 251 

with contact rate: 252 

  253 

𝑐 = *
+(*,	.&)

     Eq. 7 254 

with all state variables and parameters as described above. 255 
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 256 

This combinatorial model [Eqs. 1-4,7] showed that regions with the weakest extrinsic (induced) 257 

sequestration µ (i.e., the least initial change in contact rate) generated the most infective individuals 258 

(as expected), but this ultimately resulted a larger contact-rate reduction later in time (Fig. 2J).  259 

Conversely, regions with the strongest extrinsic sequestration µ (i.e., the highest initial contact-260 

rate reduction) generated the fewest infections, resulting in the lowest peak contact-rate reduction 261 

(Fig. 2J).  This dynamic change in the effective contact rate was sufficient to generate a temporal 262 

inversion of the correlation between calculated deaths and contact-rate reduction (Fig. 2K–L), 263 

where mortality is negatively correlated with early contact rate reductions (Fig. 2K), but positively 264 

correlated with maximum contact-rate reductions (Fig. 2L).  Overall, the simulations show that 265 

behavioral autorepression coupled with extrinsic (induced) sequestration is sufficient to 266 

recapitulate the inversion of the mobility-death correlation.   267 

 268 

 To test if a coincidental increase between residential occupancy and COVID-19 cases 269 

could have caused the inversion of the mobility-death correlation, we simulated a scenario where 270 

changes in residential occupancy did not reduce contact rates, but found this scenario could not 271 

cause the temporal inversion (Supp Text- Section 2), arguing that a functional dependency, not a 272 

coincidental increase, between contact rate and infection is required (Fig. S12).  273 

 274 

 To test alternate hypotheses that could account for the inversion of the mobility-death 275 

correlation, we considered the possibilities that intense lockdowns drove infection, or that deaths 276 

(rather than infections) drove changes in behavior (Supp Text- Section 3).  However, neither 277 

alternate hypothesis was parsimonious with the epidemiological data (Fig. S13–S14). 278 

 279 

 280 

Fluctuation analysis reveals signature and strength of autorepression  281 

To verify the existence of negative feedback in these early COVID-19 epidemiological 282 

dynamics and quantify the feedback strength, we exploited a known phenomenon where negative 283 

feedback typically reduces the magnitude of fluctuations in a system, proportional to the feedback 284 

strength (31-33).   To search for this effect, we analyzed variance in daily COVID-19 infection 285 
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data over time using a common metric; the normalized variance (i.e., square of the standard 286 

deviation divided by the mean, also known as the ‘Fano factor’) of daily infections. 287 

 288 

First, a stochastic SIR model (Table S1) was used to benchmark the analysis, with Monte-289 

Carlo simulations (34) used to examine how behavioral autorepression (Fig. 3A) affected the 290 

normalized variance of the daily infection rate in the model.  As expected, models incorporating 291 

autorepression showed a marked reduction in the Fano factor versus mean infections per day (Fig. 292 

3B).  Specifically, the analysis indicated that incorporating autorepression in an SIR model causes 293 

the slope of the Fano to decrease.  294 

 295 

Next, we quantified the reduction in the empirical Fano of the COVID-19 infection data 296 

by least-squares linear regression for daily infections early in the epidemic internationally (Fig. 297 

3C) and in the United States (Fig. 3D). The slope of the Fano-vs-mean relationship in these 298 

datasets was found to be ~0.6, consistent with autorepression (Fig. 3C,D). 299 

 300 

To quantify the negative-feedback strength (a.k.a., negative ‘gain’) of behavioral 301 

autorepression, we generated a series of simulated slopes from models with incrementally stronger 302 

autorepression (Fig. 3E).  As the simulated strength of autorepression increased, the Fano-versus-303 

mean slope decreased, and extrapolation to the fit US state and country data estimated the 304 

autorepression gain for the COVID-19 pandemic at 5x10-5 person-1 (Fig. 3E).  An autorepression 305 

gain of 5x10-5 person-1 indicates that when the level of infection reaches two thousand 306 

simultaneously infective individuals, the transmission rate constant in that outbreak will be 307 

decreased by 10%.  308 

 309 

While the decreasing Fano-versus-mean slope could in principle be accounted for by 310 

mechanisms other than autorepression (e.g., policy changes that reduce transmission rate), the 311 

modeling results above (Fig. 2, Fig S.11) suggest that a feedback mechanism is the most 312 

parsimonious with the data.  Moreover, analysis of early changes in policy (35) were found to be 313 

positively correlated with infection count (Fig. S15), suggesting policy itself may play a role in 314 

behavioral autorepression.   315 

 316 
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To test if pre-emptive, policy-mediated modification of the transmission rate constant 317 

could account for infection-rate variability, we analyzed simulations where the transmission rate 318 

constant was varied (Fig. S16).  Changing the transmission rate constant could increase the Fano-319 

vs-mean slope above 1, but could not reduce the Fano-vs-mean slope below 1, again supporting 320 

the finding that a reduction in the Fano slope is a signature of autorepression (Fig. 3, Fig. S16).  321 

Notably, quantification of the Fano-vs-mean relationship over the first 15 days of infection at the 322 

international (Fig. S17A) and US state (Fig. S17B) scale also yielded slopes below 1. Since 323 

COVID-19 mortality occurs ~20 days after exposure to SARS-CoV-2 (36), these results suggest a 324 

substantial fraction of variation in infection counts is suppressed by infection-induced 325 

autorepression independently of death-induced autorepression. 326 

 327 

 328 

 329 

 330 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.07.24308626doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.07.24308626


 331 
 332 

Temporal analysis of infection waves indicates presence of autorepression  333 

 To establish an independent line of evidence for behavioral autorepression, we 334 

qualitatively analyzed the dynamics and temporal characteristics of the initial ‘wave’ of COVID-335 

19 infection in different regions.  Specifically, we analyzed if the wave pattern (i.e., magnitude 336 

and timing of infection waves) was consistent with a traditional SIR model [Eqs. 1–4] or whether 337 
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without autorepression (black) and with autorepression (red). Histograms show the variability in infections per day 
at day 30.  (B) Fano factor (variance normalized to mean) of infections rate versus mean generated by Monte-Carlo 
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incorporating delayed autorepression [Eq. S2] was more parsimonious with the data (Fig. S18A, 338 

Supp Text- Section 4).   339 

 340 

The SIR model [Eqs. 1–4] naturally produces an initial wave, or peak in infections per day, 341 

and we first benchmarked how modulating the infection rate (𝛽) affected this wave (Fig. S18B).  342 

As expected, increased infectivity generated earlier and larger peaks in infections per day (Fig. 343 

S18C), producing a trend where earlier waves peaked at higher levels and later waves peaked at 344 

lower levels.  Similarly, when a fixed time delay (𝜏) was incorporated between the susceptible and 345 

infective populations (Fig. S18D, Eqs. S3-S6), increasing this delay generated a similar trend 346 

where infection waves peaked later and at lower peak magnitudes (Fig. S18E).   347 

 348 

In contrast, when behavioral autorepression (Fig. S18F, Eq. S2) was incorporated, a starkly 349 

different trend emerged: increasing the delay time generated stronger waves that peaked later but 350 

at higher magnitudes (Fig. S18G).  This observation held true for a range of different parameter 351 

values.  352 

 353 

To compare these model trends to the empirical data, we calculated timing of COVID-19 354 

infection waves (i.e., days from a region’s epidemic onset to its first peak in infections/day), and 355 

compared it to the magnitude of that region’s first wave.  The data at both the international and 356 

US-state scales showed an increasing trend (i.e., positive correlation) between the magnitude and 357 

the timing of the peak with larger peaks occurring at later times (Fig. S18H & S18I; p-value: 2´10-358 
3 & 2´10-9 respectively).  Overall, these data appear qualitatively consistent with autorepression 359 

and suggest that temporal delays in autorepression vary across different locations.  360 

 361 

 362 

 363 

Impacts of behavioral autorepression on epidemic forecasting 364 

To determine the impact of behavioral autorepression on epidemic forecasting, we 365 

mirrored previous forecasting approaches (37), using the first 60 days of reported US COVID-19 366 

deaths to predict the subsequent outbreak trajectory using either a canonical SIRD model [Eq. 8-367 

11] or a behavioral autorepression SIRD model with autorepression gain determined from the first 368 
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60 days of data [Eq. 12-15].   The equation sets used are analogs of Eqs. 1–4 (with Eq. 5 and 7 369 

respectively), and are as follows, for the canonical SIRD model: 370 

 371 
!"
!#
=	− $"&

'
       Eq. 8 372 

!&
!#
= $"!"#$&!"#$

'
− 𝛾𝐼	 − 𝜀𝐼#123    Eq. 9 373 

!(
!#
= 	𝛾𝐼       Eq. 10 374 

!)
!#
= 	𝜀𝐼#123       Eq. 11 375 

 376 

and, as follows, for the autorepression model: 377 

 378 
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'
	 *
*,	.&!"#%

      Eq. 12 379 

!&
!#
= $"!"#$&!"#$

'
	 *
*,	.&!"#%

− 𝛾𝐼	 − 𝜀𝐼#123   Eq. 13 380 

!(
!#
= 	𝛾𝐼       Eq. 14 381 

!)
!#
= 	𝜀𝐼#123       Eq. 15 382 

 383 

with 𝜏* (days) representing the time it takes for a susceptible individual exposed to SARS-CoV-2 384 

to become infectious, with 𝜏3 (days) representing the delay between an individual becoming 385 

infectious and that individual dying from COVID-19, and 𝜏4 (days) representing the time it takes 386 

an increase in COVID-19 cases to cause susceptible individuals to self-sequester and mediate 387 

autorepression.  All other state variables and parameters as described above. 388 

 389 

Each model (either Eqs. 8–11 or Eqs. 12–15) was “trained” on the first 60 days of data on 390 

COVID-19 deaths in the US using nonlinear least squares regression analysis and simulations, and 391 

then extended out to 120 days for prediction.  As previously reported (37), the SIRD model [Eqs. 392 

8–11] forecasted ~106 COVID-19 deaths within the first 120 days of the epidemic, whereas the 393 

reported COVID-19 deaths were substantially lower in this time period.  In contrast, the 394 

autorepression model [Eqs. 12–15] generated forecasts of deaths over 120 days that appeared far 395 

more parsimonious fits with the data than the simple SIRD model forecast (Fig. 4A). To 396 
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quantitatively  compare the goodness of fit between the two models, the Akaike Information 397 

Criterion (AIC) metric was used (38), and the SIRD forecast had a significantly poorer score than 398 

the autorepression model (AIC = 145 vs –322; Wilcox rank sum test, p-value: 0). Since lower AIC 399 

represents a better fit, these results demonstrate that inclusion of behavioral autorepression in 400 

epidemiological model formulation significantly improves the forecasting potential of these 401 

models. 402 

 403 

The forecasting potential of the behavioral autorepression SIRD model was further verified 404 

using the first sixty days of the omicron wave. Autorepression models forecasted total mortality 405 

with a high degree of accuracy over ~140 days, while SIRD models generated forecasts that 406 

severely underpredicted mortality, displaying a significantly poorer AIC score (Fig. 4B AIC = -407 

398 vs -978, Wilcox rank sum test, p-value: 0). These results further support the utility of 408 

epidemiological models incorporating behavioral autorepression, and suggest that these models 409 

could be used to make health policy decisions early on during a pandemic. 410 

 411 

To determine the impact of behavioral autorepression on the efficacy of non-412 

pharmaceutical interventions (NPIs), a series of NPIs were simulated.  To obtain realistic 413 

parameters for these simulations, autorepression models were fitted to infections per day from all 414 

50 states.  These fitted parameters were then used to run data-driven simulations of NPIs that 415 

reduced the SARS-CoV-2 transmission rate constant by 0–25% (i.e., the range of mobility changes 416 

empirically measured during the first wave of the pandemic, see Fig 1).  As the NPI efficacy metric, 417 

we used number of deaths averted.  The simulations showed that while two regions may have 418 

similar mortality totals, the effectiveness of intervention differs widely depending on the 419 

autorepression gain of an individual region (𝛼 between 4.1 x 10-6 and .32 person-1). Simulations 420 

of regions where autorepression is weak (example fit in Fig. 4C inset) had dramatic responses to 421 

early NPIs, represented in the graph by simulations that show an ~4 log-fold decrease in deaths in 422 

response to a NPI that decreases transmission by 25% (Fig. 4C light grey line).  Over the same 423 

range of NPI strengths, simulations of regions where autorepression is strong had ~1 log-fold 424 

reduction in death (Fig. 4C dark grey line). Late implementations of the same NPIs yielded an ~3 425 

log-fold decrease in deaths in regions when autorepression is weak and < 0.5 log-fold decrease in 426 

regions when autorepression is strong (Fig. 4D, example fit in Fig. 4D inset).  These results predict 427 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.07.24308626doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.07.24308626


that NPIs are less effective in regions with high autorepression gains. Suppression of variation is 428 

a well-known phenomenon in autorepression systems, caused by their capacity to self-regulate 429 

(31, 32, 39). These results suggest that autorepression models could be used to forecast the efficacy 430 

of NPIs in a region-specific manner.  431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 
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Figure 4: Autorepression models significantly improve COVID-19 forecasting
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Figure 4: Autorepression models significantly improve COVID-19 forecasting. (A) Mortality forecasts of 
COVID-19 deaths in first 180 days after the COVID-19 pandemic initiation in the US. COVID-19 morality data 
(blue), forecasted death from the standard SIRD model (black) and forecasted death from SIRD-autorepression 
model (red) showing that autorepression model forecasts are more accurate than canonical SIRD model forecasts 
(SIR AIC=145 vs. AIC=–322 for SIR-autorepression) (B) Mortality forecasts of COVID-19 deaths after 
Omicron variant outbreak (first 200 days) in the US. COVID-19 morality data (blue), forecasted death from the 
standard SIR model (black) and forecasted death from SIRD-autorepression model (red) showing that 
autorepression model forecasts are more accurate than canonical SIR model forecasts (SIRD AIC=–398 vs. 
AIC=–978 for SIR-autorepression) (C) Forecasted efficacy of non-pharmaceutical intervention (lockdowns) 
when initiated early in the epidemic for varying changes in extrinsic (e.g., policy based) sequestration (µ) under 
scenarios of low or high autorepression strength (alpha).  Mortality totals were simulated based on fits to COVID-
19 infection dynamics. Intervention strength based on mobility changes from Fig. 1. Light grey- weak fitted 
autorepression gain, dark grey- strong fitted autorepression gain. Insets show examples of fitting, blue represents 
smoothed infections per day, black line represents averaged dynamics from autorepression model, grey shading 
represents 99% confidence interval. (D) Forecasted efficiency of non-pharmaceutical intervention initiated late 
in epidemic (day 60) under scenarios of low-vs.-high autorepression strength (alpha). 
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DISCUSSION 459 

This study presents multiple pieces of evidence supporting the presence of negative-460 

feedback dynamics (i.e., behavioral autorepression) during the early stages of the COVID-19 461 

pandemic. Simulations using minimal models demonstrated that behavioral autorepression is 462 

sufficient to explain a statistically significant inversion of the correlation between residential 463 

occupancy and COVID-19 mortality over time that was consistently observed across 464 

epidemiological scales (Figs. 1–2).  Second, fluctuation analyses of SARS-CoV-2 daily infection 465 

data was consistent with autorepression’s ability to reduce the magnitude of fluctuations and 466 

enabled estimation of the negative-feedback strength for the COVID-19 pandemic at 5x10-5 467 

person-1 (Fig. 3).  This value indicates that when the level of infection reaches two thousand 468 

simultaneously infective individuals, the transmission rate constant in that outbreak will be 469 

decreased by 10%.   Importantly, the majority of the reduction in fluctuations was observed during 470 

very early times (i.e., <= 15 days; Fig. S16), indicating that while death-mediated autorepression 471 

(27) may exist, infection-mediated autorepression had an independent, substantial impact on 472 

SARS-CoV-2 infection dynamics.  Third, temporal analysis of the first wave of infection revealed 473 

that variation between peak timings and intensities is parsimonious with autorepression delay 474 

rather than regional variation in infectivity (Fig. S17). Taken together, these analyses provide 475 

independent lines of evidence for the impact of behavioral autorepression on SARS-CoV-2 476 

transmission and indicate that the inclusion of autorepression in models can significantly improve 477 

epidemiological forecasting and may affect the efficiency of certain NPIs (Fig. 4). 478 

 479 

Interestingly, the behavioral autorepression model indicates that mobility, in particular 480 

residential occupancy, is unlikely to be an independent variable, at least early during an outbreak.  481 

Rather, the models indicate that mobility measurements, a surrogate of contact rate, are in fact an 482 

ensemble variable influenced by extrinsic factors (e.g., public-health mandates) as well as dynamic 483 

individual factors (e.g., risk-taking).  Several studies have reported on the efficacy of early 484 

lockdowns (40-42), corroborating the observation that initial changes in residential occupancy are 485 

negatively correlated with regional mortality.  The results presented here also help account for the 486 

previously-unexplained observation that early lockdowns were more effective than late lockdowns 487 

(41, 42), since the models argue that mobility changes induced by late lockdowns become 488 

overwhelmed by collective decisions to self-sequester in response to infection reports.   489 
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 490 

Perhaps the most utilitarian impacts of the presence of behavioral autorepression are its 491 

effects on the fidelity of epidemic forecasting and the efficiency of NPIs. The COVID-19 492 

pandemic highlighted substantial variation in epidemiological forecasts (37, 43), likely due to 493 

numerous factors including unknown parameter estimates, assumptions about efficacy of NPIs, 494 

and model structure.  This study demonstrates that SIR models incorporating behavioral 495 

autorepression can generate less variable forecasts, and that the behavioral autorepression 496 

phenomenon may aid in judicious application of NPIs.  The finding that autorepression affects NPI 497 

efficacy suggests that measuring local variation in autorepression strength could allow NPIs to be 498 

tailored to individual regions, assuming that autorepression strength is intrinsic to a population and 499 

does not substantially change over time or between outbreaks, which will require further study 500 

(see discussion below).  Since autorepression is often correlated with oscillation (9, 13, 14, 27), 501 

future models could, in principle, accurately forecast the timing of waves of COVID-19 infection. 502 

 503 

Future work concerning behavioral autorepression during outbreaks of infectious disease 504 

should address the consistency of autorepression parameters within outbreaks and between 505 

different outbreaks. Our study treated autorepression as constant during the course of the COVID-506 

19 pandemic to identify the minimum conditions sufficient to explain the changes in correlation, 507 

variability, and timing observed in infection trajectories.  However, it is possible that as public 508 

understanding of COVID-19 evolved, autorepression strength changed. This work similarly does 509 

not investigate whether previous pandemics experienced similar levels of autorepression. 510 

However, since behavioral autorepression was originally hypothesized to explain saturation of 511 

cholera infection rate (2) rather than SARS-CoV-2, it seems possible that autorepression is an 512 

intrinsic property of human populations experiencing an outbreak rather than a property of the 513 

pathogen driving an outbreak.  Therefore, analysis of autorepression during the COVID-19 514 

pandemic could serve as a guide to studying autorepression and its consequences in future 515 

pandemics. 516 

 517 

 518 

 519 

 520 
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METHODS 521 

Linear regression analysis 522 

Linear regressions were performed in MATLAB using the fitlm function.  Linear regressions were 523 

performed using changes in residential occupancy to explain regional variation in confirmed 524 

COVID-19 deaths (20). Changes in residential occupancy were measured using the Google 525 

COVID-19 Community Mobility Reports (21). COVID-19 death totals on 05/24/2020 were 526 

compared to the change in occupancy from baseline after a threshold of ten deaths had been crossed 527 

(termed “initial change in residential occupancy”) and the maximum change in residential 528 

occupancy during the first wave of COVID-19 infection (termed “maximum change in residential 529 

occupancy”).  05/24/2020 was chosen as the cutoff date for quantifying COVID-19 deaths, in part,  530 

in order to avoid confounding deaths during the first wave of infection with deaths from subsequent 531 

waves. COVID-19 death totals were Log transformed prior to regression and regression analysis 532 

performed at three different geographic scales based on available data, including: international 533 

countries; US states, and US counties. Unless specifically noted, linear models only have one 534 

independent variable and one dependent variable.  Multi-factor linear models have their individual 535 

independent variables listed in their corresponding figure legends. 536 

 537 

ODE simulations of policy- vs. feedback-controlled epidemics 538 

Nonlinear ordinary differential equations were numerically solved in MATLAB using ode15s. 539 

Initial parameters were randomly generated from empirically chosen ranges that produced >1 540 

infection but infected <50% of the population in sixty days. Two hundred distinct parameter sets 541 

were simulated to represent a set of different regions with unique epidemiological parameters.  542 

Percentage reduction from initial contact rates to contact rates at time t were calculated via Eq. 16: 543 

%	∆𝑐	𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 61 − *
%!
8 𝑥	100    Eq. 16 544 

where 𝑐# corresponds to the contact rate at time t.  Each simulated region was analyzed to find the 545 

early change in contact rates and the maximum change in contact rates. The early change in contact 546 

rates (𝑐5) was calculated via Eq. 17: 547 

𝐸𝑎𝑟𝑙𝑦	%	∆𝑐	𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 61 − *
%&
8 𝑥	100   Eq. 17 548 

where 𝑐5 corresponds to the contact rate when a threshold of ten deaths was reached.  The 549 

maximum change in contact rates (𝑐6), was calculated using Eq. 18: 550 
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𝑀𝑎𝑥	%	∆𝑐	𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 61 − *
%'
8 𝑥	100   Eq. 18 551 

where 𝑐6 corresponds to the maximum change in contact rate over the course of the simulation. 552 

These percentage changes in contact rates were used to calculate a linear regression between 553 

∆𝑐	and simulated deaths using the same procedure as Methods- Linear regression analysis.  When 554 

policy was implemented partway through the simulation, it was treated as a step change in the 555 

mandate variable 𝜇 that occurred after thirty days of simulation. 556 

 557 

Monte Carlo simulation of infections per day 558 

A Monte Carlo algorithm for MATLAB was used (https://github.com/nvictus/Gillespie) to 559 

implement a stochastic SIR model.  Simulations were run over a sixty-day time period.  Simulation 560 

parameters were empirically determined to match the first sixty days of infection dynamics from 561 

countries and US states.  The variance and mean of individual infection-per-day trajectories were 562 

measured along seven-day moving time windows.  In each window, the variance was divided by 563 

the mean to calculate the Fano factor (i.e., variance normalized by mean) for infections per day. 564 

 565 

Perturbation analysis of SIRD versus autorepression models 566 

Randomized parameter sets were generated from an empirically-defined range chosen to maximize 567 

simulated epidemics that produced >1 infection but infected <50% of the population in sixty days. 568 

Epidemics were simulated for 3,650 days (~10 years) to ensure that infections per day reached a 569 

peak during the simulation time.  Simulated epidemics that failed to generate more >1 infection or 570 

infected >50% of the population in sixty days were excluded from the analysis, whereas 571 

simulations that generated >1 infection and infected <50% of the population in sixty days were 572 

marked for analysis.  Simulated epidemics marked for analysis were analyzed for their wave 573 

dynamics by using the findpeaks function in MATLAB.  The time until the first peak in infections 574 

per day and the number of infections on that day were quantified. 575 

 576 

Fitting and forecasting COVID-19 mortality dynamics 577 

MCMC fitting was performed in MATLAB (https://github.com/mjlaine/mcmcstat) using 578 

confirmed COVID-19 deaths in the United States for first 60 days after the first US COVID-19 579 

infection was recorded.  Hand fitting was used to initialize parameters before MCMC fitting.  Sum 580 

of squared error was used to optimize the fit within the algorithm.  Four independent fits were 581 
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performed, with 10,000 iterations per fit.  The parameter set from best fit out of the four 582 

independent runs over the initial 60-day time period was used to forecast mortality totals over the 583 

next 120 days (a total simulation time of 180 days).  Confidence interval projections and Akaike 584 

Information Criterion (AIC) scores were calculated using the ODE values generated by parameter 585 

sets from the final 1000 iterations in the MCMC fitting process.  AIC scores were calculated using 586 

Eq. 19: 587 

𝐴𝐼𝐶 = 𝑛 ∗ ln 6(""
7
8 + 2𝐾      Eq. 19 588 

where n is the number of data points used in the fitting, RSS is the residual sum of squares, and K 589 

is the number of fitted parameters. 590 

Individual AIC scores were generated for each of the final 1000 iterations, then averaged to 591 

represent the AIC score of a fit. 592 

 593 

Fitting daily COVID-19 infection dynamics 594 

MCMC fitting was performed in MATLAB (https://github.com/mjlaine/mcmcstat) using daily 595 

counts of confirmed COVID-19 infections at the international or US state level from the first day 596 

an infection was recorded in a given region until October 26th, 2021.  Hand fitting was used to 597 

initialize parameters before MCMC fitting.  Eqs. 1-4 and Eq. S2 were used to generated simulated 598 

infections per day, which was compared to real infections per day.  Sum of squared error was used 599 

to optimize the fit within the algorithm.  60 independent fits were performed per state with 10,000 600 

iterations per fit.  The best fit was chosen by the average AIC (calculated using Eq. 19) of the final 601 

1000 iterations for each state. 602 

 603 

Forecasting intervention efficacy 604 

Epidemic dynamics were simulated using a modified Euler method for SDE simulation where 605 

infective individuals exerted delayed autorepression on epidemic growth.  Parameters were taken 606 

from the converged fits of the delayed behavioral autorepression model for infection dynamics in 607 

all fifty US states.  Simulations represented one year of mortality dynamics.  Interventions that 608 

statically decreased the transmission rate constant (𝛽) were applied at day 1 or day 60 to represent 609 

early and late interventions respectively. 610 

 611 

 612 
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SUPPLEMENTARY TEXT 776 

Section 1: Verifying robustness of mobility-death inversion 777 

To determine if potential covariation between the early and maximum mobility metric 778 

could account for the inversion of the mobility-death correlation, we used linear regression models 779 

that account for the simultaneous effect of population, initial residential occupancy, and maximum 780 

residential occupancy on death (44).  These multi-factor regressions recorded the same negative 781 

correlation between death and initial residential occupancy and the same positive correlation 782 

between death and maximum residential occupancy (Fig. S7A-B).  Thus, the inversion of the 783 

mobility-death correlation does not appear to be dependent on covariance between population and 784 

mobility or covariance between mobility metrics (Fig. S7A-C).  785 

 786 

Since regional population size is known to be correlated with density (45) and SARS-CoV-787 

2 transmission is known to be density-dependent (46), we next asked if a (nonlinear) quadratic 788 

relationship between population size and death rates could account for the inversion of the 789 

mobility-death correlation. Models assuming a quadratic dependence between population size and 790 

death also fit well (Fig. S8A), but the death residuals still exhibited an inversion of the correlation 791 

between initial and maximum residential occupancy (Fig. S8B-C).  Thus, models that account for 792 

the nonlinear relationship between population size and deaths further support the inversion of the 793 

mobility-death correlation. 794 

 795 

To ensure that the inversion of the mobility-death correlation was not unique to Google 796 

mobility data, we repeated the analyses using an alternate population mobility dataset (47) that 797 

used aggregated navigation data from Apple Maps.  Single-factor linear regressions between 798 

mobility and death showed the expected correlation between initial change in mobility and death 799 

(Fig. S9A), but did not show the counterintuitive correlation between the maximum change in 800 

mobility and death (Fig. S9B).  A multifactor linear regression that accounts for covariation 801 

between population, initial change in mobility, maximum change in mobility, and death showed 802 

that the correlation between death and mobility inverts over time (Fig. S9C-E).  These results 803 

demonstrate that inversion of the mobility-death correlation is not unique to the Google mobility 804 

dataset (Fig. S9). 805 

 806 
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To confirm that the counterintuitive correlation between maximum change in residential 807 

occupancy and death was robust and not due to a specific instantaneous measure of maximum 808 

mobility, we analyzed cumulative change in mobility.  The cumulative changes for most mobility 809 

measures (residential, retail, grocery, transit, and workplace occupancy) showed similar positive 810 

correlation with deaths per capita at all geographic scales (Fig. S10), although park occupancy 811 

showed no significant correlation with deaths per capita.  Overall, cumulative changes in mobility 812 

appear to exhibit the same correlation with deaths per capita as the maximum instantaneous change 813 

in mobility. 814 

 815 

 816 
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Section 2- Coincidental rise in residential occupancy and infections does not cause inversion 837 

of the mobility-death correlation 838 

This SIR model simulates outbreaks without repression, representing a scenario where 839 

residential occupancy values are not affected by induced sequestration or autorepression and do 840 

not decrease contact rates amongst the population (Fig. S12A, Eq. 1-4, Eq. S1). Residential 841 

occupancy values were randomly drawn from a set of increasing contact rate reduction values (Fig. 842 

S12B) and compared against epidemics that were simulated without any reduction in transmission. 843 

Neither early nor maximum changes in residential occupancy were correlated with death (Fig. 844 

S12C,D). These results suggest that coincidental increases in residential occupancy during the 845 

onset of the COVID-19 pandemic are not sufficient to generate the correlations observed in the 846 

analyses performed in this study (Fig. 1).  847 

 848 

𝑐 = 1       Eq. S1 849 

 850 

𝑐 represents the effect of contact rate on transmission based on sequestration of healthy individuals 851 

(unitless). 852 

 853 
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Section 3- Investigating hypotheses to explain mobility-death inversion 868 

The correlation between initial changes in residential occupancy and reductions in COVID-869 

19 mortality (Fig. 1 1st column) is consistent with previous research showing that fast lockdowns 870 

reduce disease transmission (10, 40, 42). These studies are consistent with the observation that 871 

contact frequencies go down under conditions where residential occupancy increases (26). 872 

However, these studies cannot explain the positive correlation observed between maximum 873 

changes in mobility and COVID-19 deaths (Fig. 1 2nd column).  Therefore, we set out to test 874 

hypotheses that could potentially explain this positive correlation. 875 

 876 

To test whether lockdown-mediated increases in household contacts led to enhanced 877 

transmission overall, we used US housing density data (proportion of households with > 1.5 878 

occupants/room) to search for a synergistic effect between density and mobility on regional 879 

mortality. Previous works have shown that SARS-CoV-2 transmission is density-dependent (46), 880 

household transmission is a major component of COVID-19 infection (48), and that lockdown-881 

specific changes in contact patterns can change transmission on a population scale  (49). To assess 882 

the impact of household transmission during lockdown, we performed a partial least squares 883 

regression (44) accounting for individual contributions of density, population, initial change in 884 

mobility, maximum change in mobility, and a density-mobility interaction on COVID-19 mortality 885 

totals. The density-mobility interaction term was calculated by multiplying the proportion of 886 

households with > 1.5 occupants/room by the maximum change in residential occupancy. With 887 

this regression approach, we were able to deconvolve the individual effects of density and mobility 888 

from the interaction between the two factors.  If transmission of COVID-19 had been increased 889 

through increased occupancy of dense households, the multi-factor regression should reveal a 890 

synergistic interaction between population density, maximum change in residential occupancy, 891 

and COVID-19 deaths.  The analysis showed no significant interaction (p-value: 0.25) between 892 

housing density and maximum change in residential occupancy (Fig. S13), suggesting that 893 

lockdowns do not exacerbate overall transmission through increased household contacts.  Notably, 894 

this lockdown-mediated transmission hypothesis is also difficult to reconcile with the expected 895 

correlation observed between initial changes in mobility and deaths per capita (Fig. 1). 896 

 897 
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To determine whether the counterintuitive correlation between reduced mobility and 898 

increased COVID-19 deaths could be caused by an inverted causation-correlation relationship (27) 899 

(i.e., that increased death was the driver of reduced local mobility), we examined whether changes 900 

in death were required to change mobility on a region-to-region basis.  Analysis of changes in 901 

mobility prior to a single reported death (“pre-death” mobility changes) showed that residential 902 

occupancy typically increased ~10–15% before a single death (Fig. S14). Since the maximum 903 

increase in residential occupancy for any region was ~20-30%, these results show that countries, 904 

states, and counties were halfway to peak shutdown before a single local death occurred.  This 905 

substantial change in residential occupancy before the onset of death suggests that while COVID-906 

19 deaths may contribute to changes in population-level behavior, local deaths are unlikely to be 907 

the driving force behind increased residential occupancy.  Moreover, this death-mediated-mobility 908 

hypothesis is difficult to reconcile with the expected correlation between initial changes in mobility 909 

and deaths per capita. 910 

 911 
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Section 4- Delayed autorepression is used to analyze infection waves 929 

Delayed autorepression was represented by a change in the contact rate, c, where: 930 

𝑐 = *
*,	.&!"#%

     Eq. S2 931 

with 𝛼 (person-1) representing the strength of the contact-rate reduction based on the number of 932 

infective individuals (a.k.a., the negative-feedback ‘gain’) and 𝜏4 (days) representing 933 

autorepression delay. 934 

 935 

Delayed infectivity was represented by the following set of equations: 936 

 937 
!"
!#
=	− $%"&

'
      Eq. S3 938 

!&
!#
= $%"!"#$&!"#$

'
− 𝛾𝐼 − 	𝜀𝐼   Eq. S4 939 

!(
!#
= 𝛾𝐼      Eq. S5 940 

!)
!#
= 𝜀𝐼      Eq. S6 941 

 942 

where S, I, R, and D represent susceptible, infectious, recovered, and deceased individuals in a 943 

population of N total individuals; 𝛽 is the transmission rate constant (days-1), 𝛾 is the removal 944 

rate of infective individuals (days-1), 𝑐 is the effective contact rate used to calculate “contact-945 

reduction” in our models, and e is the proportion of cases that result in death, 𝜏* (days) is the 946 

time it takes for a susceptible individual exposed to SARS-CoV-2 to become infectious. 947 

 948 

 949 

 950 

Table S1: Reactions for a stochastic model of behavioral autorepression 951 

Reaction Rate of Reaction Description 

𝑆	 → 𝐼 𝛽𝑆𝐼
1 + 𝛼𝐼 

Infection of a susceptible individual 
under autorepression control 

𝐼	 → 𝑅 𝛾𝐼 Removal of individual from infective 
population when individual recovers or 
becomes deceased 

 952 
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Supplementary Methods 953 

Multi-factor regression of interaction between residential occupancy and housing density 954 

Multi-factor linear regressions were performed using fitlm in MATLAB. These regressions were 955 

performed using housing density, population, initial changes in residential occupancy, and 956 

maximum changes in residential occupancy, and the interaction between maximum changes in 957 

residential occupancy and housing density to explain regional variation in confirmed COVID-19 958 

deaths among US counties. Housing density was measured through US census reports on the 959 

proportion of households in a county that had more than 1.5 occupants per room (50). County 960 

populations were also measured using counts from the US census (50). Confirmed COVID-19 961 

death totals on May 24th, 2020 were used to quantify pandemic mortality (20). The logarithm of 962 

COVID-19 death totals was taken before analysis. 963 

Changes in residential occupancy were measured using the Google COVID-19 Community 964 

Mobility Reports (21). Early changes in occupancy from baseline were quantified by measuring 965 

the change in residential occupancy after a threshold of ten deaths had been crossed (termed “initial 966 

change in residential occupancy”). Later changes in occupancy from baseline were quantified by 967 

measuring the maximum change in residential occupancy during the first wave of COVID-19 968 

infection (termed “maximum change in residential occupancy”). The product of the maximum 969 

change in residential occupancy and housing density on a county-by-county basis represented the 970 

interaction between increased indoor occupancy and density-based transmission. When the 971 

multifactor linear regression corrects for linear contributions of residential occupancy and housing 972 

density, the coefficient and significance of the interaction term represents the strength of a potential 973 

synergistic effect between increased indoor occupancy and density-based transmission. 974 

 975 
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 976 
Supplementary Figure 1: Occupancy and excess deaths exhibit correlation inversion 977 
A. (1st column) Linear regression of the initial change in retail and recreation occupancy versus 978 
the excess deaths per capita of all states affected by COVID-19. 979 
(2nd column) Linear regression of the maximum change in retail and recreation occupancy versus 980 
the excess deaths per capita of all states affected by COVID-19.  981 
 982 
B. (1st column) Linear regression of the initial change in grocery and pharmacy occupancy 983 
versus the excess deaths per capita of all states affected by COVID-19. 984 
(2nd column) Linear regression of the maximum change in grocery and pharmacy occupancy 985 
versus the excess deaths per capita of all states affected by COVID-19.  986 
 987 
C. (1st column) Linear regression of the initial change in park occupancy versus the excess deaths 988 
per capita of all states affected by COVID-19. 989 
(2nd column) Linear regression of the maximum change in park occupancy versus the excess 990 
deaths per capita of all states affected by COVID-19.  991 
 992 
D. (1st column) Linear regression of the initial change in transit occupancy versus the excess 993 
deaths per capita of all states affected by COVID-19. 994 
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(2nd column) Linear regression of the maximum change in transit occupancy versus the excess 995 
deaths per capita of all states affected by COVID-19.  996 
 997 
E. (1st column) Linear regression of the initial change in workplace occupancy versus the excess 998 
deaths per capita of all states affected by COVID-19. 999 
(2nd column) Linear regression of the maximum change in workplace occupancy versus the 1000 
excess deaths per capita of all states affected by COVID-19.  1001 
 1002 
F. (1st column) Multifactor linear regression of initial change in residential occupancy, maximum 1003 
change in residential occupancy, population, and deaths. Partial regression plot of initial change 1004 
in residential occupancy versus excess death. 1005 
(2nd column) Multifactor linear regression of maximum change in residential occupancy, 1006 
maximum change in residential occupancy, population, and deaths. Partial regression plot of 1007 
maximum change in residential occupancy versus excess death. 1008 
 1009 
G. Multifactor linear regression of initial change in residential occupancy, maximum change in 1010 
residential occupancy, population, and deaths. Partial regression plot of state population versus 1011 
excess death. 1012 
 1013 
A-G. Excess deaths are totaled until May 24th, 2020. Solid line represents the regression, dashed 1014 
lines represent 95% confidence intervals. Regression p-values below 0.05 are listed in scientific 1015 
notation. Adjusted values are generated based on the co-dependencies of all the variables in the 1016 
model. Red points represent regions that had higher death than predicted by the regression. Grey 1017 
points represent regions that had lower death than predicted by the regression. 1018 
 1019 
 1020 
 1021 
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 1024 
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 1041 
Supplementary Figure 2: Correlation between recreation occupancy and death also inverts 1042 
over time 1043 
(1st column) Linear regressions of the initial change in retail and recreation occupancy versus the 1044 
deaths per capita of all regions affected by COVID-19. 1045 
(2nd column) Linear regressions of the maximum change in retail and recreation occupancy 1046 
versus the deaths per capita of all regions affected by COVID-19. 1047 
Rows represent linear regressions done on countries, states, and counties respectively.  1048 
 1049 
Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1050 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1051 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1052 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1053 
the regression. 1054 
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 1055 
Supplementary Figure 3: Correlation between grocery occupancy and death also inverts 1056 
over time 1057 
(1st column) Linear regressions of the initial change in grocery and pharmacy occupancy versus 1058 
the deaths per capita of all regions affected by COVID-19. 1059 
(2nd column) Linear regressions of the maximum change in grocery and pharmacy occupancy 1060 
versus the deaths per capita of all regions affected by COVID-19. 1061 
Rows represent linear regressions done on countries, states, and counties respectively.  1062 
 1063 
Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1064 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1065 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1066 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1067 
the regression. 1068 
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 1069 
Supplementary Figure 4: Correlation between park occupancy categories and death does 1070 
not invert over time 1071 
(1st column) Linear regressions of the initial change in park occupancy versus the deaths per 1072 
capita of all regions affected by COVID-19. 1073 
(2nd column) Linear regressions of the maximum change in park occupancy versus the deaths per 1074 
capita of all regions affected by COVID-19. 1075 
Rows represent linear regressions done on countries, states, and counties respectively.  1076 
 1077 
Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1078 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1079 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1080 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1081 
the regression. 1082 
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 1083 
Supplementary Figure 5: Correlation between transit occupancy and death also inverts 1084 
over time 1085 
(1st column) Linear regressions of the initial change in transit occupancy versus the deaths per 1086 
capita of all regions affected by COVID-19. 1087 
(2nd column) Linear regressions of the maximum change in transit occupancy versus the deaths 1088 
per capita of all regions affected by COVID-19. 1089 
Rows represent linear regressions done on countries, states, and counties respectively.  1090 
 1091 

Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1092 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1093 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1094 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1095 
the regression. 1096 
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 1097 
Supplementary Figure 6: Correlation between workplace occupancy categories and death 1098 
also inverts over time 1099 
(1st column) Linear regressions of the initial change in workplace occupancy versus the deaths 1100 
per capita of all regions affected by COVID-19. 1101 
(2nd column) Linear regressions of the maximum change in workplace occupancy versus the 1102 
deaths per capita of all regions affected by COVID-19. 1103 
Rows represent linear regressions done on countries, states, and counties respectively.  1104 
 1105 
Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1106 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1107 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1108 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1109 
the regression. 1110 
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 1111 
 1112 
Supplementary Figure 7: Covariance between occupancy metrics does not cause inverted 1113 
correlation between residential occupancy and death 1114 
A. Multi-factor linear regression between population, initial change in residential occupancy, 1115 
maximum change in residential occupancy, and confirmed COVID-19 deaths at the country 1116 
level.  1117 
(1st column) Partial regression plot of population versus death. 1118 
(2nd column) Partial regression plot of initial change in residential occupancy versus death. 1119 
(3rd column) Partial regression plot of max change in residential occupancy versus death. 1120 
 1121 
B. Multi-factor linear regression between population, initial change in residential occupancy, 1122 
maximum change in residential occupancy, and confirmed COVID-19 deaths at the state level.  1123 
(1st column) Partial regression plot of population versus death. 1124 
(2nd column) Partial regression plot of initial change in residential occupancy versus death. 1125 
(3rd column) Partial regression plot of max change in residential occupancy versus death. 1126 
 1127 
C. Multi-factor linear regression between population, initial change in residential occupancy, 1128 
maximum change in residential occupancy, and confirmed COVID-19 deaths at the county level.  1129 
(1st column) Partial regression plot of population versus death. 1130 
(2nd column) Partial regression plot of initial change in residential occupancy versus death. 1131 
(3rd column) Partial regression plot of max change in residential occupancy versus death. 1132 
 1133 
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A-C. Deaths per capita are totaled until May 24th, 2020. Solid red line represents the regression, 1134 
dashed red lines represent 95% confidence intervals. Regression p-values below 0.05 are listed in 1135 
scientific notation. Adjusted values are generated based on the co-dependencies of all the 1136 
variables in the model. 1137 
 1138 
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 1166 
Supplementary Figure 8: Statistical model of a non-linear correlation between population 1167 
and death retains inversion of correlation between occupancy and death 1168 
 1169 
A. Quadratic regression between US county population size and the number of confirmed 1170 
COVID-19 deaths that county experienced as of May 24th, 2020. Regression shows that a model 1171 
that accounts for the effect of population squared on death can capture the nonlinear relationship 1172 
observed between population and death at the county level. 1173 
 1174 
B. Linear regression between the residuals from the quadratic regression in (A) and the initial 1175 
change in residential occupancy. Regression finds a negative correlation between the two factors, 1176 
similar to the relationship found in Fig. 1C. 1177 
 1178 
C. Linear regression between the residuals from the quadratic regression in (A) and the 1179 
maximum change in residential occupancy. Regression finds a positive correlation between the 1180 
two factors, similar to the relationship found in Fig. 1C. 1181 
 1182 
A-C. Deaths per capita are totaled until May 24th, 2020. Solid black line represents the 1183 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1184 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1185 
predicted by the quadratic regression. Grey points represent regions that had lower death than 1186 
predicted by the quadratic regression. 1187 
 1188 
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Supplementary Figure 8: Statistical model of a non-linear correlation between population and death retains inversion
of association between occupancy  and death
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 1198 
Supplementary Figure 9: The correlation between Apple mobility and death inverts over 1199 
time 1200 
A. Linear regression of the initial change in driving mobility (from Apple) versus the confirmed 1201 
deaths per capita of all counties affected by COVID-19. 1202 
 1203 
B. Linear regression of the maximum change in driving mobility (from Apple) versus the 1204 
confirmed deaths per capita of all counties affected by COVID-19.  1205 
 1206 
C. Multifactor linear regression of initial change in mobility, maximum change in mobility, 1207 
population, and deaths. Partial regression plot of initial change in driving mobility (from Apple) 1208 
versus confirmed deaths at the county level. 1209 
 1210 
D. Multifactor linear regression of maximum change in mobility, maximum change in mobility, 1211 
population, and deaths. Partial regression plot of maximum change in driving mobility (from 1212 
Apple) versus confirmed deaths at the county level. 1213 
 1214 
E. Multifactor linear regression of initial change in mobility, maximum change in mobility, 1215 
population, and deaths. Partial regression plot of county population versus confirmed deaths. 1216 
 1217 
A-E. Confirmed COVID-19 deaths are totaled until May 24th, 2020. Solid line represents the 1218 
regression, dashed lines represent 95% confidence intervals. Regression p-values below 0.05 are 1219 
listed in scientific notation. Adjusted values are generated based on the co-dependencies of all 1220 
the variables in the model. Red points represent regions that had higher death than predicted by 1221 
the regression. Grey points represent regions that had lower death than predicted by the 1222 
regression. 1223 
 1224 
C&D. Linear regression of the first peak of infections per day versus the time it took to reach that 1225 
peak for real infection counts recorded in countries internationally. Points represent individual 1226 
regions, solid line represents linear regression, and dotted lines represent 95% confidence interval. 1227 

50 100 150 200
Initial ∆ Mobility

10-5

10-4

10-3

10-2

De
at

hs
 P

er
 C

ap
ita

Apple Mobility

0 50 100 150
Maximum ∆ Mobility

10-5

10-4

10-3

10-2

De
at

hs
 P

er
 C

ap
ita

Apple Mobility
Supplementary Figure 9: The correlation between Apple mobility and death inverts over time
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 1228 
Supplementary Figure 10: Occupancy under the curve is perversely correlated with 1229 
COVID-19 mortality 1230 
Linear regressions of net changes in residential occupancy versus confirmed deaths per capita.  1231 
Columns - Country, state, and county data 1232 
Rows- Retail & recreation, grocery & pharmacy, park, transit, workplace, and residential 1233 
occupancy. 1234 
 1235 
Deaths per capita are totaled until May 24th, 2020. Solid black line represents the linear 1236 
regression, dashed black lines represent 95% confidence intervals. Regression p-values below 1237 
0.05 are listed in scientific notation. Red points represent regions that had higher death than 1238 
predicted by the regression. Grey points represent regions that had lower death than predicted by 1239 
the regression. 1240 
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 1241 
Supplementary Figure 11: Dynamic changes in induced sequestration are not sufficient to 1242 
generate inverted occupancy-death correlation 1243 
 1244 
A. Schematic of epidemic ODE model with induced sequestration implemented partway through 1245 
epidemic. 1246 
 1247 
B. Trends in contact rate reduction over time as determined by delayed induced sequestration. 1248 
Stronger induced sequestration values (𝜇) lead to a larger reduction in contact rates. Induced 1249 
sequestration is applied after 30 days in this simulation and remains constant for 30 days after 1250 
application. 1251 
 1252 
C. Linear regression of simulated deaths versus initial changes in contact rate reduction 1253 
generated by an SIR model with policy implemented partway through epidemic. Initial changes 1254 
in contact rate reduction are not correlated with any changes in death. 1255 
 1256 
D. Linear regression of simulated deaths versus maximum changes in contact rate reduction 1257 
generated by an SIR model with induced sequestration implemented partway through epidemic. 1258 
Maximum changes in contact rate reduction are negatively correlated with death (p-value: 8.9 x 1259 
10-110). 1260 
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 1276 
Supplementary Figure 12: Coincidental population sequestration during an epidemic is not 1277 
sufficient to invert mobility-death correlation 1278 
A. Schematic of the simple SIRD model [Eqs. 1-4] with no sequestration [Eq. S1] where 1279 
contact-reduction rate c = 1.  1280 
 1281 
B. Example curves of randomly selected residential occupancy values taken from an increasing 1282 
distribution. This represents a scenario where residential occupancy increases coincidentally with 1283 
the emergence of COVID-19, but has no functional relationship with the pandemic. 1284 
 1285 
C-D. Numerical simulations of mortality (calculated as 1% of R/N) as a function of initial and 1286 
max changes in simulated residential occupancy from simple SIR model (regression p-1287 
values=0.76 and 0.99). 1288 
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 1306 
Supplementary Figure 13: Density and maximum residential occupancy do not have a 1307 
synergistic correlation with death 1308 
 1309 
Multi-factor linear regression between proportion of dense households, maximum change in 1310 
residential occupancy, interaction between household density and maximum residential 1311 
occupancy, population, initial change in residential occupancy, and confirmed COVID-19 deaths 1312 
at the county level.  1313 
 1314 
A. Partial regression plot of household density proportion as measured by the percentage of 1315 
homes in a county that had more than 1.5 people per room. 1316 
 1317 
B. Partial regression plot of max change in residential occupancy versus death. 1318 
 1319 
C. Partial regression plot of interaction between household density and maximum occupancy. 1320 
 1321 
D. Partial regression plot of population versus death. 1322 
 1323 
E. Partial regression plot of initial change in residential occupancy versus death. 1324 
 1325 
A-E. Deaths per capita are totaled until May 24th, 2020. Solid red line represents the regression, 1326 
dashed red lines represent 95% confidence intervals. Regression p-values below 0.05 are listed in 1327 
scientific notation. Adjusted values are generated based on the co-dependencies of all the 1328 
variables in the model. 1329 
 1330 
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 1333 
Supplementary Figure 14: Changes in residential occupancy occur before local deaths are 1334 
recorded 1335 
 1336 
A. Histogram of the change in residential occupancy that occurs in countries before one death is 1337 
recorded in that country. 1338 
 1339 
B. Histogram of the change in residential occupancy that occurs in states before one death is 1340 
recorded in that state. 1341 
 1342 
C. Histogram of the change in residential occupancy that occurs in counties before one death is 1343 
recorded in that county. 1344 
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 1360 
Supplementary Figure 15: Early changes in policy are correlated with infection count 1361 
A. Regression of total infections per capita versus net stringency index for countries affected by 1362 
COVID-19. Infections per capita were totaled before a single death occurred in the region, and 1363 
the net stringency index was calculated over the same time period.  The p-value of the linear 1364 
regression = 5.8 x 10-3 (dashed lines represent 95% confidence interval).  1365 
 1366 
B. Regression of total infections per capita versus net stringency index for US states affected by 1367 
COVID-19. Infections per capita were totaled before a single death occurred in the region, and 1368 
the net stringency index was calculated over the same time period.  The p-value of the linear 1369 
regression = 9.6 x 10-4 (dashed lines represent 95% confidence interval). 1370 
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 1383 
Supplementary Figure 16: Modulation of transmission rate constant is not sufficient to 1384 
control infection rate variation 1385 
 1386 
Summary diagram of the effect that changing the transmission rate constant (𝛽) has on the 1387 
regressed slope of simulated Fano factor versus mean plots. Graph shows that increasing the 1388 
transmission rate constant can reduce the slope to one, but not below one. 1389 
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 1408 
Supplementary Figure 17: Early variation in infections per day is suppressed 1409 
A. Data of Fano factor versus mean of the first 15 days of infection for countries affected by 1410 
COVID-19.  Slope of linear regression = 0.79 (dashed red lines represent 95% confidence 1411 
interval).  1412 
 1413 
B. Fano factor versus mean plot of the first 15 days of infection for US states affected by 1414 
COVID-19. Linear regression slope = 0.62 (dashed red lines represent 95% confidence interval). 1415 
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 1431 
Supplementary Figure 17: Strengthening infectivity leads to stronger, faster waves 1432 
A. Example simulated epidemic to illustrate the calculation of parameters necessary to quantify 1433 
the timing and intensity of infection waves. 1434 
 1435 
B. Schematic of the simple SIR model [Eqs. 1-4]. 1436 
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C. Plot of a series of epidemic simulations where infection wave timing vs intensity has been 1438 
quantified. Color of points represents value of transmission rate constant (𝛽). 1439 
 1440 
D. Schematic of the simple SIR model with a delay in susceptible individuals becoming infective 1441 
[Eqs. S3-S6]. 1442 
 1443 
E. Plot of a series of epidemic simulations where infection wave timing vs intensity has been 1444 
quantified. Color of points represents value of infectivity delay (𝜏3). 1445 
 1446 
F. Schematic of the SIR model with delayed autorepression [Eqs. 1-4, S2]. 1447 
 1448 
G. Plot of a series of epidemic simulations where infection wave timing vs intensity has been 1449 
quantified. Color of points represents value of autorepression delay (𝜏*). 1450 
 1451 
H. Linear regression of measured values for time until first peak of infections per day versus 1452 
peak infections per day at the international scale, p-value: 2.5 x 10-3. Points represent individual 1453 
regions, solid line represents linear regression, and dotted lines represent 95% confidence 1454 
interval. 1455 
 1456 
I. Linear regression of measured values for time until first peak of infections per day versus peak 1457 
infections per day at the US state scale, p-value: 2.7 x 10-9. Points represent individual regions, 1458 
solid line represents linear regression, and dotted lines represent 95% confidence interval. 1459 
 1460 
 1461 
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