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Abstract. Assessing signal quality is crucial for photoplethysmogram analysis, yet a

precise mathematical model for defining signal quality is often lacking, posing challenges

in the quantitative analysis. To tackle this problem, we propose a Signal Quality In-
dex (SQI) based on the adaptive non-harmonic model (ANHM) and a Signal Quality

Assessment (SQA) model, which is trained using the boosting learning algorithm. The
effectiveness of the proposed SQA model is tested on publicly available databases with

experts’ annotations. Result: The DaLiA database [20] is used to train the SQA model,

which achieves favorable accuracy and macro-F1 scores in other public databases (ac-
curacy 0.83, 0.76 and 0.87 and macro-F1 0.81, 0.75 and 0.87 for DaLiA-testing dataset,

TROIKA dataset [31], and WESAD dataset [23], respectively). This preliminary result

shows that the ANHM model and the model-based SQI have potential for establishing
an interpretable SQA system.
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1. Introduction

Photoplethysmogram (PPG) is widely utilized in clinical and consumer devices for their
non-invasive and cost-effective nature [1]. Initially employed to measure blood oxygen sat-
uration and monitor resting heart rate (HR), the PPG signal also holds rich information on
the cardiovascular, respiratory, autonomic nervous systems, or even blood pressure, which
has not been routinely exploited but has started to gain attention in the digital health era.
However, like other biomedical signals, PPG information’s accuracy relies on signal quality,
which is high at rest but usually diminishes with movement [2, 10]. Therefore, a robust
signal quality assessment method is crucial to identify noise-corrupted segments, ensuring
reliable measurements of parameters like heart rate and oxygen saturation from high-quality
signal segments [19].

Various methods exist for assessing the quality of a PPG signal [15] under different cri-
teria, such as the presence of clear pulse peaks [19, 8] for HR extraction or clean pulse
waveforms, cardiac component, or visible systolic and diastolic waves [16] for diagnosis
demands. Additional considerations include pulse amplitude and width consistency with
adjacent pulses, adherence to typical PPG pulse morphology [28]. Alternatively, simultane-
ous recording of other signals, as demonstrated in [17], can be employed to define quality.
To automatically quantify PPG quality, signal processing techniques are needed. This can
be achieved through time-domain, frequency-domain, or hybrid approaches, guided by pre-
defined rules or machine learning techniques. See [19] for a review. To our knowledge,
experts seem to rely on the visibility of the cardiac component to label the quality of a
PPG segment. Despite implicitly consented PPG signal quality criteria among experts and
numerous proposed PPG signal quality assessments (SQA), there is, to our knowledge, no
precise definition of PPG signal quality with a mathematical model, particularly in a free-
living environment.
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We model the PPG signal by the adaptive non-harmonic model (ANHM), which in-
corporates respiration-induced intensity variation (RIIV) [25] and motion rhythm, being
non-sinusoidal when exists and apply time-frequency (TF) analysis to recover harmonics
of the cardiac component. Based on these, we introduce our model-based signal quality
index (SQI) to evaluate the quality of cardiac component residing in a PPG signal and an
interpretable learning based SQA model based on the proposed and existing signal quality
indices. We apply the SQA model to publicly available databases with expert annotations,
showcasing its applicability.

2. Mathematical model and signal decomposition

It is well known that a PPG signal is composed of possible multiple components, including
a cardiac component, a respiratory component [25], and a motion rhythm when a subject
is exercising. The oscillatory morphology of the cardiac component changes from cycle to
cycle, encoding the underlying physiological status [7], and the similar observation might
hold for other components. Also, noise is inevitable. Jointly, we consider the adaptive non-
harmonic model (ANHM) [13] to model the PPG signal. Fix small constants ε, ε′ > 0 and
∆ > 0. We model a clean PPG signal by the ANHM [13]:

(1) f(t) =

L∑
`=1

f`(t) + T (t) ,

where

(2) f`(t) :=

D∑̀
j=1

b`,j(t) cos(2πφ`,j(t))

is called the intrinsic model type (IMT) function, φ`,1 and φ′`,1 > 0 are called the phase

and the instantaneous frequency (IF) of the `-th IMT function, b`,j(t) > 0 is the amplitude

modulation (AM), and T (·) is a smooth function so that its Fourier transform T̂ is compactly
supported in [−∆,∆]. For each ` ∈ {1, . . . , L}, we assume the following additionally:

(C1) φ`,j ∈ C2(R) for j = 1, · · · , D`. When j = 1, |φ′′`,1(t)| ≤ εφ′`,1(t) for all t ∈ R; when

j ≥ 2,
∣∣∣φ′

`,j(t)

φ′
`,1(t) − j

∣∣∣ ≤ ε′ and |φ′′`,j(t)| ≤ εjφ′`,1(t) for all t ∈ R.

(C2) b`,j ∈ C1(R) for j = 1, . . . , D`. When j ≥ 2, b`,j(t) ≤ c`,jb`,1(t) and |b′`,j(t)| ≤
εc`,jφ

′
`,1(t) for all t ∈ R, where c`,1 > 0, c`,j ≥ 0 and

∑D`
j=1 c

2
`,j = 2.

(C3) When L > 1, for any t ∈ R, φ′`,1(t) − φ′`−1,1(t) ≥ d > 0 for ` = 2, . . . , L, and
φ′
`′,1(t)

φ′
`,1(t) /∈ N for any ` < `′.

When ε′ = 0 and b`,j(t) = c`,jb`,1(t) for all j ≥ 2, the ANHM can be expressed as a function
with fixed wave-shape functions (WSF); that is,

f(t) =
L∑
`=1

b`,1(t)s`(`φ`,1(t)) ,

where s` is a 1-periodic function [13]. For each ` ∈ {1, · · · , L}, D` ∈ N is called the harmonic
order for the `-th IMT function. When D` = 1, the `-th IMT function oscillates with a
sinusoidal WSF. Note that in general it is possible that

|φ′`,j(t)− φ′`′,k(t)| ≤ d
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for ` 6= `′ and some j, k ∈ N. We call b`,1(t) cos(2πφ`,1(t)) the fundamental component of
the `-th IMT function, and for j > 1, we call b`,j(t) cos(2πφ`,j(t)) the j-th harmonic of the
`-th IMT function. We refer readers to [13] for more detailed discussion of the model and
these conditions. When L = 1, the only IMT function is the cardiac component, which
usually can be well modeled by D1 = 6. When respiration and/or walking patterns exist,
L > 1, and their harmonic orders are lower, like 3. In a PPG example shown in Figure 5,
it is difficult to visualize the cardiac oscillation in the raw signal, even if it exists and is of
high quality after decomposition. In practice, we can remove the trend component T by
applying a high-pass filter, so from now on we assume T = 0.

With the ANHM model, we consider the time-frequency (TF) analysis approach to de-
compose the signal, due to the time-varying frequency and amplitude nature of PPG signals.
This approach has been applied to solve several signal processing problems, such as the ex-
traction of the phase and the amplitude information, signal decomposition into essential
components (IMT functions and their harmonics), denoising, and dynamic feature extrac-
tion. While there are several choices, we consider the short-time Fourier transform (STFT)
based synchrosqueezing transform (SST) [5, 18]. SST generates a TF representation (TFR)
of the PPG signal. It has been theoretically established that when a signal adheres ANHM
with sinusoidal WSFs, the ridges of STFT closely approximate the IFs of all IMT functions
[6], and SST utilizes the phase information of STFT to sharpen the TFR and hence the
performance of ridge detection (RD) is enhanced [14]. When we decompose a signal, we
assume the knowledge of L. In general, estimating L is still a challenging problem, but
estimating D` could be achieved by the trigonometric regression [22]. Under the ANHM, by
the RD and reconstruction formula for SST [5], we could robustly and accurately estimate
b1,1(t)ei2πφ1,1(t) [3], and the first IMT function can be reconstructed via taking the real part
of the superposition of these estimated harmonics components. By subtracting the first IMT
function from the PPG signal, we proceed with reconstructing the second IMT function by
the same approach. By iteration, we obtain a decomposition of all IMT functions. The
overall flowchart of ridge detection and harmonic decomposition algorithm, shape-adaptive
mode decomposition (SAMD) is shown in Figure 1.

3. Signal quality indices for a PPG signal

To our understanding, “signal quality” is a broad term typically described and quantified
by implicitly equating it with the visibility of the cardiac component, sometimes considering
conditions like systolic or diastolic phase behavior as indicators of high quality. Let us now
quantify this traditional idea. To quantify this idea precisely, we model a PPG signal by
(1), assume ` = 1 is the cardiac component, and define the SQI by

(3) SQIM(t) :=

∑D1

j=1 b
2
1,j(t)∑D1

j=1 b
2
1,j(t) + var (ñ(t))

=
S̃NR(t)

S̃NR(t) + 1
,

where

ñ(t) =
L∑
`=2

D∑̀
j=1

b`,j(t) cos(2πφ`,j(t)) + n(t) ,

n(t) is the inevitable noise, and

S̃NR(t) :=

∑D1

j=1 b
2
1,j(t)

var (ñ(t))
.
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TF representation (e.g. SST) Multiple ridges detection on TFR 

modes decomposition

(g) = (e) + (f)

(a)

(b)
(c)

(d)

(e)

(f)

Figure 1. The overall flowchart of ridge detection and harmonic decom-
position algorithm. (a) A segment of PPG signal that contains a cardiac
component and a respiratory component. (b) The time-frequency represen-
tation of (a) determined by the second-order SST. (c) The detected ridges
are superimposed as red-dashed curves on the TFR shown in (b). (d) The
reconstructed harmonics of the cardiac component, which are related to the
detected ridges shown in (c). (e) The reconstructed cardiac component,
which comes from the superposition of reconstructed harmonics shown in
(d). (f) The reconstruct fundamental component of the respiratory compo-
nent that is related to the ridge shown as the blue-dashed curve in (c). (g)
The superposition of (e) and (f).

In other words, we view non-cardiac component as “noise”. Clearly, when the cardiac
component as the signal is strong and the noise is weak, S̃NR(t) is large and SQIM(t) is close
to 1. Otherwise it is close to 0. In the ideal situation when L = 1, ñ(t) = n(t) and

S̃NR(t) :=

∑D1

j=1 b
2
1,j(t)

var (n(t))
,

which is the relationship between the cardiac component and the noise.
In practice, the PPG signal is uniformly sampled at a fixed sampling rate, fs Hz, and

saved as a vector x ∈ RN ; that is,

x(i) = f(i/fs) + ni

for 1 ≤ i ≤ N , where ni is a mean zero noise with finite variance. Clearly, each component
of f is also uniformly sampled as an RN vector. For example, the cardiac component is
given by

x1[i] =

Dc∑
k=1

b1,k[i] cos(2πφ1,k[i]) ,

where 1 ≤ i ≤ N , and b1,k,φ1,k ∈ RN are uniformly sampled from b1,k(t) and φ1,k(t).
Numerically, the estimation of b1,k, φ1,k and noise n from the PPG signal is achieved by
the reconstruction formula for SST [5]. Then, compute SQIM every d/fs s, where d ∈ N is
chosen by the user; that is,

(4) SQIM[i] =

∑Dc
k=1 bc,k[id]2∑Dc

k=1 bc,k[id]2 + varn[id]
, 1 ≤ i ≤ N/d,
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where

varn[id] :=
1

d

d∑
j=1

n[(i− 1)d+ j]2 .

The Matlab implementation of SQIM can be found in https://github.com/yanweiSu/

PPG-SQIm.
We also compare SQIM with existing SQIs, including the skewness (SQIS) [12, 8] computed

for each 4 s PPG segment, the entropy (SQIE) [24, 8] for each 4 s PPG, and harmonic integrity
index of order n ∈ N, Hn, motivated by studying the strength dynamics of various harmonics
of ambulatory blood pressure signal (ABP) [30, 4]. Let f1,k ∈ RN be the k-th harmonics
component of the cardiac component, Hk of the j-th sample is defined as

(5) Hk[j] =

√∑2.5fs
i=−2.5fs+1 f1,k[j + i]2√∑2.5fs
i=−2.5fs+1 x[j + i]2

.

The perfusion index [8] is not considered since the databases we use have gone through a
high pass filter.

3.1. Implementation details. Each PPG segment is 30 s in this paper. With fs = 64 Hz,
we used a 6th-order Butterworth bandpass filter with cutoff frequencies at 20 Hz and 0.5
Hz. Denote the pre-processed PPG segment as x ∈ R30fs . We used the second-order STFT-
based synchrosqueezed transformation (SST) [18] with the window function π−

1
4 exp(−t2),

which leads to a N -by-M complex-valued matrix S ∈ CN×M as the discretized TFR, where
N = 30fs, M = fs

2∆ξ
, and ∆ξ = 0.02 Hz. Then apply the multiple harmonics RD (MHRD)

[26] on S with two ridges and parameters (λ1, λ2) = (1, 1) and (µ1, µ2) = (0, 0.07) to obtain
IFs of the first two harmonics, followed by the single curve RD [26] with λ = 1 to obtain
IFs of remaining higher harmonics, where we apply the masking technique; that is, at time
i/fs, the band ranging from 0.75φ′1[i] Hz to 1.25φ′1[i] Hz is masked. Finally, set ∆ = 0.2 to
reconstruct b1,k(t) cos(2πφ1,k(t)), where k = 1, . . . , 5, denoted as f1,k ∈ CN , which leads to
b1,k, φ1,k ∈ RN , where b1,k[i] = |f1,k[i]| and φ1,k comes from phase unwrapping f1,k.

3.2. Train an interpretable signal quality assessment model. For each 30 s PPG
segment, the label sequence is a {0, 1}-valued sequence, y ∈ {0, 1}30fs , where 1 indicates
“with artifact” (low quality) and 0 indicates “no-artifact” (high quality). To avoid the
boundary effect, the first and last 5 seconds are discarded. This is not a serious problem
since in practice the PPG signal is usually much longer than 30 second. To speed up,
downsample y to 2Hz by the voting process over each 0.5s. The features defined by different
SQIs are converted correspondingly by taking the median over each 0.5s. With SQIs and
labels from all 30 second segments in the training dataset, we apply an interpretable learner,
Light Gradient Boosting Machine (LightGBM) [11], to train a SQA model, with the learning
rate of 0.1, the max number of leaves of each tree 7, the max number of bins for the feature
values 255, and the cross-entropy as the loss function.

4. Materials and statistics

4.1. Dataset. We employed the publicly available dataset from [9] for validating the pro-
posed SQA model. There are 7,306 segments with quality annotations in total. The labels
are binary (1 for “artifact” or “low quality”, and 0 for “clean”, “no artifact” or “high qual-
ity”) to each sample point in the segment. These segments are derived from three public
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datasets: DaLiA [20], TROIKA [31], and WESAD [23]. Details of data preparation and
labeling can be found in [9].

4.2. More details about the public databases. The employed publicly available datasets
with experts’ labels [9] can be downloaded from https://github.com/chengstark/Segade/

tree/main/data. There are 7,306 30-second PPG recordings in total, each accompanied
by quality annotations. The labels assign binary values (1 for “artifact” or “low quality”,
and 0 for “clean”, “no artifact” or “high quality”) to each sample point in the segment.
These segments are derived from processing PPG signals from three public datasets: DaLiA
[20], TROIKA [31], and WESAD [23], and the set that comes from DaLiA is split further
into one training set, called the DaLiA-training (DTrain) set, and one testing set, called the
DaLiA-testing (DTest) set.

All 30-second PPG segments are uniformly sampled at the sampling rate 64 Hz, and the
signal values are normalized to the range [0, 1]. A second-order Butterworth filter with a low
end cutoff of 0.9 Hz and a high end cutoff of 5 Hz was applied to the segments of both DaLiA
and WESAD dataset1 by the authors in [9]. The TROIKA dataset was pre-processed by its
original author in [31] with bandpass from 0.4 Hz to 5 Hz.2 To be consistent, we pre-process
the databases used in [9] by applying a 6th-order Butterworth filter with a low end cutoff
of 0.5 Hz and a high end cutoff of 20 Hz.

In the TROIKA dataset, both the PPG signal and triaxial acceleration signal were
recorded from the wrist. Subjects performed treadmill running with changing speeds during
data collection. For datasets labeled as TYPE01, running speeds changed as follows: rest (30
s) → 8 km/hr (1 minute) → 15 km/hr (1 minute) → 8 km/hr (1 minute) → 15 km/hr
(1 minute) → rest (30 s). For datasets labeled as TYPE02, illustrated in Figure 1 in the
main article, running speeds changed as follows: rest (30 s) → 6 km/hr (1 minute) → 12
km/hr (1 minute) → 6 km/hr (1 minute) → 12 km/hr (1 minute) → rest (30 s) [31]. In
the DaLiA dataset, subjects performed 8 activity statuses plus one transient status: sitting,
ascending and descending stairs, table soccer, cycling, car driving, lunch break, walking, and
working, marked by IDs 1 to 8, respectively. The transient state, representing transitions
between statuses, is marked by ID 0. Both the PPG signal used for analysis and the ac-
celerometer signal plotted in Figure 1 in the main article were recorded from the wrist-worn
device. Both TROIKA and DaLiA datasets provide ECG signals and the detected R peaks
as ground truth for HR estimation. The WESAD dataset was recorded from both wrist-
and chest-worn devices, from 15 subjects (age ranging from 21 to 55 years old, median 28
years old) during a lab study under different emotional states, including neutral, stress,
and amusement. Subjects were allowed to move freely while performing tasks. The signals
include ECG signals, tri-axis accelerometer signal, electrodermal activities record and PPG
signals. The PPG signals in WESAD dataset are recorded from the wrist at the sampling
rate 64 Hz [23].

The label generation procedure used in [9] is summarized here for readers’ convenience.
Binary labels were created based on annotators’ observations of the three-axis acceleration
signal, examining the correlation between ECG heartbeats and PPG heartbeats, and assess-
ing the regularity of the PPG signals to identify artifacts. Two scenarios were considered
for artifact annotations: (1) If the accelerometer shows motion and irregularities in the
PPG signal align with the accelerometer data, the segment is marked as an artifact. (2)
If the accelerometer shows no obvious motion, ECG displays a normal sinus rhythm, but

1https://github.com/chengstark/Segade/blob/main/db2npy.py, line 23 to line 30.
2See [9] and the description in [31]
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irregularities are observed in the PPG signal, the segment is marked as an artifact. Each
signal was annotated by at least one annotator. In the initial annotation trial phase, fifty
30-second segments were randomly selected and independently annotated by three annota-
tors. Annotations from each pair of annotators were compared and analyzed, and the group
of annotators collectively made decisions on correct annotations, improving agreement. The
remaining data were annotated by a single annotator thereafter.

4.3. Learning process. We followed the procedure outlined in [9] to construct the train-
ing and testing sets. Specifically, 3436 segments from 12 subjects (ID 2 to ID 13) in the
DaLiA dataset constitute the DaLiA-training (DTrain) set; 869 segments from the remain-
ing subjects in the DaLiA dataset form the DaLiA-testing (Dtest) set. Additional testing
sets include 2888 segments from the WESAD dataset and 113 segments from the TROIKA
dataset. We allocate DaLiA-training for training and reserve DaLiA-testing, TROIKA, and
WESAD for testing.

4.4. Statistical analysis. We first run a 10-fold cross-validation on the DTrain set follow-
ing the 10-fold splitting in [9]. Then, train the SQA model on the entire DTrain set, and test
on DTest, TROIKA and WESAD datasets separately. By viewing label 1 as the positive
class, and 0 as the negative class, we report accuracy, sensitivity, precision, macro-F1 score,
and the DICE score, which is defined as 2TP/(TP + FP + FN), where TP, FP and FN are true
positive, false positive and false negative, respectively.

5. Result

In DTrain (DTest, TROIKA and WESAD respectively), the overall length of the PPG
signal is 103,080 s (26,070 s, 3,390 s and 86,640 s respectively) and the overall length
of artifact is 60,478.48 s (13,298.47 s, 1,784.58 s and 43,020.41 s respectively). Among all
recordings, the ratio of labeled artifact in each recording is 0.59±0.34 (0.51±0.31, 0.53±0.34
and 0.50± 0.39 respectively).

SQI y DTrain DTest TROIKA WESAD

SQIM
1 0.85± 0.10 0.86± 0.09 0.85± 0.11 0.87± 0.09
0 0.95± 0.06 0.95± 0.06 0.91± 0.08 0.98± 0.03

SQIS
1 0.10± 0.60 0.09± 0.57 0.07± 0.54 0.16± 0.72
0 0.61± 0.45 0.62± 0.47 0.30± 0.35 0.77± 0.44

SQIE
1 1.46± 0.46 1.58± 0.40 1.68± 0.33 3.18± 0.63
0 1.53± 0.44 1.53± 0.42 1.86± 0.26 3.20± 0.42

H1
1 0.54± 0.14 0.56± 0.14 0.52± 0.15 0.57± 0.16
0 0.73± 0.13 0.74± 0.13 0.62± 0.21 0.78± 0.10

100H6
1 1.26± 1.88 1.02± 1.39 1.13± 1.25 1.30± 1.70
0 0.57± 0.97 0.64± 0.91 0.65± 0.87 0.67± 0.93

Table 1. The mean and standard deviation of different SQIs.

5.1. Basic statistics for signal quality indices. The mean and standard deviation of
different SQIs are reported in Table 1. Overall, SQIM and SQIS are higher when the signal
quality is high, which fits our expectation. H1 and H6 have opposite behavior, which can
be explained by the fact that the higher order harmonic in PPG is weaker, and hence easily
perturbed and “enhanced” by the high frequency component of artifacts.
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5.2. Performance of each SQI. The Wilcoxon rank sum test on each testing dataset
shows that all SQIs are significantly different (p < 10−10) on the artifact and the non-artifact
groups. In DTrain (DTest, TROIKA and WESAD respectively), the Pearson correlation
coefficients between SQIM and H1, H6, SQIS and SQIE are 0.64, 0.07, 0.36 and −0.04 (0.59,
0.13, 0.40 and −0.09, 0.27, 0.24, 0.04 and 0.23, and 0.72, −0.04, 0.43 and −0.14 respectively)
respectively. Except for TROIKA, the correlation coefficient between SQIM and H1 is usually
higher than 0.5. The area under the receiver operating characteristic curve (AUROC) and
optimal threshold for the binary classification are reported in Table 2. Overall, except
for TROIKA, the AUROC of SQIM is the highest, and those of H1 and SQIS are also high.
Signals in TROIKA were recorded during running and were expected to be more challenging.
Since SQIM has the highest AUROC in general, we evaluate its ability as a single index to
classify the signal quality. First, we learn the optimal threshold of SQIM from the AUROC
from DTrain using the experts’ labels. Then apply this threshold to the testing databases.
Overall, the accuracy, macro-F1 and DICE are 0.78, 0.77 and 0.80 (0.64, 0.61 and 0.72, 0.85,
0.85 and 0.85, respectively) for DTest (TROIKA and WESAD, respectively).

DTest SQIM SQIS −SQIE H1 −H6

AUROC 0.84 0.79 0.53 0.84 0.56
Threshold 0.96 0.46 -1.39 0.69 -0.01

TROIKA SQIM SQIS SQIE H1 −H6

AUROC 0.69 0.64 0.67 0.68 0.69
Threshold 0.94 0.15 1.92 0.68 -0.003

WESAD SQIM SQIS −SQIE H1 −H6

AUROC 0.93 0.80 0.54 0.88 0.62
Threshold 0.96 0.45 -3.58 0.71 -0.01

Table 2. AUROC and the best thresholds of each feature for each testing datasets. The
negative sign preceding an index emerges when the AUROC with the original index is below
0.5, prompting us to invert the sign of the index and report the resulting AUROC.

5.3. Performance of the SQA model. The proposed SQA model achieves accuracy
0.86 ± 0.01 and macro-F1 score 0.85 ± 0.01 on DTrain under the 10-folds cross-validation
scheme. When the trained model is tested on DTest (TROIKA and WESAD respectively),
it achieves accuracy 0.83 (0.76 and 0.87 respectively), macro-F1 score 0.82 (0.75 and 0.87
respectively). See Table 6 for details. Note that DICE does not outperform the neural net-
work based algorithm proposed in [9], which achieves 0.87, 0.81 and 0.91 in DTest, TROIKA
and WESAD respectively, and we will come back to this in Discussion.

5.4. More analysis results. The histogram and receiver operating characteristic curve
(ROC) of various SQIs over different databases are shown in Figures 2, 3 and 4.

Among various SQIs, since SQIM has the highest AUROC in general, we evaluate its
ability as a single index to classify the signal quality in different databases. First, we
learn the optimal threshold of SQIM from the AUROC curve from DTrain using the experts’
labels. We then apply this threshold to DTest, TROIKA and WESAD. The result is shown
in Table 4. Overall, accuracy and macro-F1 are 0.78 and 0.77 (0.64 and 0.61, 0.85 and 0.85,
respectively) for DTest (TROIKA and WESAD, respectively).

The proposed SQA model achieves accuracy 0.86± 0.01 and macro-F1 score 0.85± 0.01
on DTrain under the 10-folds cross-validation scheme, which is shown in Table 5. We follow
the 10-fold splitting proposed in [9].
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DTest 1 (Prediction) 0 (Prediction)
1 (Label) 15939 1984
0 (Label) 4114 12723

SEN = 0.89 PRE = 0.80 F1 (label 1) = 0.84
SPE = 0.76 NPV = 0.87 F1 (label 0) = 0.81

accuracy = 0.83; mF1 = 0.82

TROIKA 1 (Prediction) 0 (Prediction)
1 (Label) 2200 198
0 (Label) 901 1221

SEN = 0.92 PRE = 0.71 F1 (label 1) = 0.80
SPE = 0.58 NPV = 0.86 F1 (label 0) = 0.69

accuracy = 0.76; mF1 = 0.75

WESAD 1 (Prediction) 0 (Prediction)
1 (Label) 48902 8115
0 (Label) 6783 51720

SEN = 0.86 PRE = 0.88 F1 (label 1) = 0.87
SPE = 0.88 NPV = 0.86 F1 (label 0) = 0.87

accuracy = 0.87; mF1 = 0.87
Table 3. The confusion matrices and the performance metrics of the trained SQA model
on different testing sets. NPV: negative predictive value; SEN: sensitivity; SPE: specificity;
PRE: precision; mF1: macro-F1.

When the trained model is tested on DTest (TROIKA and WESAD respectively), it
achieves accuracy 0.83 (0.76 and 0.87 respectively) and macro-F1 score 0.82 (0.75 and 0.87
respectively). See Table 6 for details.

Finally, we compare the performance of the proposed signal quality indices with the
Segade model proposed in [9]. The DICE scores of the proposed SQA model, SQIM, and
Segade are reported in Table 7, where the DICE score is defined as 2TP/(TP + FP + FN),
where TP means true positive, FP means false positive and FN means false negative [9].

6. Discussion and Conclusion

We proposed a model-based SQI, denoted as SQIM, and a learning-based SQA model that
incorporates various SQIs including SQIM. The proposed SQA performs well, but does not
outperform the existing CNN-based approach model.

The first topic to discuss, which probably is the spotlight of readers interested in the
“predictive model”, is the performance of our SQA model. In SQIM, the strong motion
rhythm resistant to the bandpass filter is treated as “noise”, resulting in a small SQIM. This,
coupled with concerns about labels derived from raw PPG signals raised in [27] elucidates
the slightly lower performance of our SQA model compared to results reported in [9], which
is a convolutional neural network model derived from the U-Net model architecture [21]
tailored for 1D signal processing. See the left subplot of Figure 5 for a PPG segment
that is labeled “low quality”, where the PPG is composed of a cardiac component and a
motion rhythm since the subject was running at the speed of 6km/hour. This segment
was considered of low quality, probably due to its irregular pattern, but its decomposed
cardiac component is reasonably well. In the right subplot of Figure 5, the PPG segment
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DaLiA-testing Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 15449 2474

No artifact (Label) 5363 11474

SEN = 0.86 PRE = 0.74 F1 (label 1) = 0.80
SPE = 0.68 NPV = 0.82 F1 (label 0) = 0.75

accuracy = 0.78; mF1 = 0.77

TROIKA Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 2074 324

No artifact (Label) 1317 805

SEN = 0.87 PRE = 0.61 F1 (label 1) = 0.72
SPE = 0.38 NPV = 0.71 F1 (label 0) = 0.50

accuracy = 0.64; mF1 = 0.61

WESAD Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 46671 10346

No artifact (Label) 6802 51701

SEN = 0.82 PRE = 0.87 F1 (label 1) = 0.85
SPE = 0.88 NPV = 0.83 F1 (label 0) = 0.86

accuracy = 0.85; mF1 = 0.85

Table 4. Performance evaluation of SQIM. We apply the threshold de-
termined by DaLiA-training set on the other three testing datasets, and
report the confusion matrices and standard metrics. NPV: negative predic-
tive value; SEN: sensitivity; SPE: specificity; PRE: precision; mF1: macro-
F1.

DaLiA-training Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 73091 7581

No artifact (Label) 12391 44377

SEN = 0.91 ± 0.01 PRE = 0.86 ± 0.01 F1 (label 1) = 0.88 ± 0.01
SPE = 0.78 ± 0.02 NPV = 0.85 ± 0.01 F1 (label 0) = 0.82 ± 0.01

accuracy = 0.86 ± 0.01; mF1 = 0.85 ± 0.01; DICE = 0.88 ± 0.01

Table 5. The 10-folds cross-validation of the proposed SQA model on
DaLiA-training set. The total sum of 10 confusion matrices is shown above.
NPV: negative predictive value; SEN: sensitivity; SPE: specificity; PRE:
precision; mF1: macro-F1.

is labeled “high quality” probably since its presence “seems” regular and close to cardiac
oscillation. However, these cycles do not aligned with the cardiac cycles confirmed by
the simultaneously recorded electrocardiogram (ECG). We thus could reasonably view the
labeled signal quality as uncertain. This uncertainty complicates the comparison of model
performances. Although the DICE evaluation of the proposed SQA model indicates a lower
performance than [9], the SQA model holds a distinct advantage in interpretability inherited
from the PPG model. This raises the question of whether quantifying signal quality of
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DaLiA-testing Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 15939 1984

No artifact (Label) 4114 12723

SEN = 0.89 PRE = 0.80 F1 (label 1) = 0.84
SPE = 0.76 NPV = 0.87 F1 (label 0) = 0.81

accuracy = 0.83; mF1 = 0.82

TROIKA Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 2200 198

No artifact (Label) 901 1221

SEN = 0.92 PRE = 0.71 F1 (label 1) = 0.80
SPE = 0.58 NPV = 0.86 F1 (label 0) = 0.69

accuracy = 0.76; mF1 = 0.75

WESAD Artifact (Prediction) No artifact (Prediction)
Artifact (Label) 48902 8115

No artifact (Label) 6783 51720

SEN = 0.86 PRE = 0.88 F1 (label 1) = 0.87
SPE = 0.88 NPV = 0.86 F1 (label 0) = 0.87

accuracy = 0.87; mF1 = 0.87

Table 6. Sum of the confusion matrices and the performance metrics of
testing the SQA models on each testing sets. The SQA model is trained
from the DaLiA-training database. NPV: negative predictive value; SEN:
sensitivity; SPE: specificity; PRE: precision; mF1: macro-F1.

DaLiA-testing TROIKA WESAD
Segade [9] 0.873 0.805 0.911

Proposed SQA model 0.839 0.800 0.868
SQIM 0.798 0.717 0.845

Table 7. The DICE score of testing the proposed SQA model on each
dataset. The Segade result in the first row is from Table 1 in [9].

cardiac component post-decomposition is more effective when irrelevant components exist.
As no labeled database follows this approach, we leave this intriguing question for future
research.

The advantage that SQIM is defined with mathematical meanings allows generalization
for quantifying other information in PPG; for example, respiratory information, motion
rhythm, or other factors in PPG signals. This is related to the change point detection for
oscillatory signals in statistics, which unfortunately has received limited attention, except
for recent efforts [29]. Note that respiratory information like RIIV may be absent, motion
rhythms might be absent or irregular, and arrhythmia might appear, making quality assess-
ment vague. We may extend the change point detection algorithm [29] to the PPG signal,
considering time-varying frequency, amplitude, and WSF. This problem is prevalent in other
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Figure 2. Histograms and AUROC curves of different SQIs on the DaLiA-
testing dataset.

Figure 3. Histograms and AUROC curves of different SQIs on the
TROIKA dataset.

scientific fields, and exploring joint oscillatory component change point detection and signal
decomposition is a future research direction.

In conclusion, our proposed ANHM model, in conjunction with advanced signal decom-
position tools, holds promise for establishing such a system by incorporating the signal
decomposition step. With labels provided by this system, we can advance towards estab-
lishing a more dependable SQA model, particularly for scientific research.
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Figure 4. Histograms and AUROC curves of different SQIs on the WE-
SAD dataset.
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Figure 5. Two PPG signals recorded from two subjects’ wrists while they were running.
Top row: the raw PPG signal that has been bandpass filtered with the 0.4−5Hz band. Middle
row: the cardiac component decomposed from the raw PPG signal is shown as the black curve,
and the simultaneously recorded ECG signal and the detected R-peaks are shown as the red
curve and the grey lines, respectively. Bottom row: the motion rhythm decomposed from the
raw PPG signal is shown as the black curve, and the magnitude of the simultaneously recorded
accelerometer signal is shown as the red curve.
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